SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT

STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

Prepared for:

Performing Parties Group
(Beazer East, Inc., Cooper Industries, LLC, Tierra Solutions, Inc., on behalf of Occidental
Chemical Corporation and Apogent Transition Corporation)

Prepared by:

Key Environmental, Inc.200 Third Avenue
Carnegie, PA 15106

Integral Consulting Inc. 200 Harry S. Truman Pkwy, Suite 330 Annapolis, MD 21401

September 2014

333157

SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT

STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

Prepared for:

Performing Parties Group (Beazer East, Inc., Cooper Industries, LLC, Tierra Solutions, Inc., on behalf of Occidental Chemical Corporation and Apogent Transition Corporation)

Prepared by:

Key Environmental, Inc. 200 Third Avenue Carnegie, Pennsylvania 15106

SEPTEMBER 2014

TABLE OF CONTENTS

1.0			
	1.1	OVERVIEW OF THE SLERA	1-1
2.0	SITE	E BACKGROUND AND SETTING	2- 1
	2.1	SITE DESCRIPTION	2-1
	2.2	SITE HISTORY	
		2.2.1 Interim Remedial Measures (IRMs)	
		2.2.2 Interim Response Action (IRA)	2-5
	•	2.2.3 Removal Action	
		2.2.4 Additional Response Actions	2-6
	2.3	LAND AND WATER USE	
	2.4	CURRENT SITE OPERATION, MAINTENANCE AND MONITO	ORING
		(OM&M)	2-8
	2.5	SITE CONDITIONS OBSERVED ON MARCH 31, 2014	2-9
3.0	CON	CEPTUAL SITE MODEL	3-1
3.0	3.1	SOURCES OF CONTAMINATION	3-1
	3.2	FATE AND TRANSPORT	3-2
	3.3	MIGRATION PATHWAYS	3-3
	3.4	POTENTIAL EXPOSURE PATHWAYS	3-3
	3.5	POTENTIAL RECEPTORS	3-4
	3.6	CSM SUMMARY	3-7
1.0	ECO	TOXICITY SCREENING LEVELS	4-1
5.0	SEL	ECTION OF CHEMICALS OF POTENTIAL ECOLOGICAL CON	CERN .5-1
5.0	SCR	EENING-LEVEL RISK CALCULATION	6-1
7.0	SCII	ENTIFIC/MANAGEMENT DECISION POINT (SMDP)	
3.0	REF	ERENCES	

TABLES

1.1 Selection of Exposure Pathways

FIGURES

1	Site Location Map
2	2012 Aerial Photograph
3	Historical Site Arrangement Showing Interim Measures (2008)
4	Current Site Conditions (2012)
5	Photograph Location Map
6	South Ditch Wetland Mitigation Plan

7 Cross Section A-A'

8 Conceptual Site Model

APPENDICES

- A Complete Figures, Tables, and Appendices from the SCSR (December 2012, Revised March 2013) and the SCSR Addendum (March 28, 2014) (on CD)
- B Photographs of Current Site Conditions, March 31, 2014
- C Results of New Jersey's i-MapNJ Database Search

ABBREVIATIONS/ACRONYMNS

ACO Administrative Consent Order

Agreement Administrative Settlement Agreement and Order on Consent for the

RI/FFS

Apogent Transition Corporation

ARARs Applicable or Relevant and Appropriate Requirements

Beazer East, Inc.

BERA Baseline Ecological Risk Assessment
CEA Groundwater Classification Exception Area

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

COC Chemical of Concern Cooper Industries, LLC

COPEC Chemical of Potential Ecological Concern

COPR Chromite Ore Processing Residue

CSM Conceptual Site Model

DNAPL Dense Non-Aqueous Phase Liquid
ECO-SSL Ecological Soil Screening Levels
EE/CA Engineering Evaluation/Cost Analysis

EFH Essential Fish Habitat

ERAGS Ecological Risk Assessment Guidance for Superfund, EPA/

540-R-97-006

GIS Geographic Information System

Group Performing Parties Group

HCTS Hydraulic Control Treatment System HMD Hackensack Meadowlands District

HQ Hazard Quotient

IRA Interim Response Action

IRAW Interim Response Action Workplan

IRMs Interim Remedial Measures KEY Key Environmental, Inc.

LOAEL Lowest observed adverse effect level

Mg/kg Milligram per kilogram

NHPA National Historic Preservation Act

NJDEP
New Jersey Department of Environmental Protection
NJEMS
New Jersey Environmental Management System
NJPDES
New Jersey Pollutant Discharge Elimination System
NOAA
National Oceanic and Atmospheric Administration

NOAEL No observed adverse effects level

NPL National Priorities List

OCC Occidental Chemical Corporation

OM&M Operations, Maintenance, and Monitoring

OSWER Office of Solid Waste and Emergency Response

PAH Polycyclic Aromatic Hydrocarbon

ABBREVIATIONS/ACRONYMNS

PCBs Polychlorinated biphenyls PDM Processed dredge material

PCDDs/PCDFs Polychlorinated dibenzodioxins/Polychlorinated dibenzofurans

PRG Peninsula Restoration Group

RA Removal Action

RI/FFS Work Plan Remedial Investigation/Focused Feasibility Study Work Plan

SCCC Standard Chlorine Chemical Co. Inc. SCSR Site Characterization Summary Report

SCSRA Site Characterization Summary Report Addendum SLERA Screening-Level Ecological Risk Assessment Site Standard Chlorine Chemical Co., Inc. Site SMDP Scientific/Management Decision Point Appendix A, the Statement of Work

SSP Steel Sheet Pile
TBC To Be Considered

Tierra Solutions, Inc. on behalf of Occidental Chemical Corporation

(QCC)

USEPA United States Environmental Protection Agency

WMP Wetlands Maintenance Plan

1.0 INTRODUCTION

This Screening-Level Ecological Risk Assessment (SLERA) for the Standard Chlorine Chemical Co. Inc. (SCCC) Site (Site) in Kearny, New Jersey was prepared by Key Environmental, Inc., (KEY) on behalf of the Performing Parties Group (Group). The Group consists of Beazer East, Inc. (Beazer), Cooper Industries, LLC (Cooper), Tierra Solutions, Inc. (Tierra) on behalf of Occidental Chemical Corporation (OCC), and Apogent Transition Corporation (Apogent). The SLERA has been prepared pursuant to an Administrative Settlement Agreement and Order on Consent for the Remedial Investigation/Focused Feasibility Study (the Agreement) dated May 3, 2013, for the SCCC Site ("Agreement"). Specifically, this assessment has been prepared to address Section VIII: TASK 7 – Baseline Risk Assessment – Subsection A.4.B.1 of Appendix A, the Statement of Work (SOW) as described in Section 5.7.2 of the approved Final Remedial Investigation / Focused Feasibility Study Work Plan Work Plan (RI/FFS Work Plan) (KEY, September, 2013).

This SLERA draws upon the preliminary conceptual site model (CSM) originally presented in the Site Characterization Summary Report (SCSR) (KEY, Revised March 2013) that was prepared to address the requirements listed in Section II (Task 1 - Site Characterization Summary Report) of the draft United States Environmental Protection Agency (USEPA) Investigation/Focused Feasibility Study SOW dated July 2012. The descriptions of Site features and history presented in the SCSR are updated and summarized in this document to facilitate an understanding of Site conditions as they apply to the evaluation of potential ecological risk. Appendix A consists of a compact disk containing the complete set of figures, tables, and appendices from the SCSR and the SCSR Addendum (SCSRA) (KEY, March 28, 2014).

1.1 OVERVIEW OF THE SLERA

A required by Appendix A, Section VIII, Paragraph B.1 of the Agreement, "The SLERA shall be based on data representative of potential exposures that may remain upon completion of the ongoing Interim Response Action." In order to prepare this SLERA and define potential exposure scenarios, KEY considered both current and reasonably foreseeable future use(s) of the Site, remedial measures completed, and ongoing and established restrictions in land use.

The SLERA addresses the exposure setting and ecological receptor characteristics for the Site. It identifies current and reasonably foreseeable habitats, land characteristics, and exposure pathways by which potential receptors, including animal and plant populations, communities, and sensitive environments may be exposed in the absence of added remedial measures or land use restrictions. Exposure pathways were identified based on consideration of the sources and locations of contaminants, existing remedial measures and ongoing controls, the likely environmental fate of the contaminants, and the location and activities of the potentially exposed populations. The SLERA also identifies specific chemicals of concern for the Site. This SLERA has been prepared

in accordance with current Superfund ecological risk assessment guidance, specifically, Ecological Risk Assessment Guidance for Superfund, Process for Designing and Conducting Ecological Risk Assessments (ERAGS), USEPA, 1997 (EPA/540-R-97-006), OSWER Directive 9285.7-25, June 1997. ERAGS provides an eight step ecological risk assessment process, as follows:

- 1. Screening-Level Problem Formulation and Ecological Effects Evaluation
- 2. Preliminary Exposure Estimate and Risk Calculation (which corresponds to the Scientific/Management Decision Point (SMDP) about whether a full ecological risk assessment is necessary)
- 3. Baseline Risk Assessment Problem Formulation
- 4. Study Design and Data Quality Objectives
- 5. Field Verification of Sampling Design
- 6. Site Investigation and Analysis of Exposure and Effects
- 7. Risk Characterization
- 8. Risk Management

The goal of the SLERA is to complete Steps 1 and 2 of this process and determine whether a baseline ecological risk assessment (BERA) is necessary.

The first part of Step 1, Screening-Level Problem Formulation, consists of developing an ecological CSM. The elements of the ecological CSM are identified below along with a reference to where each topic is addressed in this document.

- (1) Environmental setting and contaminants known or suspected to exist at the Site This is addressed in Section 2.0 which describes the Site background and setting including Site history, remedial actions, regulatory history, land and water use, current Site conditions including the ongoing remedial operations, maintenance, and monitoring program, and redevelopment plans. Also included in this section is a summary of observations made during a Site walk conducted on March 31, 2014 for the purpose of documenting current Site conditions. Section 3.1 summarizes the potential sources of contamination.
- (2) Contaminant fate and transport mechanisms that might exist at the Site The CSM identifies both current and potential future fate and transport mechanisms in Section 3.2 in consideration of the remedial facilities currently in place at the Site.
- (3) Identification of a complete exposure pathway(s) Sections 3.3 and 3.4 of the CSM describe potential migration and exposure pathways and whether there exists reasonable potential for a Chemical of Potential Ecological Concern (COPEC) to travel under current or future conditions from the source to a receptor or sensitive environment that can be affected by the chemical.

- (4) The mechanisms of ecotoxicity associated with contaminants and likely categories of receptors that could be affected This is addressed in Section 4.0. Section 4.0 explains that ecotoxicity screening levels for COPECs have not been identified for this Site-specific SLERA because there are no complete exposure pathways to potential ecological receptors.
- (5) Selection of endpoints to screen for ecological risk For the screening-level assessment, endpoints are any adverse effects on ecological receptors including plant and animal populations, and communities, habitats, and sensitive environments. Adverse effects on populations can be inferred from changes in community structure or function. Adverse effects on habitats can be inferred from changes in composition and characteristics that reduce the habitat's ability to support plant and animal populations and communities. Identification of potential adverse effects on possible plant or animal receptors could be accomplished by identifying conservative estimates of concentrations of detected Siterelated chemical constituents for comparison to ecotoxicity screening levels, however, because there are no complete exposure pathways to potential ecological receptors, this step is not considered necessary for this Site-specific SLERA.
- (6) Establishing conservative thresholds for adverse ecological effects This is the final requirement under Step 1 and could be accomplished by the identification of conservative screening-level ecotoxicity values. However, as stated previously, this step is not required for this Site-specific SLERA because there are no complete ecological exposure pathways.

Step 2 consists of the screening-level exposure estimate and risk calculation, as follows:

- (1) Screening-Level Exposure Estimates If complete exposure pathways were present, this would be completed by comparing on-site contaminant concentrations against appropriate ecotoxicity screening values. This step is not required for this Site-specific SLERA because there are no complete ecological exposure pathways.
- (2) Screening-Level Risk Calculation For this step, a calculation, such as the hazard quotient (HQ) approach, would be used to compare exposure point estimates of ecotoxicity screening values and exposure values. The hazard quotient is expressed as the ratio of a potential exposure level to the ecotoxicity value. Screening-level risk calculations are not required for this Site-specific SLERA because there are no complete ecological exposure pathways.
- (3) SMDP In this step, a final recommendation is made based on the results of the screening-level evaluation. There are three possible decisions at this point in the process: (i.) that there is adequate information to conclude that ecological risks are negligible and there is no need to remediate on the basis of ecological risk, (ii.) that the information is not adequate to make a decision at this point and the ecological risk assessment process proceeds to Step 3 (of the ERAGs 8-step process), or, (iii.) the information indicates a potential for adverse ecological effects and a more thorough assessment is warranted. This determination is presented in Section 7.0 of this report.

This SLERA consists of eight sections, as follows:

- Section 1 Introduction
- Section 2 Site Background and Setting
- Section 3 Conceptual Site Model
- Section 4 Ecotoxicity Screening Levels
- Section 5 Selection of COPECs
- Section 6 Screening-Level Risk Calculation
- Section 7 Scientific/Management Decision Point
- Section 8 = References

2.0 SITE BACKGROUND AND SETTING

The SCCC Site is located at 1025-1035 Belleville Turnpike in Kearny, New Jersey. Figure 1 is a Site location map which shows the existing Site boundaries on a base map which consists of combined portions of two United States Geologic Survey 7.5 minute quadrangles (Jersey City and Weehawken, New Jersey). The Site is situated adjacent to the Hackensack River in Hudson County, New Jersey, and is located approximately 4,000 feet east of the intersection of I-95 and I-280. The Site is bounded to northeast by the Hackensack River, to the south by the adjacent Seaboard Site, to the north by the adjacent Diamond Site, and to the west by the Belleville Turnpike. Substantial remedial measures have been implemented at the Site as discussed in detail in Section 2.2. A recent aerial photograph depicting current Site conditions is provided as Figure 2.

The Site, as the description is used in this SLERA, refers to the definition of the "Site" in the Agreement and the RI/FFS SOW, with the following considerations regarding the riparian parcel (known as Lot 52R or 52.01: 1) stormwater sampling and analysis has shown no significant loading to the river via runoff or groundwater intrusion in the storm sewer; 2) the groundwater is fully contained within the barrier wall system and does not discharge to the river; 3) near-shore river sediments were removed and restoration was completed; and 4) given the existence of multiple other point and area sources in the watershed, the USEPA and NJDEP are currently evaluating the Hackensack River as a separate matter. Further, while past remedial response actions on the SCCC Site have been integrated with areas of contiguous impact on the adjacent Diamond and Seaboard sites, those sites are adequately regulated under the State of New Jersey, Department of Environmental Protection (NJDEP) requirements and are excluded from consideration in the SLERA. The one exception is consideration of potential exposure pathways associated with SCCC Site impacts that have not been addressed through existing remedial actions (e.g., consideration of DNAPL in soil and groundwater impacts located beyond the influence of barrier wall/containment system).

2.1 SITE DESCRIPTION

The Site occupies an area of approximately 25 acres, consisting of five upland parcels referred to on the Tax Map of the Town of Kearny as Block 287, Lots 48, 49, 50, 51, and 52, and one riparian parcel, Lot 52R. These lots currently are owned by the Town of Kearny. The Site includes another parcel, Lot 32.01, which is a former railroad right-of-way currently owned by the Hudson County Improvement Authority. Figure 3 identifies the lot numbers for the various Site parcels. The Site is located along the tidal portion of the Hackensack River.

Currently, the Site contains a few abandoned historic building structures, multiple foundations from buildings that were demolished during past response actions, and the HCTS building. A

Redevelopment Plan (New Jersey Meadowlands Commission, February 2013) has designated the Site and surrounding properties (a total of 74 properties on 367 acres) for redevelopment, with the goal of capitalizing on existing road, rail and marine transportation prospects in the area. In this plan, the Site was designated for Intermodal B land uses. Intermodal facilities are typically those where cargo is transferred from one mode of transportation to another. Recommended uses for the area consist of the following categories: 1) Industrial/storage/trucking uses; 2) Transport support services; 3) Neighborhood services (e.g., truck stops or retail to support working people); 4) Public or quasi/public uses (e.g., utilities); or 5) Water-dependent uses (boat sales and repair or port facilities). The goal is to return these properties to productive industrial or commercial uses. In addition, it should be noted that a groundwater classification exception area (CEA) /well restriction area is in place for the Site and adjacent Sites.

The Site is located in a former meadow that was filled in at the beginning of the 20th century. Significant areas of meadowlands remain north and west of the Site. The filling occurred to support industrial development of the Site and surrounding properties.

Hudson County lies within the Piedmont Province of New Jersey. It is mainly underlain by slightly folded and faulted sedimentary rocks of Triassic and Jurassic age (240 to 140 million years old) and igneous rocks of Jurassic age. Geology at the Site consists of upper fill materials ranging in thickness from 2 to 10 feet, an underlying peat layer locally referred to as the Meadow Mat, a deeper sand unit approximately 10 feet thick, and below these units, a massive low-permeability varved clay unit acting as an aquitard. The varved clay is continuous beneath the areal extent of the Site, is at least 40 feet thick, and is underlain by glacial till and bedrock.

2.2 SITE HISTORY

Various forms of chemical manufacturing, blending/mixing, and/or processing have occurred on the different parcels that make up the Site since 1916. Activities included naphthalene refining and product formulation, dye-carrier production, dichlorobenzene refining and product formulation, and lead-acid battery manufacture. Additionally, it has been reported that former Site owners and/or operators placed fill materials on the Site containing chromite ore processing residue (COPR) allegedly from the adjacent Diamond Site, lead mud oxide and other fill materials on the Site. These activities were performed by multiple corporations on different parcels of the Site. Figure 3 is a Site base map that shows the historical Site arrangement just prior to initiation of an extensive Interim Response Action (IRA) completed from 2010 through 2011. The property lines and parcels, as well as the building numbers subsequently referenced, are identified on this figure. Appendix A (of Appendix A) contains a series of aerial photographs (from 1946 through 2012) which depict the Site conditions at various times prior to (1946 through 2006) and after completion of the IRA (2012).

In October 1989, the NJDEP and SCCC entered into an Administrative Consent Order (ACO). This ACO required SCCC to plan and implement the following:

- Interim Remedial Measures (IRMs) to prevent potential contact with materials in the lagoon area and to secure damaged tanks and containers
- A Remedial Investigation and Feasibility Study
- Selected Remedial Alternative(s)

Subsequent to the ACO, a remedial investigation was conducted in a phased approach between 1990 and 1999. In addition, various IRMs were completed, as described in Section 2.2.1.

In December 2001, NJDEP referred the Site to USEPA for proposed inclusion on the National Priorities List (NPL). On April 30, 2003, the USEPA proposed to add the Site to the NPL and the Site was subsequently listed on September 19, 2007. Work under the SCCC ACO continued through the period of Site Listing, and included the development of an NJDEP-approved Interim Response Action Workplan (IRAW). Upon Site listing, an Engineering Evaluation/Cost Analysis (EE/CA) corresponding to the response proposed in the NJDEP-approved IRAW was submitted to (and approved by) the USEPA. The USEPA designated NJDEP as the lead agency for implementation of the IRA as described in the IRAW and EE/CA, but the USEPA remains the lead agency for all other response activities undertaken at the Site.

Over the last twenty-five to thirty years numerous investigative and interim response activities have been undertaken at the Site. Most of these activities were completed on behalf of or by SCCC, the Peninsula Restoration Group (PRG) (a group that consisted of Beazer, Tierra on behalf of OCC, and SCCC), and most recently, by the Group. While the PRG and NJDEP were in the process of negotiating a scope of work for an IRA, activities such as multiple work plan submittals, an asbestos and lead paint survey, wetlands delineation, an aerial topographic survey, waste classification requests, offsite disposal of demolition debris, numerical groundwater model development, vault content sampling and analysis, and a request to use the USEPA's Area of Contamination Policy were completed proactively by the PRG. Environmental investigations, dating back to the early 1980s, have also been completed for the Site, as follows:

1983-1984	Hydrogeologic Investigation	Roy F. Weston, Inc.
1985	Phase II Dioxin Investigation	E.C. Jordan, Inc.
1987	Stage 1 Dioxin Investigation	Roy F. Weston, Inc.
1988	Stage 2 and 3 Dioxin Investigations	Roy F. Weston, Inc.
1991	Chromium Delineation	French & Parrello Associates
1990-1993	Remedial Investigation/Supplemental RI	Roy F. Weston, Inc.
1996-1997	Focused Remedial Investigation	ERM, Inc.
1997-1999	Supplemental Remedial Investigation	Key Environmental, Inc.
2000	Soil/Sediment Sampling and Analysis	Enviro-Sciences, Inc.

2002 Surface Water and Sediment Sampling USEPA TAT	·
2008-2009 IRA Pre-Design Investigation Key Environment	al, Inc.
2008-2009 Phase II Supplemental RI Key Environment	al, Inc.

Figure 2-2 of Appendix A is a Site base map which depicts the locations of all the samples obtained during the investigations listed in the preceding list (excluding the containerized materials samples obtained in 2000). Figure 2-3 of Appendix A is a Site base map which depicts the locations of the pre-design and supplemental remedial investigation samples obtained in 2009 by KEY.

From 2002 through 2008, various project planning activities were undertaken with respect to predesign, remedial investigation, and interim response activities. Multiple response actions have also been undertaken at the Site, consisting of IRMs, an IRA, a Removal Action, and other miscellaneous responses. Brief descriptions of these response actions are as follows:

2.2.1 Interim Remedial Measures (IRMs)

Various IRMs have been implemented at the Site dating back to the early 1990s. These IRMs have been completed to preclude potential risks associated with exposure to chromium-impacted soils, to preclude access to impacted soils and the lagoon in the former process area, to control fugitive dust emissions, to provide protection of the lagoon area from flooding, and to control potential constituent migration via existing storm sewers. Table 2-1 of Appendix A presents a timeline for the principal historical investigations, regulatory actions, and remedial measures that have been conducted at the SCCC Site through March 2012. A summary of the IRM activities is as follows:

- Installation of security fencing surrounding a former production area and lagoons to prevent unauthorized access (early 1990s) – Lots 49 and 52;
- Addition of soil to the lagoon berm to increase its height and freeboard to prevent potential overflows (early 1990s) - Lot 52;
- Placement of stabilizing geotextile and rip rap along the Hackensack River shoreline in the vicinity of the lagoon (early 1990s) – Lot 52;
- Removal of the contents of five above-ground storage tanks and repackaging of asbestoscontaining material removed from the former distillation building (early 1990s) – Lot 49;
- Installation of an asphalt pavement overlay on traffic areas where existing deteriorated asphalt pavement was present (1991) Lots 48, 49, and 51;
- Installation of geotextile fabric/aggregate/asphalt cover in all remaining traffic areas where
 total chromium concentrations exceed the NJDEP standard in effect at the time, 75
 milligrams per kilogram (mg/kg) (1991) Lots 49 and 52;

- Geotextile/geomembrane liner/aggregate cover construction in non-traffic areas west of a railroad right-of-way (1991) Lot 51;
- Installation of a dust fence barrier along the railroad right-of-way and north fence line of the former northeast process area (1991) Lots 49 and 52; and,
- Improvements to existing stormwater sewer located between the Site and the adjacent Diamond Site to the north (2008) Lots 48 and 49.

Site conditions upon completion of the IRMs (2008) are presented in Figure 3.

2.2.2 Interim Response Action (IRA)

An IRA was completed in 2010 and 2011 and included significant construction components which have resulted in containment, control, and treatment of impacted media at the Site. The IRA was designed with the final Site remedy in mind, and so was integrated with areas of contiguous impact on the adjacent Diamond and Seaboard sites. The IRA was completed to achieve the following outcomes relevant to eliminating risks to potential ecological receptors:

- Eliminate the potential for subsurface discharge of constituents to the Hackensack River from the Site
- Eliminate the potential for overland runoff of constituents to the Hackensack River from the Site
- Remove dense non-aqueous phase liquid (DNAPL) to the extent practicable as a source control measure
- Eliminate the potential for direct contact with constituents of interest at the Site

The IRA consisted of the following major components:

- Site preparation activities
- Installation of a fully contained barrier wall system
- HCTS
- DNAPL recovery system installation
- Lagoon dewatering, backfilling, and surface cover installation
- Near-shore sediment management (excavation and disposal)
- South Ditch sediment management and stormwater management system construction
- Consolidation Area construction
- Wetland and shoreline mitigation
- Septic tank closure
- Transformer pad removal and remediation
- Site restoration
- Air monitoring activities

Compete details of the IRA are presented in the IRA Report (KEY, December 2011). In summary, implementation of the IRA was such that engineering controls effectively eliminate potential exposure pathways to ecological receptors both at the surface and in the subsurface, including:

- A slurry wall that is keyed into the varved clay unit that fully encloses the Site and the adjacent Diamond Site
- A steel sheet pile wall installed along the river bank, extending into the varved clay, that further separates the Site from the Hackensack River
- A partial cap that prevents direct contact and overland runoff
- A new and upgraded infiltration-resistant stormwater management system
- Multiple potential sources and impacted media have been removed or managed (i.e., polychlorinated biphenyls (PCB) impacted soil from the transformer area, wastewater treatment lagoons, septic tanks, ditch sediments, and near-shore river sediments)
- Reductions in toxicity, mobility, and volume of constituents in Site groundwater have been achieved and are ongoing via the operation of groundwater and DNAPL recovery wells
- Offsite exposure to constituents in Site groundwater has been eliminated through construction and operation of an effective, permitted groundwater treatment plant, the HCTS, with unit operations consisting of chromium reduction, metals precipitation, carbon adsorption, oil separation, and solids management (operating in compliance with effluent limits established under New Jersey Pollutant Discharge Elimination System ("NJPDES") Permit No. NJG0175102).

2.2.3 Removal Action

A Removal Action (RA) was completed at the Site in 2010 which consisted of sealing existing structures on Lot 49 that were perceived to be potential sources of wind-borne particulates. The RA was completed pursuant to an Administrative Settlement Agreement and Order on Consent for Removal Action entered into between the USEPA, SCCC, and Beazer dated June 7, 2010. An Administrative Order Notice of Completion was issued by the USEPA on January 20, 2011. This eliminated the potential exposure pathway of wind-borne contamination from the existing structures. The buildings that were sealed have since been demolished and removed from the Site.

2.2.4 Additional Response Actions

Several additional response actions have been completed at the Site and consisted of demolition of the majority of the Site structures and disposal of historical containerized materials associated with past abatement operations and Site investigations. Demolition of all structures except historical structures associated with former activities of Thomas A. Edison, Inc. at the Site (Buildings 1, 2, 3 and 4) has been completed. The demolition of the structures on Lots 48 and 49 was completed in three separate phases designated as Track 1, Track 2, and Track 3. Track 1

demolition was completed prior to IRA implementation to facilitate IRA construction activities. Track 2 and Track 3 building demolition was conducted as the IRA neared completion. NJDEP-approved work plans, which were also provided to USEPA for review, were prepared for each phase of the demolition work. Upon completion, each phase of demolition was summarized in a Demolition Remedial Action Report that was submitted to the NJDEP.

Various asbestos-abatement materials and investigation-derived waste had been previously containerized and stored at the Site in six SeaLand containers. These materials were appropriately characterized and managed on-site. A total of seven material shipments were made to an off-site disposal facility (Chemtron Corporation in Avon, Ohio). Current conditions on the Site, the adjacent Diamond Site and the northern portion of the Seaboard Site following IRA construction are shown in Figure 4.

2.3 LAND AND WATER USE

Land use in the general vicinity of the Site is limited to industrial and commercial use, and/or easements for transportation corridors. The nearest residential area is in Jersey City, located more than one mile southeast of the Site and on opposite side of the Hackensack River. Residential land uses are not permitted as per the recently adopted redevelopment plan.

North of the Site is a former industrial property once operated by Diamond Shamrock and known as the Diamond Site, which is currently not in use, but contains two vacant structures. South of the Site is another former industrial property known as the Seaboard Site, which is currently used for the placement and spreading of process dredge material (PDM). Northeast of the Site is the Hackensack River. Southwest of the Site is Belleville Turnpike and various outlying industrial properties.

Currently, the Site contains a few abandoned historic building structures, multiple foundations from buildings that were demolished during past response actions, and the HCTS building. Section 2.1 describes a redevelopment plan for the Site and surrounding area as designated by the New Jersey Meadowlands Commission (February 2013).

Historically, surface water runoff in portions of the Site was channeled into surface ditches and wetland areas that originated on the Site and flowed to the south into what was referred to as the South Ditch on Lots 50, 51 and 52. Surface water runoff eventually discharged into the Hackensack River. In addition, an underground storm sewer with catchment basins located along the northern Site boundary between Lots 48 and 49 and the Diamond Site was replaced in 2008, prior to the IRA. As a major component of the IRA, a new infiltration-resistant stormwater collection system was installed to manage the runoff previous discharged via the South Ditch. This system consists of underground high-density polyethylene conveyance pipes and a series of drop

inlets. Since the vast majority of the former process areas, fill placement areas, and wastewater management units (lagoons) are solidified and capped or lie within the limits of the capped Consolidation Area, erosion potential has been minimized. Groundwater that collects within the slurry wall is pumped, treated and discharged under an NJPDES permit.

The Hackensack River adjacent to the Site is classified as SE2. This classification applies to saline estuarine water with the following designated uses:

- Maintenance, migration, and propagation of the natural and established biota
- Migration of diadromous fish
- Maintenance of wildlife
- Secondary contact recreation
- Any other reasonable uses.

The Hackensack River in the Site vicinity is tidally influenced. A tidal range of approximately 5 to 6 feet occurs in this lower portion of the river. The Passaic River is approximately one mile west of the Site and discharges to Newark Bay which is located downstream of the Site, but no hydraulic connection exists between groundwater in the fill or sand unit aquifers at the Site and the Passaic River, or between the Site and the Hackensack River since the installation of the barrier wall in 2011. Furthermore, prior to the installation of the barrier wall, groundwater flow was toward the South. There are no known groundwater wells used as a source of private or public drinking water within one mile of the Site (KEY, May 2011). No drinking water intakes are located in the Hackensack River in this tidal reach due to the water being brackish. The Town of Kearny water is supplied by the Wanaque Reservoir in Bergen County, New Jersey. The entire Site lies within the 100-year floodplain of the Hackensack River (EDR, May 5, 2008).

2.4 CURRENT SITE OPERATION, MAINTENANCE AND MONITORING (OM&M)

The current Site Operations, Maintenance, and Monitoring (OM&M) activities consist of the following tasks:

- Visual inspection of the freshwater wetland mitigation areas
- Visual inspection of the surface covers
- Visual inspection of the stormwater system
- Visual inspection of the barrier wall system and cathodic protection system
- Visual inspection of the consolidation area surface cover
- Visual inspection of Site security (fences) DNAPL recovery
- Operation of the hydraulic control groundwater collection and treatment systems

- Waste management (i.e., spent carbon regeneration; DNAPL and filter cake characterization, and off-site disposal)
- Measurement of potentiometric surface elevations and apparent DNAPL thicknesses
- Maintenance of the vegetative surface covers
- Periodic maintenance of IRA and IRM components such as the cathodic protection system
- Recordkeeping and regulatory reporting of the OM&M activities in accordance with Appendix D of the EPA-approved RI/FFS Work Plan. The OM&M data are reported to EPA on a quarterly frequency as an attachment to the applicable monthly progress report.

Operation and maintenance of the HCTS, as well as water discharge and air monitoring is a primary component of OM&M activities for the Site. Certified personnel operate the HCTS in accordance with the requirements of a NJPDES Discharge to Surface Water permit (Permit Number NJG0175102). The permit authorizes the offsite discharge of treated groundwater and lists the associated requirements such as effluent limits, influent and effluent monitoring, monthly and annual reporting, and recordkeeping.

The Site's shallow groundwater table within the barrier wall system is regulated by the hydraulic control and recovery wells connected to the HCTS. Monthly gauging of piezometers located inboard and outboard of the slurry wall barrier wall system is conducted to evaluate the effectiveness of the hydraulic control system. In addition, routine inspection and maintenance of various Site improvements, IRM and IRA features is completed as listed above. Operation and maintenance associated with these features is accomplished via the use of checklists and corrective action is conducted as required.

2.5 SITE CONDITIONS OBSERVED ON MARCH 31, 2014

On March 31, 2014, a Site walk was conducted by a KEY senior scientist accompanied by one of the full-time onsite operations and maintenance technicians. Photographs taken on that day are included as Appendix B. Figure 5 is a photograph location map to assist in identifying the photographed features.

The Site is a former industrial property and the Site walk and photographs portray that the Site is mostly covered with asphalt and the foundations of former buildings. The original surface materials have been removed or covered and are not available for exposure to ecological receptors. Groundwater is recovered, treated, and discharged to the Hackensack River as permitted discharge only. The wetlands that border this property and the adjacent Seaboard property are part of a freshwater emergent wetland mitigation.

<u>Views from Photograph Location A near Outfall 003 at northeastern corner of Site (see Figure 5 for Location A)</u>:

- Photographs 1 and 2 show the steel sheet pile (SSP) wall that separates the northeastern border of the Site from the Hackensack River. The barrier wall system is comprised of a SSP wall and a cement/bentonite slurry wall installed inboard of the SSP. Construction occurred in 2011 and was documented in the IRA Report (KEY, December 2011). The sheet pile wall system was designed as a cantilevered retaining wall to provide for lateral earth support along the river shoreline. The SSP wall extends along the entire shoreline of the Diamond and SCCC Sites for an approximate horizontal length of 1,200 ft. The depth of embedment within the low-permeability varved clay unit (approximately 30 feet below ground surface) was selected based upon geotechnical calculations, to provide for structural stability.
- Photos 3 and 4 show the gravel-covered former process area and HCTS building. The former process area is covered by a 6-inch layer of general stone cover of NJDOT #4 stone, underlain by 10 oz./SY of non-woven geotextile.
- Photos 5 and 6 show the northern property boundary between the Site and the adjacent property to the north (the Diamond Site).
- Photo 7 is a view of the adjacent Diamond Site.

Views from Photograph Location B near the northeastern corner of the Consolidation Area cap:

• Photos 8, 9, and 10 show the Consolidation Area and the drainage channels along the northern and eastern edges of the area. In the center of the Consolidation Area are DNAPL recovery wells. The Consolidation Area was used for on-site consolidation of sediments, soils, and spoils generated during various remediation activities and was planned and approved in accordance with the USEPA's Area of Contamination Policy.

Views from Photograph Location C near Outfall 001 at southeastern corner of Site:

• Photos 11 and 12 show the southern property boundary between the Site and the adjacent property to the south (Seaboard Site). Visible in these photos are the reconstructed wetlands located at this property boundary, also known as the location of the former South Ditch. The standing water that appears in the photos is not the wetlands, and is not located on the Standard Chlorine Site. The standing water is actually located in a topographic low on the adjacent Seaboard Site. This standing water resulted from stormwater runoff from a storm that produced over 2.5-inches of rain in the 48-hours preceding the March 31, 2014 site visit when the photo was taken. Subsequently this surface water infiltrated. Thus, the

relationship between surface water and groundwater in this area is one where surface water recharges the groundwater. Photo 12b shows the same view of the topographic low area as that shown in Photo 12 but taken on a different day, July 30, 2014. This photo clearly shows that no surface water is present in the area to the south of the wetlands.

These wetlands were constructed following excavation of South Ditch soft soils, as follows: A woven geotextile fabric was placed along the entire excavation bottom and sidewalls. Bedding material consisting of at least a 6-inch-thick layer of 34-inch diameter aggregate was then placed prior to installation of the HDPE stormwater culvert. The excavation was backfilled to the mid-line of the culvert using 3/4-inch diameter aggregate. An additional layer of woven geotextile fabric was then placed over the culvert and onto the 34-inch diameter aggregate. Additional aggregate backfill was then placed up to the crown of the culvert. A capillary break layer consisting of a 6-inch thick layer of 1.5-inch diameter aggregate underlain and overlain with a non-woven fabric was installed in the drainage ditch remediation area. The fabric is installed to keep fines from filling in the large pore spaces within the aggregate. A permeable fabric was utilized with the exception of the easternmost segment of the drainage ditch (from the former railroad right-of-way to the steel sheet pile wall) where an impermeable geomembrane was used. The capillary break layer was installed to the limits of the existing adjacent IRMs and to the Seaboard Site capillary break. Structural fill and topsoil were installed above the capillary break, to meet final surface design grades as applicable. The wetlands were constructed above the impermeable liner to ensure that no hydraulic connection between the wetlands and shallow groundwater could exist and, therefore, groundwater does not discharge to the wetlands. Figure 6 shows the extent of the geomembrane in this area and Figure 7 is a cross-section showing the geomembrane, mitigated wetlands, and water table beneath the SCCC Site. As shown, the ground surface in the wetlands is at an elevation approximately three feet above the water table.

This area is part of the 1.2 acres of freshwater emergent wetland constructed to compensate for habitat lost during mitigation of the former South Ditch area. Post-installation monitoring of the wetland mitigation areas is performed in accordance with the Wetlands Maintenance Plan (WMP).

 Photos 13 and 14 are views of the adjacent Seaboard Site including the reconstructed wetlands described in the previous bullet and the Hackensack River to the northeast.

View from Photograph Location D near southern edge of the Consolidation Area:

 Photo 15 is a view of Hydraulic Control Well HCWU-21 within the consolidation area cap with DNAPL recovery wells in the background. The hydraulic control wells are part of

the hydraulic control system that was installed to attenuate the anticipated rise of the water table within the barrier wall enclosure. Water extracted from the recovery wells is treated through the HCTS, which is comprised of the following general treatment components:

- o Oil/water separation
- o pH control and hexavalent chromium reduction
- o pH control and metals precipitation/flocculation
- o Solids dewatering and management
- o Dissolved organics removal via carbon adsorption

Views from Photograph Location E near the southwestern corner of the Consolidation Area:

• Photos 17 and 18 show conditions along the western edge of the consolidation area. This narrow strip is part of the freshwater emergent wetland constructed to mitigate habitat loss from the South Ditch remediation.

Views from Photograph Location F near Building 2 in the approximate center of the Site:

- Photos 19, 20, and 21 show the wetland area to the west of the treatment building. These wetlands are also part of the freshwater emergent wetland mitigation.
- Photos 22, 23, 24, and 25 show views of pavement and former structures to the west and north.

Views from Photograph Locations G, H, I, J, and K at the southwest and west portions of the Site:

 Photos 26 through 38 show views on the western side of the property of the boundary between the Site and the Seaboard Site to the south, the constructed wetlands to the south and west, the old buildings, and the pavement that covers a majority of the Site. Photo 37 shows a train passing within view of the Site to the northeast and illustrates the high degree of development in the area surrounding the Site.

Views from Photograph Location L at the western border of the Site:

• Photos 39 through 42 show the western boundary of the Site including the slurry wall, and views of the Site from west to east. The slurry wall system was constructed to completely encircle both the Diamond and SCCC Sites, and a portion of the Seaboard Site, as shown on Figure 4. The depth of embedment was prescribed to provide a minimum key-in depth of three feet into the underlying varved clay unit (typically 20 to 25 feet below ground surface) and to contain groundwater in both the surficial fill unit and the underlying sand glacial unit.

Views from Photograph Location M at the northwestern corner of the Site:

 Photos 43 through 45 show views of the Site from atop the slurry wall in the northwestern corner of the Site.

3.0 CONCEPTUAL SITE MODEL

A preliminary CSM originally developed for the SCSR was refined based on additional Site sampling performed in late 2013. This CSM is based on consideration of Site modifications resulting from implementation of the IRMs and IRA, including but not necessarily limited to, the existence of the fully-enclosing perimeter subsurface barrier wall system, the operation of the groundwater and DNAPL collection system, the HCTS, DNAPL gauging and passive recovery, the presence of historical and recent cover materials, the existence of the new infiltration-resistant stormwater control system, and on-site consolidation and capping of impacted materials (including South Ditch soft soils and near-shore river sediments), and off-site source removal and disposal.

Under current Site conditions, the potential for ecological exposures to impacted media is considered to be negligible, as is the potential for off-site migration of any Site constituents of concern located within the slurry wall. Figure 8 is a graphical representation of the CSM.

3.1 SOURCES OF CONTAMINATION

Since 1916, various forms of chemical manufacturing, processing or blending have occurred on the various parcels that make up the Site. These activities included naphthalene processing, dichlorobenzene and trichlorobenzene processing, battery manufacturing, and dye carrier blending operations. In addition, a variety of fill material has been emplaced at the Site. As a result, multiple classes of chemicals (volatile and semi-volatile organics (VOCs/SVOCs), PCBs, polychlorinated dibenzodioxins/polychlorinated dibenzofurans (PCDDs/PCDFs); and metals have been detected in various environmental media over time.

Former source areas consisted of the following areas that have been remediated: chemical storage tanks and chemical processing operations, septic systems and tanks, an underground vault, wastewater treatment lagoons (dewatered, backfilled, solidified and capped) and wastewater discharges, a former PCB-transformer area (excavated), impacted surface materials and fill on the eastern and western portions of the property (removed and covered), soft soil formerly contained in the South Ditch, and DNAPL in the groundwater (contained within the barrier wall system).

The barrier wall system surrounds all of the former source areas, and ensures that no off-site migration from former source areas occurs. Data collected in 2013 as part of the RI/FFS conducted pursuant to the Agreement indicated the presence of residual DNAPL in subsurface soil located within the sand unit at the top of the varved clay and corresponding dissolved phase impact to groundwater located outside the barrier wall near the southwest corner of the Seaboard site. Assessment of this condition is being completed as part of the RI/FFS. However, based upon the depth of the impact and the distance to the nearest surface water body, the presence of constituents

in the off-site deep sand unit groundwater is not expected to result in adverse exposure to environmental receptors and is therefore excluded from further consideration in the SLERA.

3.2 FATE AND TRANSPORT

Chemicals may have been released to the environment via several mechanisms such as leaks and spills during former industrial manufacturing operations, storage and shipment; wastewater discharges; overflows from the former wastewater lagoons; erosion of surficial materials and subsequent overland flow/discharge to drainage ditches; and the placement of fill material from off-site sources and on-site sources.

This section presents a brief discussion of general fate and transport information for the major chemicals or classes of chemicals observed in various environmental media at the Site as well as general information indicative of chemical transport at the Site. In general, Site conditions appear to be somewhat favorable with respect to the attenuation of constituents. Major classes of chemicals detected include chlorinated aromatic compounds such as chlorobenzene, dichlorobenzene isomers and 1,2,4-trichlorobenzene; PCBs; PCDDs/PCDFs; and polycyclic aromatic hydrocarbons (PAHs) and metals (including hexavalent chromium). In addition, various other metals have been detected in Site media.

The following general statements can be made relative to fate and transport of the major classes of chemicals found at the Site:

- The chlorinated benzenes and naphthalene (a PAH) are the more water-soluble constituents observed in Site media. These compounds are considered to be more amenable to leaching from the soils and reaching the groundwater, where they could migrate in the dissolved phase (groundwater), than the PCBs, PCDDs/PCDFs, and other PAHs. Further migration is governed by chemical- and aquifer-specific characteristics (e.g., aqueous solubility, organic carbon partition coefficients, permeability or Henry's Law Constant).
- PCDDs/PCDFs, PCBs, and most PAHs have high organic carbon partition coefficients, and are more likely to adsorb to soil materials and hence are considered less mobile.
 Sorption to the soil matrix inhibits migration.
- Chlorinated aromatics, PCBs, and PCDDs/PCDFs are generally considered to be resistant to natural biodegradation, while many lower molecular weight PAHs are more amenable to these processes.
- Transport of many metals, which are generally not highly soluble, occurs via particulate
 erosional mechanisms (e.g., runoff, wind erosion). Hexavalent chromium is a more soluble
 species, however it is readily reduced to the trivalent species in the presence of organic
 carbon (i.e., the Meadow Mat).

Site conditions are favorable with respect to minimizing the transport of Site chemicals, especially with the presence of the underlying Meadow Mat and varved clay confining unit. The removal of source areas, construction of the Consolidation Area and placement, and solidification as necessary, of source material within the Consolidation Area, upgrading of the storm sewers, and installation of the barrier wall also establish containment within contiguous areas of impact on the adjacent Diamond and Seaboard Sites.

3.3 MIGRATION PATHWAYS

A CSM, developed initially for the SCSR, as well as the RI/FFS Work Plan, indicated that the majority of potential migration pathways (and hence exposure scenarios) were incomplete under current Site conditions. That CSM has been updated and included as Figure 8. Under existing Site conditions, all potential migration pathways have been substantially addressed.

Installation of the slurry wall and steel sheet pile wall has effectively contained subsurface Site impacts and eliminated the potential for discharge of constituents to adjacent properties (beyond the barrier wall) and the Hackensack River via subsurface routes.

The groundwater extraction and treatment system is fully operational and is effectively reducing the mobility and the volume of constituents in Site groundwater. The removal of soft soils from the South Ditch and near-shore sediments from the Hackensack River, in concert with construction of a water-tight stormwater management system, has also served to address potential overland transport pathways.

The construction of the SCCC Consolidation Area and the consolidation therein of various impacted materials under a multi-layer cap, coupled with the construction of the IRMs has served to address the potential for atmospheric transport of Site-related constituents. The placement of geotextiles and clean cover materials (i.e., soil, asphalt, gravel, the multi-layer cap on the Consolidation Area, etc.) eliminates the potential for wind or runoff transport of surficial soil materials from beneath these covers.

3.4 POTENTIAL EXPOSURE PATHWAYS

Exposure pathways represent the locations (exposure points) where potential receptors could come into contact with Site COCs and the means or route by which a potential receptor may be exposed (e.g., direct contact, inhalation, ingestion). Potential exposure pathways are evaluated in this section. Table 1.1 summarizes potential exposure pathways as well as potential receptors and exposure routes that will be carried through the SLERA.

Under pre-IRM/IRA Site conditions (evaluated in the SCSR and RI/FFS Work Plan), a number of media presented in the CSM were considered as maintaining potentially available points of

exposure for ecological receptors. Response actions completed under the IRM/IRA have eliminated all potential points of exposure by an ecological receptor, as presented in the updated CSM presented in Figure 8. Evaluated media were as follows:

On-site Groundwater – Exposure to on-site groundwater is excluded from further consideration. The Site is currently fully enclosed by a barrier wall system, and groundwater within the barrier wall is collected and treated by the HCTS. Engineering controls and stormwater management system upgrades that control exposure to constituents in groundwater are in place. Discharge of impacted groundwater to surface water (wetlands) has been eliminated due to engineering controls.

<u>Particulate and Volatile Emissions</u> – Onsite and offsite exposures to particulates and volatile emissions are excluded from further consideration. Maintenance of the surface covers eliminates the potential for exposure to particulate emissions from soil or volatiles.

<u>Site Soils</u> - Exposure to COPECs in soil is excluded from further consideration under current land use conditions. Impacted surface soil has either been removed or covered and is no longer available for exposure to plants or animals. Note that the entire surface is either paved, covered with coarse gravel, or covered with clean borrow soils from off-site sources that have been vegetated.

3.5 POTENTIAL RECEPTORS

Surrounding land use was reviewed with a primary emphasis on the location of sensitive environmental areas. Land use within the 1,000-foot radius of the Site is industrial in nature. The following is a list of the closest known recreational areas previously identified in the SCSR, including the approximate ordinal direction relative to the Site, and approximate distance from the Site:

Туре	Name	Address	Direction	Distance	
				Feet	Miles
Recreation Area	Laurel Hill Park	New County Road Secaucus, NJ	NNE	2,750	0.52
Recreation Area	Lincoln Park	State Route 440 Jersey City, NJ	SSE	5,700	1.08

As shown in the preceding table, there are no parks or recreational areas located proximate to the Site.

Appendix C presents the results of a query of New Jersey's i-MapNJ database. The i-MapNJ results identify the Hackensack River and wetlands surrounding the Site as possible ecological

receptors at or near the site. A Public Health Assessment was completed for the Site in 2005 (ATSDR, April 5, 2005). This report concluded that no Site-related constituents of interest had been measured in marine life. The barrier wall system prevents communication between impacted Site media and the Hackensack River and the wetlands on and adjacent to the Site have been remediated. The i-MapNJ database also identifies numerous sites included in the New Jersey Environmental Management System (NJEMS) in the vicinity to the site. The entire area of the Site and surrounding areas is identified as a Groundwater CEA. A map of impervious surfaces shows the high degree of development in this area demonstrating that the Site is not an important ecological resource for terrestrial wildlife. As stated previously in Section 2.0, the Site refers to the definition of the "Site" in the Agreement and the RI/FFS SOW.

The Site is located adjacent to the Hackensack River at the southern end of the Hackensack Meadowlands District (HMD). The HMD is an important ecological resource and is an Atlantic flyway stopover and nesting point for migratory birds. No federally-listed threatened or endangered species have been observed onsite to date. According to the ATSDR Public Health Assessment, state-listed species such as northern harrier hawks (Circus cyaneus - state endangered list), black-crowned night herons (Nycticorax nycticorax - state threatened list), and yellowcrowned night herons (Nyctanassa violacea - state threatened list) were alleged to roost at the Site, but no actual observation of these species has occurred at the Site. Additionally, according to the United States Fish and Wildlife Service, state- and federally-listed threatened or endangered species have historically been observed in the Hackensack River watershed, and include the following: bald eagle (Haliaeetus leucocephalus - state endangered list); shortnose sturgeon (Acipenser brevirostrum - federal endangered list), dwarf wedgemussel (Alasmidonta heterodon - federal endangered list), bog turtle (Clemmys muhlenbergii - federal threatened list), and Indiana bat (Myotis sodalis - federal endangered list). Additionally, the osprey (Pandion haliaetus) is identified as a threatened species in the April 2, 2012 update to New Jersey's List of Endangered and Threatened Wildlife.

The USEPA offered several observations regarding potential ecological receptors and surrounding land and water use in their SCSR comment letter dated February 7, 2013 and in their RI/FFS Work Plan comment letter dated June 25, 2013, as follows:

- The Atlantic sturgeon (Acipenser oxyrinchus) was added to the federal endangered species list in February 2012 (77 FR 5880).
- Essential Fish Habitat (EFH) information on the website of the Northeast Regional Office
 of the National Oceanic and Atmospheric Administration (NOAA) Office of Habitat
 Conservation indicates that the area of Hackensack River adjacent to the Site is designated
 EFH for one or more life stages of red hake (Urophycis chuss), winter flounder
 (Pleuronectes americanus), windowpane (Scopthalmus aquosus), Atlantic herring (Clupea

harengus), bluefish (Pomatomus saltatrix), Atlantic butterfish (Peprilus triacanthus), summer flounder (Paralicthys dentatus), and black sea bass (Centropristus striata).

- According to the United State Fish and Wildlife Service New Jersey Field Office website
 and the National Marine Fisheries Service, no other federally listed or proposed endangered
 or threatened species or critical habitats other than those listed above in this section are
 located in Hudson County, New Jersey. In consideration of the above, the project is not
 likely to adversely affect federally-listed or proposed threatened or endangered species or
 critical habitat.
- There are no wild and scenic rivers, coastal barriers, wilderness areas, or significant agricultural lands on or in the vicinity of the Site. The Site is not located within the State of New Jersey's designated coastal zone. Therefore, the Wild and Scenic Rivers Act, the Coastal Barriers Resources Act, the Wilderness Act, the Farmland Protection Policy Act, and the Coastal Zone Management Act are not considered Applicable or Relevant and Appropriate Requirements / To Be Considered (ARARs/TBC) for this Site.

Furthermore, the USEPA's February 7, 2013 comments on the SCSR and June 25, 2013 comments on the RI/FFS Work Plan indicated that the USEPA is aware of wetland mitigation completed to date and that any future impacts to wetlands as a result of implementation of remedial action will similarly require mitigation.

The USEPA's February 7, 2013 comments on the SCSR and June 25, 2013 comments on the RI/FFS Work Plan indicated that, according to available Geographic Information System (GIS) layers, much of the Site is located within the 100-year floodplain as determined by the Federal Emergency Management Agency. Accordingly, if any future remedial action will be conducted on-site, a floodplains assessment will be needed. The USEPA's June 25, 2013 letter also identified location-specific ARARs/TBCs for future Site remedial actions consisting of the following:

- Executive Order 11988 (Floodplain Management);
- Executive Order 11990 (Protection of Wetlands);
- Statement of Policy on Floodplains/Wetlands Assessment for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) actions;
- Magnuson-Stevens Fishery Conservation and Management Act; and,
- National Historic Preservation Act (NHPA).

As part of the permitting process and coordination of an Engineering Evaluation/Cost Analysis with USEPA for the implementation of the 2008 IRAW, pertinent location-specific ARARs were reviewed relative to the IRA activities. Three of the preceding items were identified as potential

ARARs/TBCs (the Executive Orders and NHPA) as well as Federal Coastal Zone Management requirements, the Endangered Species Act of 1973, and the Fish and Wildlife Coordination Act. A review summary letter (KEY, September 14, 2009) was provided to the USEPA and subsequently, an approval letter (USEPA, June 11, 2010) was issued by USEPA. The Statement of Policy on Floodplains/Wetlands Assessment and the Magnuson-Stevens Fishery Conservation and Management Act are additional potential ARARs/TBCs for the Site that will be considered for any future remedial activities.

3.6 CSM SUMMARY

The completed IRMs and IRAs have covered and/or capped all surficial materials, removed significant structures with the exception of four historical structures associated with the historic operations of Thomas A. Edison, Inc., encircled the Site and all or parts of adjacent properties with a subsurface barrier wall, stabilized soft surficial materials in the former lagoons, and removed sediments and impacted soils and placed them beneath an engineered capping system in the consolidation area within the Site. Therefore, response actions at the Site have eliminated all potential pathways for exposure by potential ecological receptors.

The absence of complete exposure pathways to these receptors relies on the maintenance of the engineered controls and a continued prohibition against disturbance of the cover materials. Under foreseeable circumstances, the potential for future exposures can be effectively managed via administrative controls (i.e., the establishment of appropriate institutional controls and procedures to be followed, including consideration of potential ARARs/TBCs for the Site, during any future construction that involves disturbance of the IRM/IRA covers). In conclusion, under current and potential future Site conditions, there are no known complete exposure pathways for potential ecological receptors.

4.0 ECOTOXICITY SCREENING LEVELS

ERAGS specifies preferred toxicity data as representative of no-observed-adverse-effect-level (NOAEL) for long-term (chronic) exposures to a contaminant because ecological effects of most concern are those that can impact populations and include adverse effects on development, reproduction, and survivorship. Second in the hierarchy is a lowest-observed-adverse-effect-level (LOAEL) for chronic exposure. In summary, for each constituent for which a potentially complete exposure pathway exists, ERAGs specifies that the literature should be reviewed for the lowest concentration shown to produce adverse effects on a potential receptor species.

For this SLERA, ecotoxicity screening levels have not been identified because there are no complete exposure pathways to impacted Site media.

5.0 SELECTION OF CHEMICALS OF POTENTIAL ECOLOGICAL CONCERN

Because no potentially complete pathways exist, selection of COPECs is not conducted in this SLERA. However, existing analytical results for samples collected during previous investigations at the Site are included in Appendix A for reference.

6.0 SCREENING-LEVEL RISK CALCULATION

As required by Appendix A, Section VIII, Paragraph B.1 of the Agreement, "The SLERA shall be based on data representative of potential exposures that may remain upon completion of the ongoing Interim Response Action." If a screening-level risk calculation was required to be performed for the Site, the hazard quotient (HQ) approach would be used to estimate risk. The HQ approach compares exposure point estimates to the screening ecotoxicity values and is identified as an adequate estimation of risk according to ERAGs. The HQ is expressed as the ratio of a potential exposure level to the ecotoxicity value, as follows:

Hazard Quotient = Exposure Point Estimate ECO-SSL

Exposure Point Estimate – the maximum concentration of the COPEC detected in media present within a complete exposure pathway

ECO-SSL – Ecotoxicity screening value

An HQ of less than one would indicate that a contaminant alone is unlikely to cause adverse ecological effects. However, risk calculations cannot be completed because there is no complete exposure pathway for the Site, and thus the SLERA did not identify any exposure point estimate or ecotoxicity value.

7.0 SCIENTIFIC/MANAGEMENT DECISION POINT (SMDP)

The CSM has identified that under current Site conditions, there are no known complete exposure pathways for the potential ecological receptors identified for the Site. The IRMs and IRA completed as of 2012 have covered and/or capped all surficial materials, removed significant structures with the exception of four historical structures associated with the historic operations of Thomas A. Edison, Inc., encircled the Site and all or parts of adjacent properties with a subsurface barrier wall system, stabilized soft surficial materials in the former lagoons, and removed impacted soils and placed them beneath an engineered capping system in the consolidation area within the Site.

The Scientific/Management Decision Point of this SLERA is that there is adequate information to conclude that ecological risks are negligible and there is no need to remediate on the basis of ecological risk.

It is the conclusion of this SLERA that a BERA is not required for the Site.

8.0 REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR), April 2005. Public Health Assessment for Standard Chlorine Chemical Company, Incorporated – Kearny, Hudson County, New Jersey.

Agency for Toxic Substances and Disease Registry, July 2013. Minimal Risk Levels (MRLs). http://www.atsdr.cdc.gov/mrls/pdfs/atsdr_mrls_july_2013.pdf

EDR, May 5, 2008. The EDR Radius Map with GeoCheck®. Milford, CT.

KEY, May 2011. Classification Exception Area/Well Restriction Area – Former Koppers Seaboard Site – Kearny, Hudson County, New Jersey – Exhibit F – Well Search Results. White House, NJ.

KEY, March 2013. Site Characterization Summary Report – Standard Chlorine Chemical Co. Inc. Site – Kearny, New Jersey. Carnegie, PA.

KEY, September 2013. Final Remedial Investigation/Focused Feasibility Study Work Plan - Standard Chlorine Chemical Co. Inc. Site – Kearny, New Jersey. Carnegie, PA.

KEY, March 28, 2014. Site Characterization Summary Report Addendum – Standard Chlorine Chemical Co. Inc. Site – Kearny, New Jersey. Carnegie, PA.

New Jersey Department of Environmental Management Division of Fish & Wildlife, 2012. New Jersey's Endangered and Threatened Wildlife. Updated April 2, 2012.

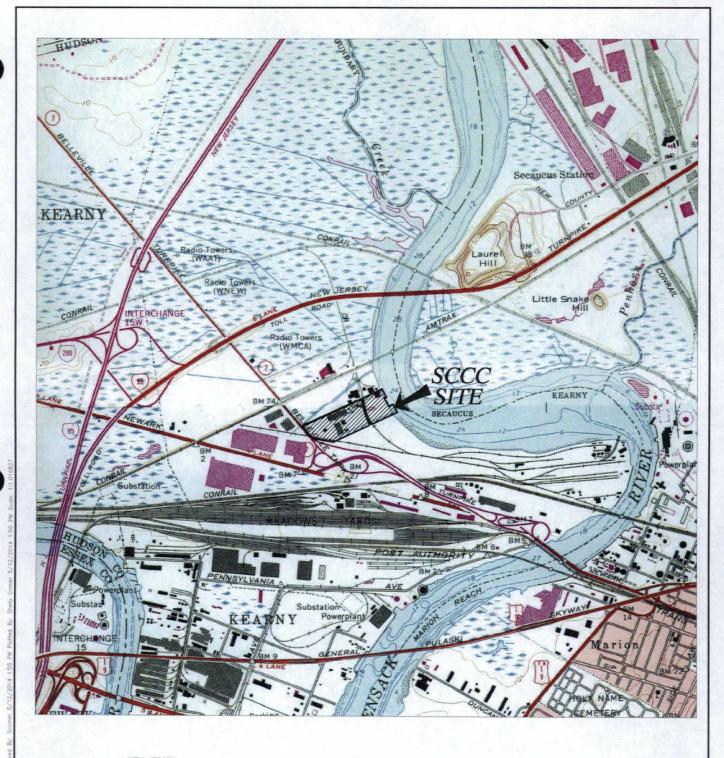
New Jersey Meadowlands Commission, 2011. Kearny Area Redevelopment Plan Amendment. Lyndhurst, New Jersey. www.njmeadowlands.gov>

Town of Kearny, 2009. Kearny Zoning Map. E-Government Maps, Kearny, New Jersey.

US Bureau of Census, July 2010. Seasonality of Moves and the Duration and Tenure of Residence: 2004. Current Population Reports P70-122. https://www.census.gov/prod/2010pubs/p70-122.pdf

USEPA, April 1992. Guidance for Data Usability in Risk Assessment (Part A). PB92-963356. Office of Emergency and Remedial Response.

USEPA, June 1997. Ecological Risk Assessment Guidance for Superfund, Process for Designing and Conducting Ecological Risk Assessments (ERAGS), (EPA/540-R-97-006), OSWER Directive 9285.7-25


USEPA, June 25, 2013. Correspondence from Alison A. Hess, USEPA Region 2, to James Zubrow, P.G., Key Environmental, Inc., Re: Standard Chlorine Superfund Site, Hudson County, New Jersey.

TABLE

TABLE 1.1 SELECTION OF EXPOSURE PATHWAYS SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT STANDARD CHLORINE CHEMICAL COMPANY, INC. SITE KEARNY, NEW JERSEY

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Exposure Route	Rationale for Selection or Exclusion of Exposure Pathway
Current/Future	l (Incita	Largundwater migrate to a	Hackensack River, onsite wetlands, offsite wetlands or groundwater	Hackensack River, Fish, amphibians, birds, benthic organisms	Inhalation Dermal Contact	Excluded. The Site is currently fully enclosed by a barrier wall system, and groundwater recovery/treatment and DNAPL recovery/offsite disposal are underway. Engineering controls and storm water management system upgrades that control exposure to constituents in groundwater are in place.
Current/Future	Onsite Soil	Particulate and volatile emissions	If soil cover is disturbed for any reason, direct exposure may occur to soil and to COPECs transferred to airborne particulates	Migratory birds and transient animals		Excluded. Air monitoring conducted during the implementation of various IRAs indicated that even when soil disturbances occurred, impacts were negligible.
Current/Future	Onsite Soil	COPECs in surface soil	If soil cover is disturbed for any reason, direct exposure may occur to soil and to COPECs	Migratory birds and transient animals	Dermal Contact	Excluded. Current Site conditions are not suitable for supporting important ecological resources. Based on the redevelopment plan, future pathways for ecological receptors do not exist.

FIGURES

REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLES OF JERSEY CITY, AND WEEHAWKEN, NEW JERSEY

ISSUE DATE:

KEY ENVIRONMENTAL, INC. 200 THIRD AVENUE CARNEGIE, PA 15106

PERFORMING PARTIES GROUP

DRWN: SCC DATE: 03/14/14
CHKD: RJH DATE: 03/14/14
APPD: JSZ DATE: 03/14/14
SCALE: 1°= 2000'

ENVIRONMENTA INCORPORATED

SLERA STANDARD CHLORINE CHEMICAL CO., INC. SITE KEARNY, HUDSON COUNTY, NEW JERSEY

SITE LOCATION MAP

PROJECT NO: 2014-01 FIGURE 1

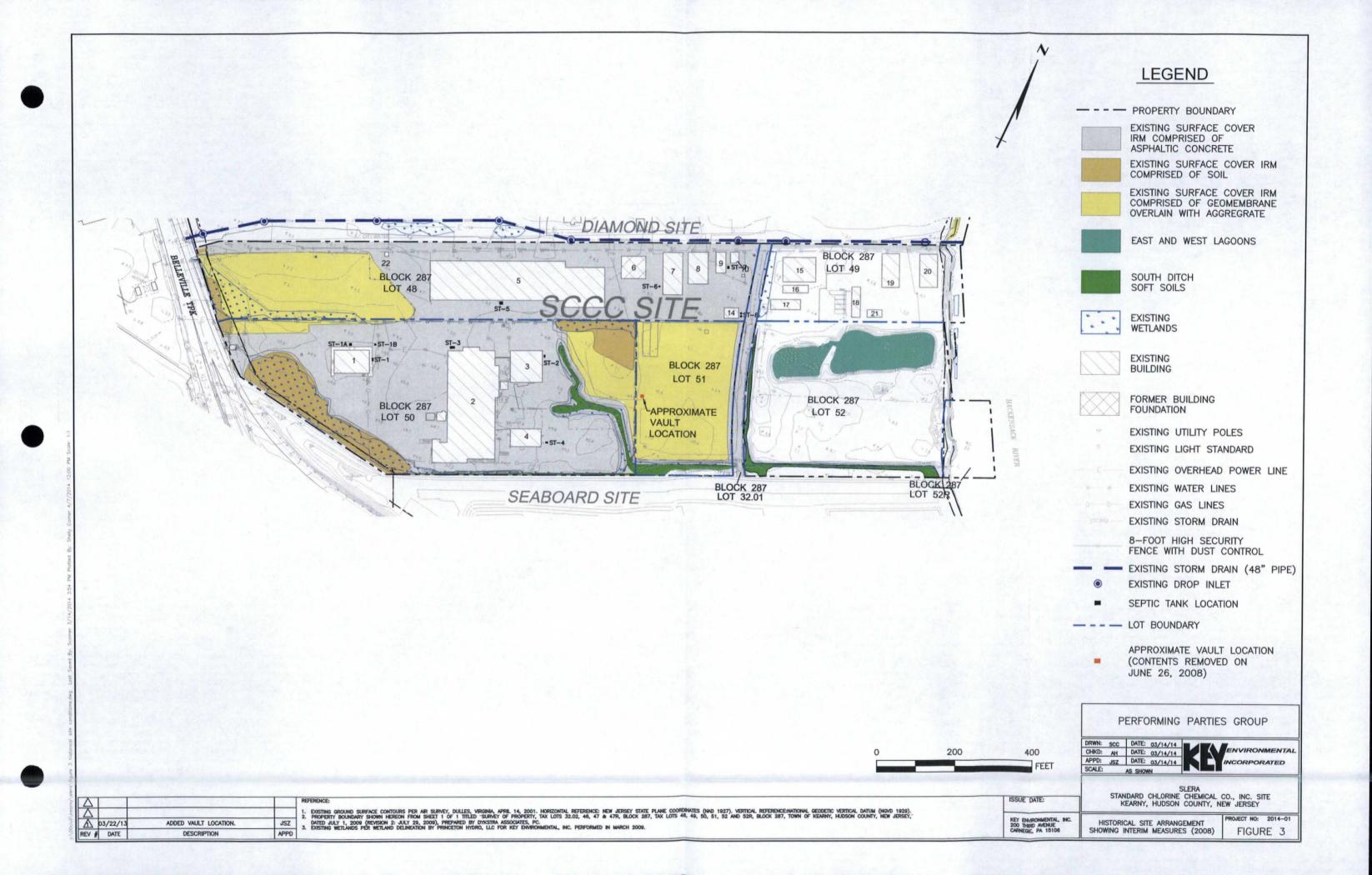
300

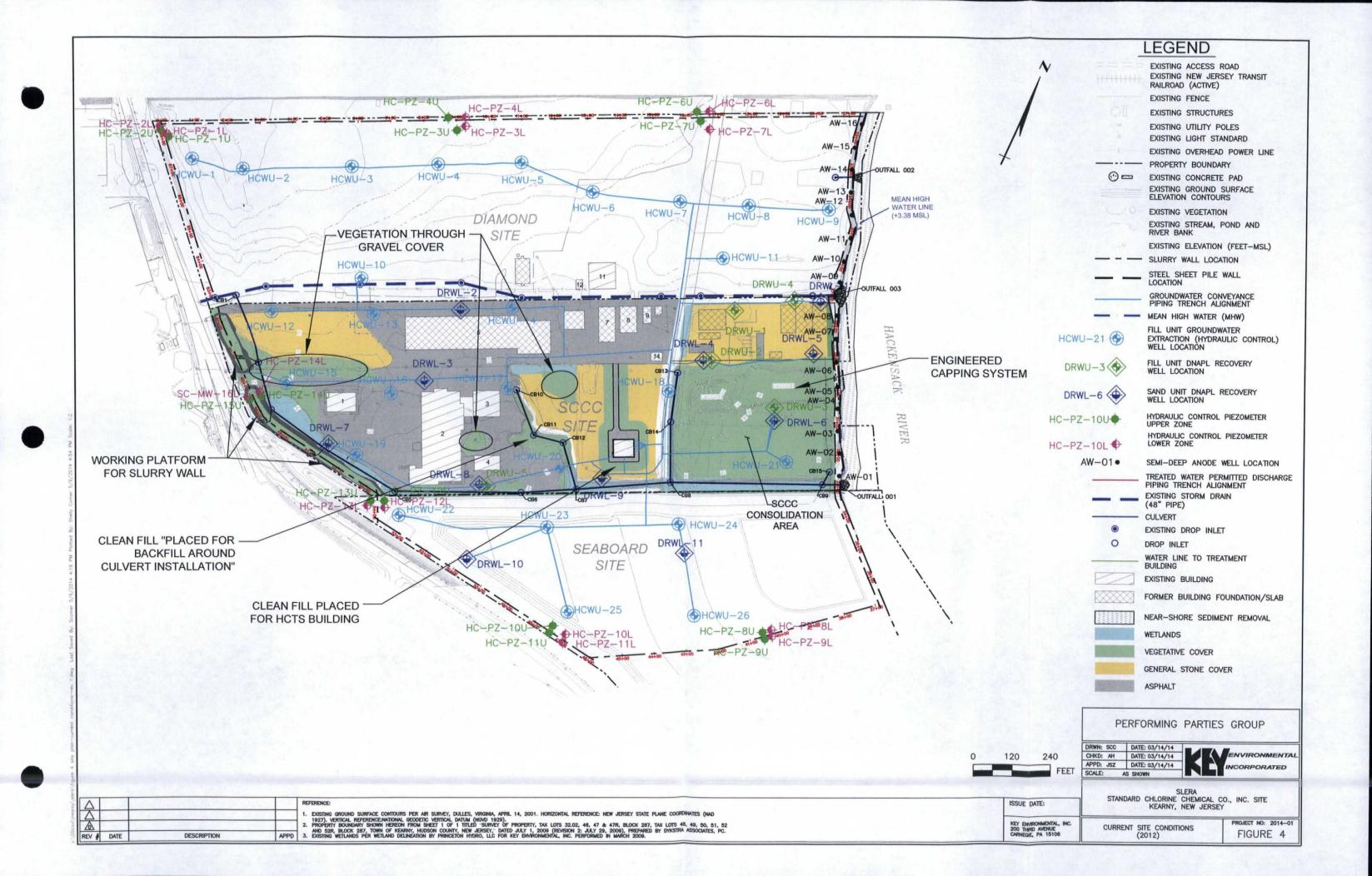
PERFORMING PARTIES GROUP

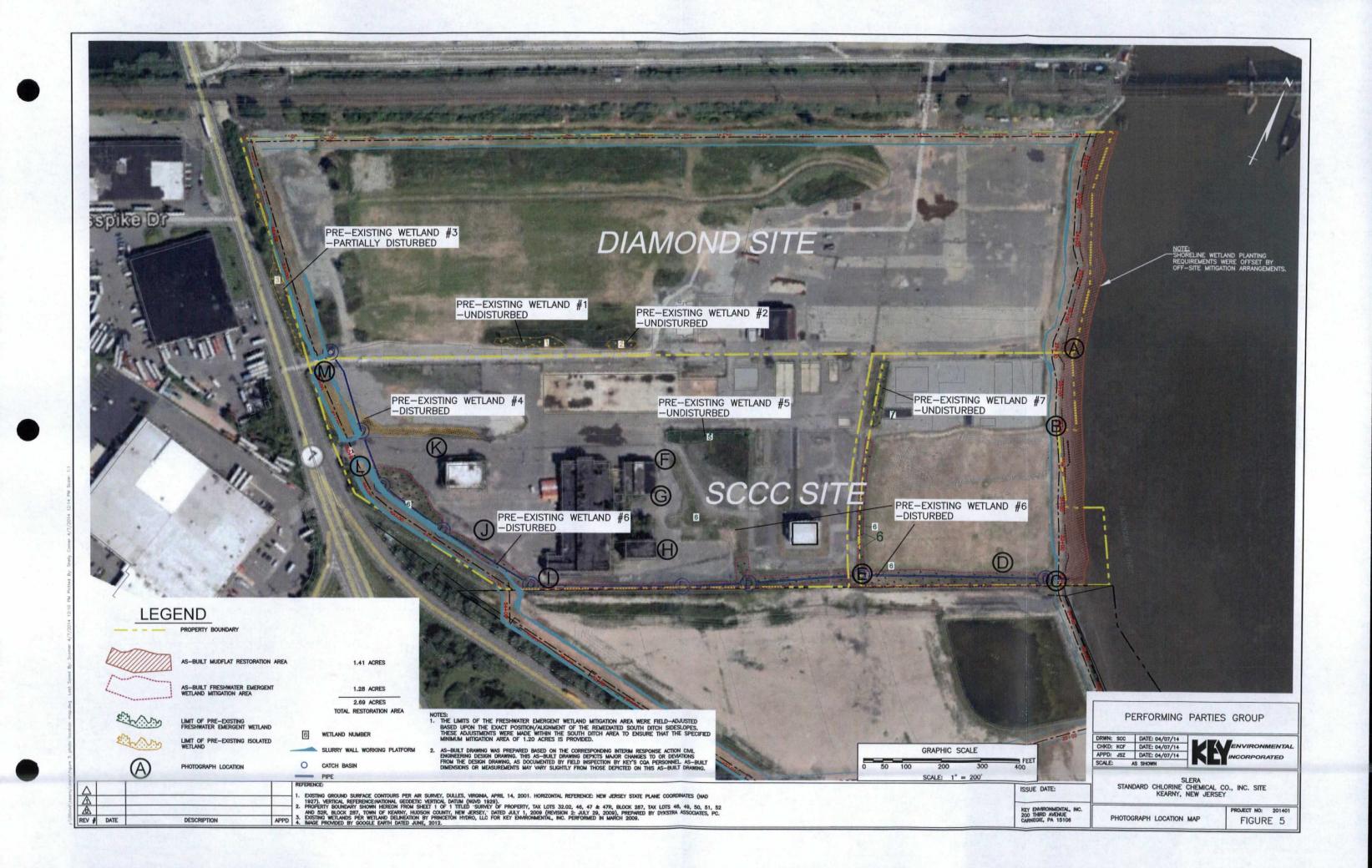
DRWN: SCC	DATE: 03/14/14
CHKD: AH	DATE: 03/14/14
APPD: JSZ	DATE: 03/14/14
COME.	AC CLICHAL

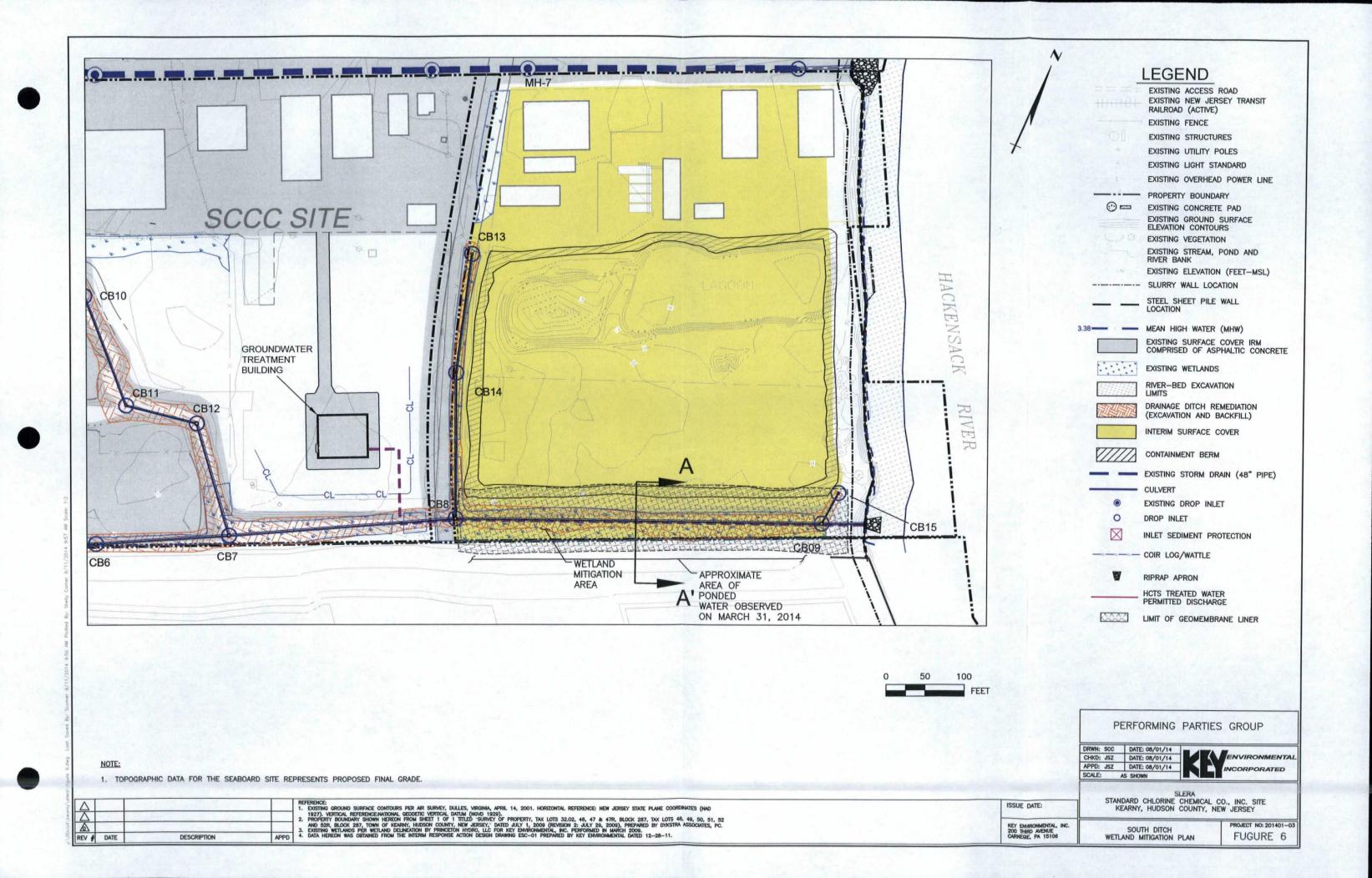
SLERA
STANDARD CHLORINE CHEMICAL CO., INC. SITE
KEARNY, HUDSON COUNTY, NEW JERSEY

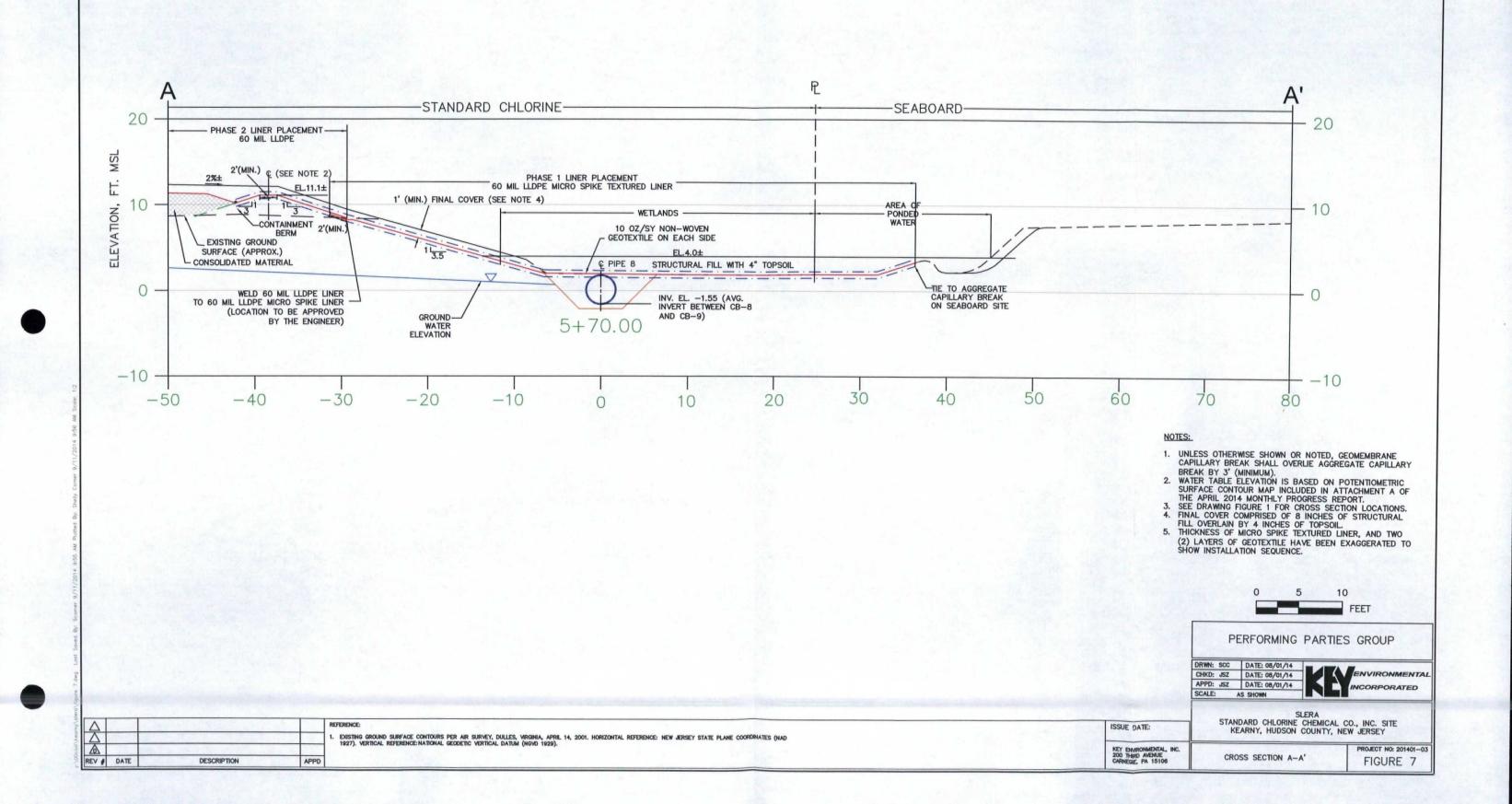
2012 AERIAL PHOTOGRAPH


PROJECT NO: 2014-01 FIGURE 2


		The second	A Prince State of the Control of the	ME TI NO TO
	4			
	Δ			
۱	<u>A</u>		Carried and the Carried and th	
	DEV 4	DATE	DESCRIPTION	APPL


PROPERTY BOUNDARY SHOWN HEREON FROM SHEET 1 OF 1 TITLED "SURVEY OF PROPERTY, TAX LOTS 32.02, 46, 47 & 47R, BLOCK 287, TAX LOTS 48, 49, 50, 51, 52
AND 52R, BLOCK 287, TOWN OF KEARNY, HUBSON COUNTY, NEW JERSEY," DATED JULY 1, 2009 (REVISION 2: JULY 29, 2009), PREPARED BY DYKSTRA ASSOCIATES, PC.
 IMAGE PROVIDED BY GOOGLE EARTH DATED JUNE, 2012.


KEY ENVIRONMENTAL, INC. 200 THIRD AVENUE CARNEGIE, PA 15106


ISSUE DATE:

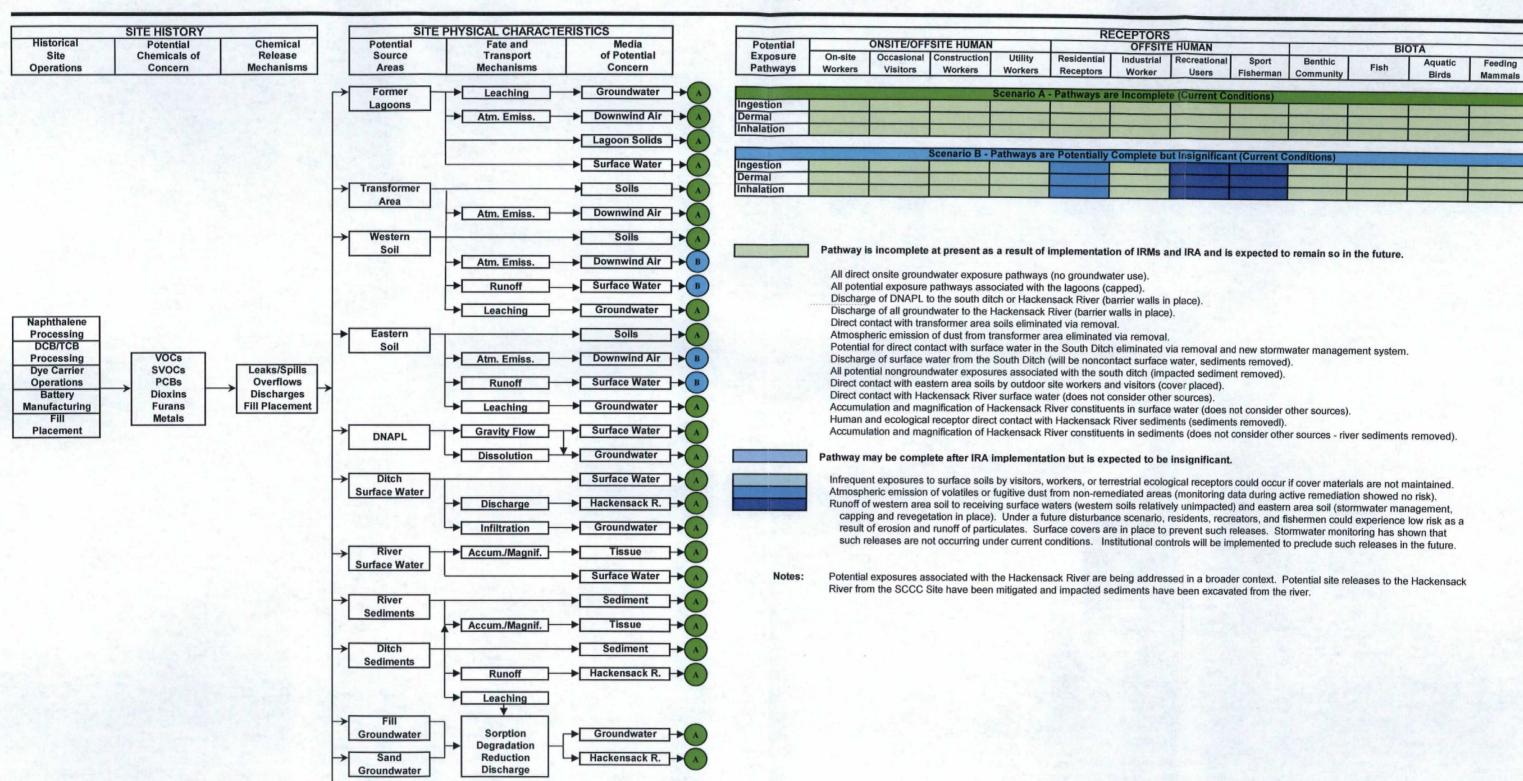


FIGURE 8

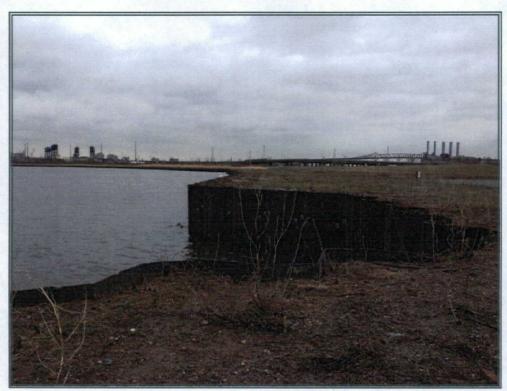
CONCEPTUAL SITE MODEL SCCC SITE - KEARNY, NEW JERSEY

Groundwater

Hackensack R.

Bedrock

Groundwater


As Above

APPENDIX A

COMPLETE FIGURES, TABLES, AND APPENDICES FROM THE SCSR (DECEMBER 2012, REVISED MARCH 2013) AND THE SCSR ADDENDUM (MARCH 28, 2014) (ON CD)

APPENDIX B

PHOTOGRAPHS OF CURRENT SITE CONDITIONS, MARCH 31, 2014

(Photo 1) View towards South from Outfall 003. Barrier wall separates site (on right) from Hackensack river (on left)

(Photo 2) View towards North from Outfall 003

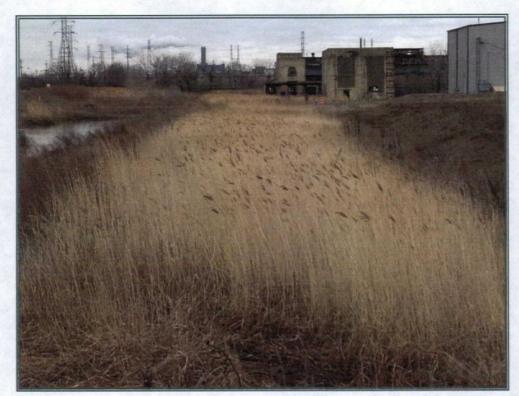
(Photo 3) View of former process area from Outfall 003

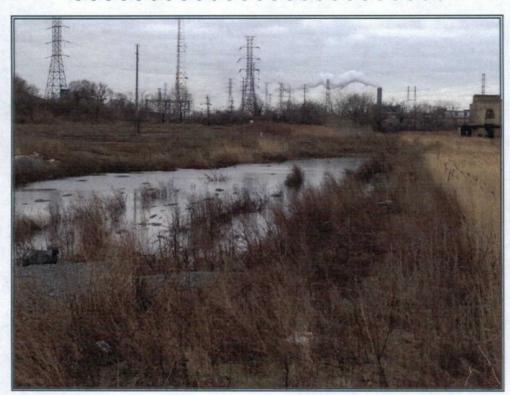
(Photo 4) View towards treatment building from Outfall 003

(Photo 5) View of property line dividing SCCC site and Diamond site.
This is the SCCC side looking west from outfall 003.

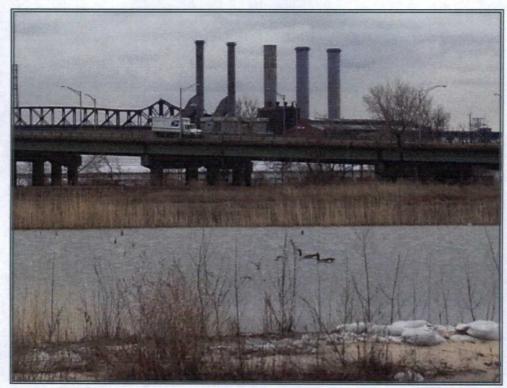
(Photo 6) View of property line dividing SCCC site and Diamond site. This is Diamond Site side looking west from outfall 003.

(Photo 7) View of Diamond site from Outfall 003


(Photo 8) View towards West from NE corner of consolidation area


(Photo 9) View towards South from NE corner of consolidation area

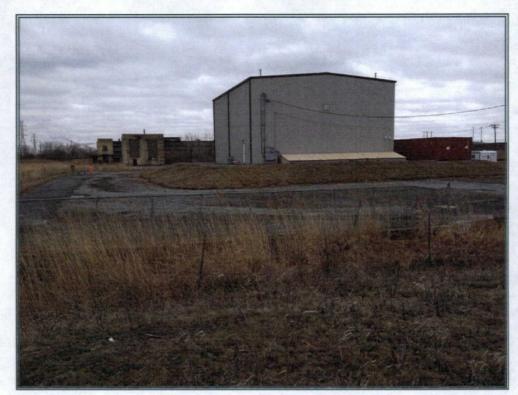
(Photo 10) View of DNAPL recovery wells in center of consolidation area from NE corner


(Photo 11) View of wetlands located immediately west of Outfall 001

(Photo 12) View looking southwest from Outfall 001

(Photo 12b) View looking Southwest from Outfall 001 (Topographic Low Area on Seaboard Site) - July 30, 2014

(Photo 13) View towards SW (Seaboard site) from Outfall 001


(Photo 14) View towards South (Seaboard site) from Outfall 001

(Photo 15) View of HCWU-21 from southern end of consolidation area cap

(Photo 16) View towards South from the southern edge of the consolidation area cap

(Photo 17) View of treatment building from the SW corner of the consolidation area cap

(Photo 18) View towards North (from SW corner of consolidation area) of wetlands along the western perimeter of the consolidation cap

(Photo 19) View towards SE of the wetlands located West of the treatment building

(Photo 20) View towards South of the wetlands located West of the treatment building

(Photo 21) View of catch basin 10 near building 3 after heavy rain, during high tide

(Photo 22) View towards SE of Building 3

(Photo 23) View towards West with Buildings 2 and 3 on the left

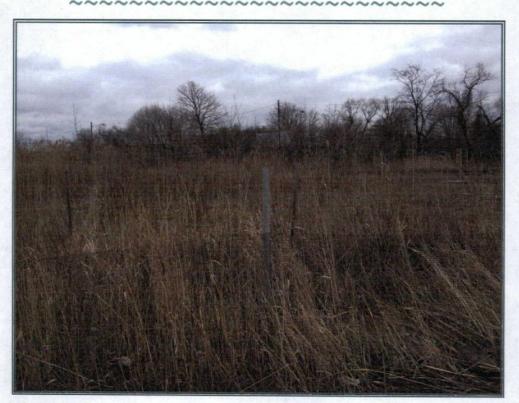
(Photo 24) View towards NW from Building 3

(Photo 25) View towards North from Building 3

(Photo 26) View towards East from the rear corner of Building 3 at wetlands

(Photo 27) View towards West behind Building 3

(Photo 28) View towards Southwest past rear corner of Building 4


(Photo 29) View towards south from rear of Building 4 (wetlands)

(Photo 30) View towards NE from Building 4

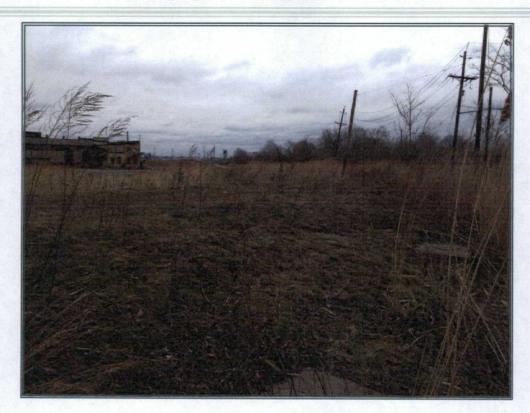
(Photo 31) View towards East from the SW corner of Building 2

(Photo 32) View towards South from the SW corner of Building 2

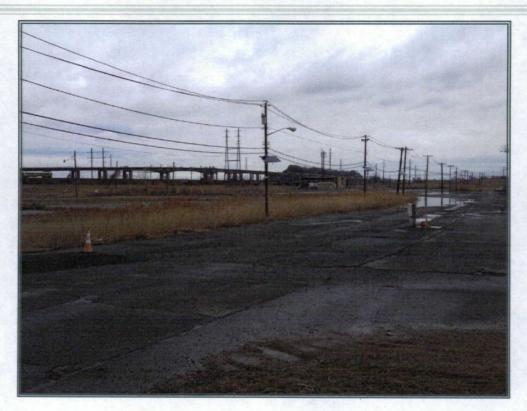
(Photo 33) View towards West from SW corner of Building 2

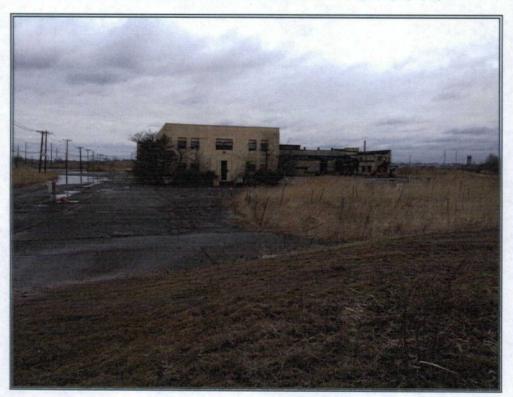
(Photo 34) View towards North from the SW corner of Building 2

(Photo 35) View towards NE at the Thomas Edison building from the SW corner of Building 2


(Photo 36) View towards SE at the SW corner of Building 2

(Photo 37) View towards NE while train is passing with Building 2 at right


(Photo 38) View towards West at entrance to site - old guard shack in view


(Photo 39) View towards south of slurry wall from Piezometer 16-L (near entrance and old guard shack)

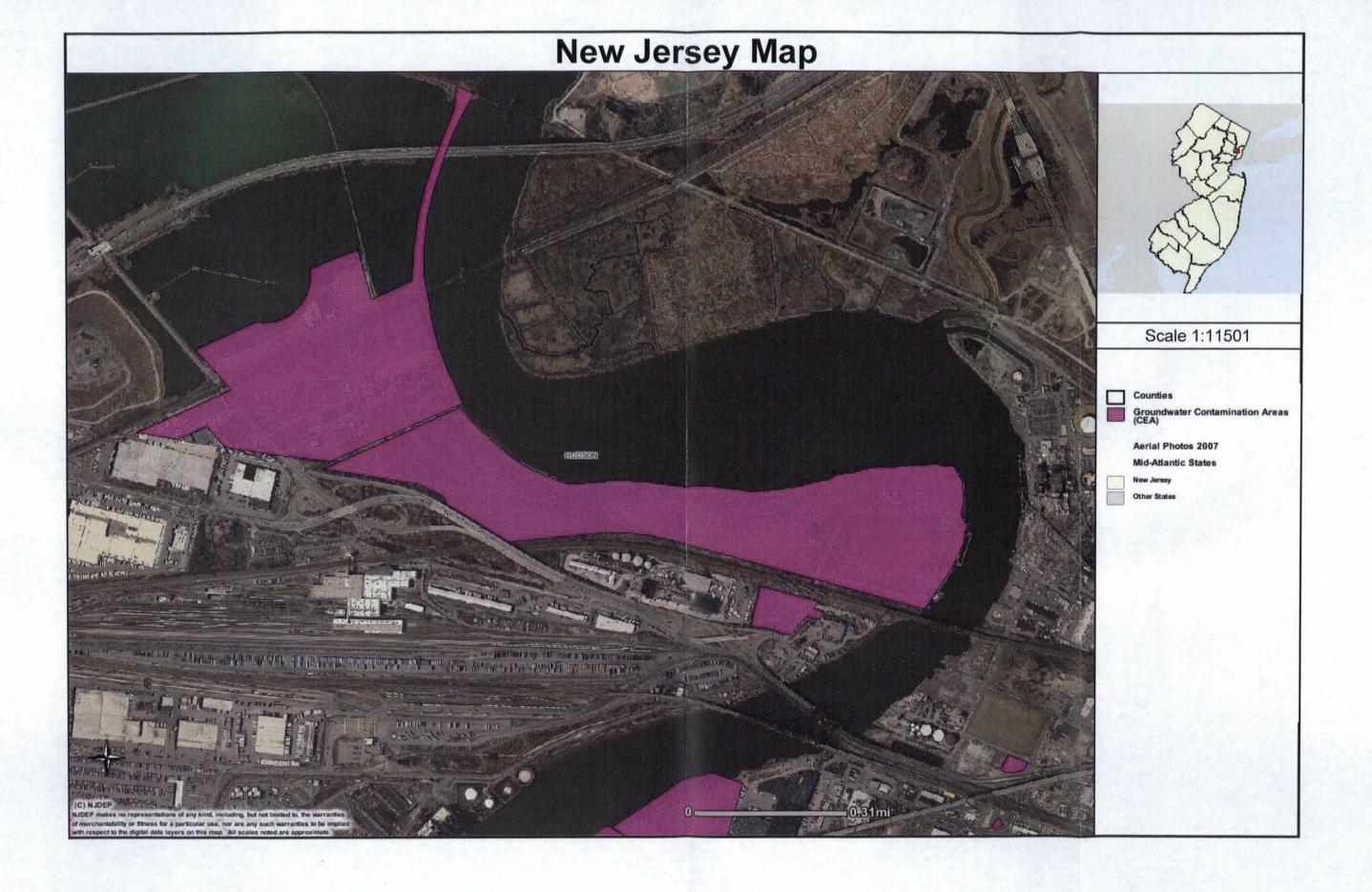
(Photo 40) View towards North of slurry wall (near entrance and old guard shack)

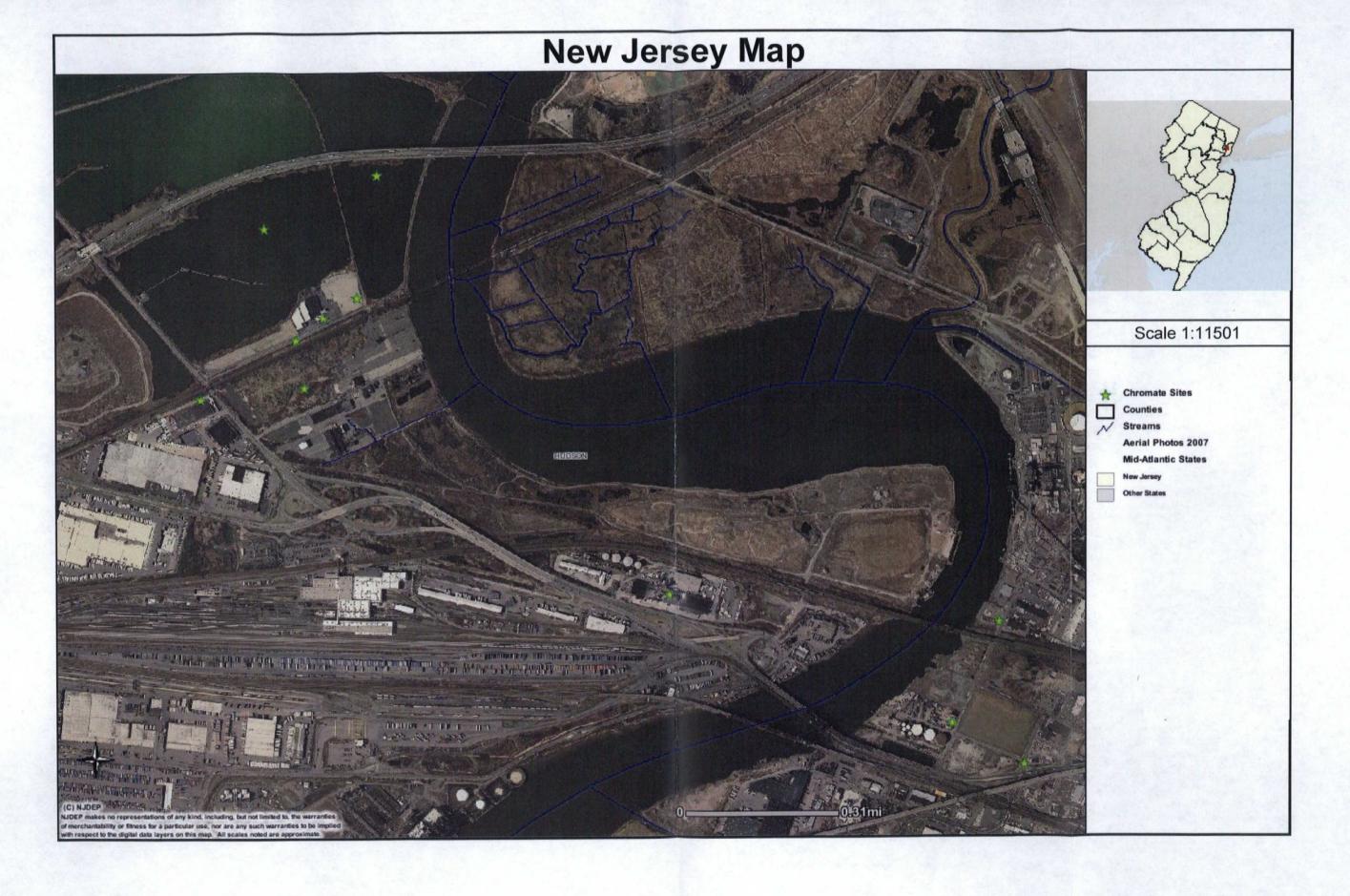

(Photo 41) Site view to the NE from the guard shack near the entrance

(Photo 42) View towards East, looking at the buildings from the old guard shack

(Photo 43) View towards East over the entire site from the NW corner of the SCCC site on top of the slurry wall.

(Photo 44) View towards SE from the NW corner of the SCCC site on top of the slurry wall



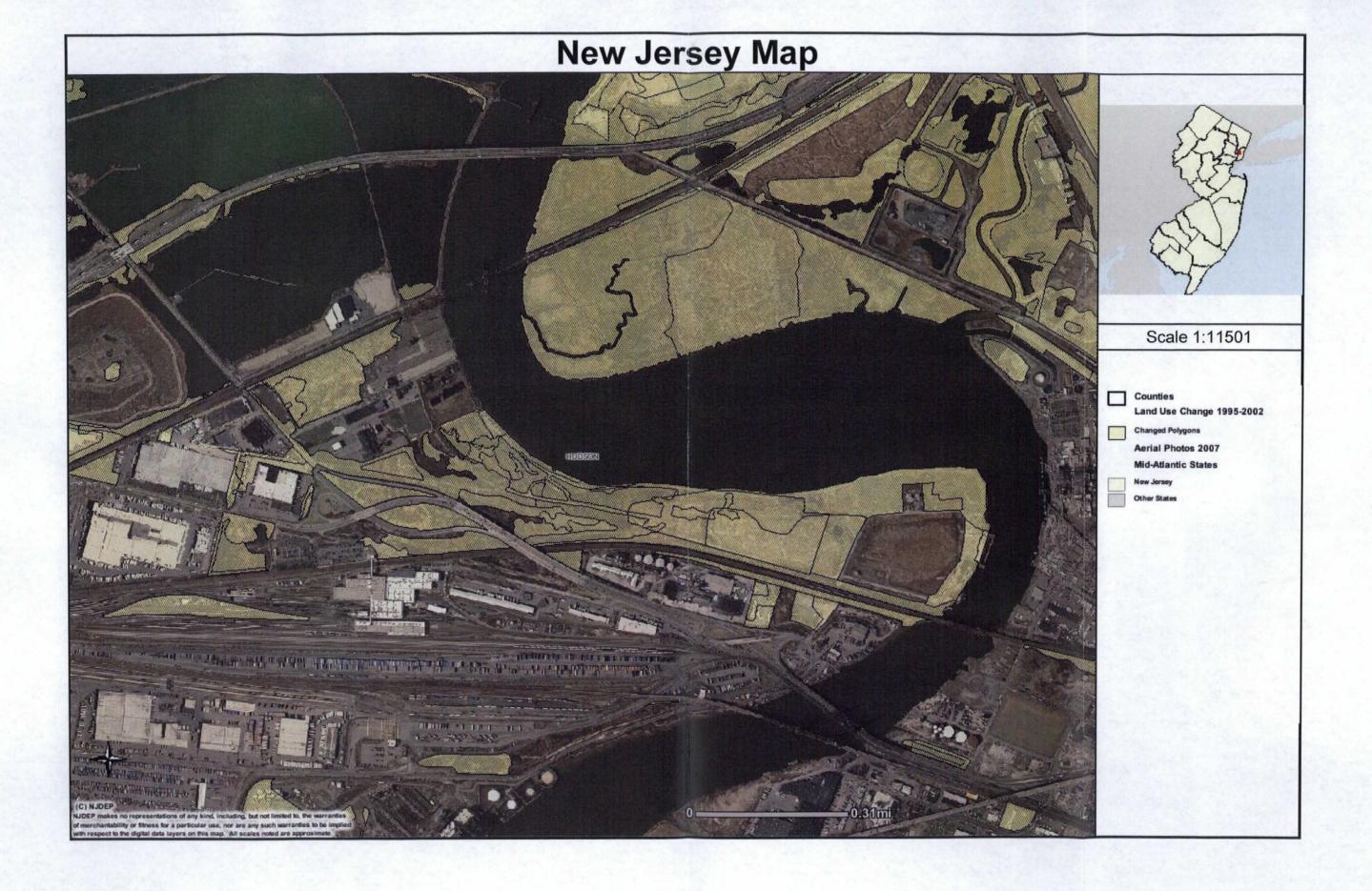

(Photo 45) View towards South from the NW corner of the SCCC site on top of the slurry wall

APPENDIX C

RESULTS OF NEW JERSEY'S i-MAPNJ DATABASE SEARCH

Map Output

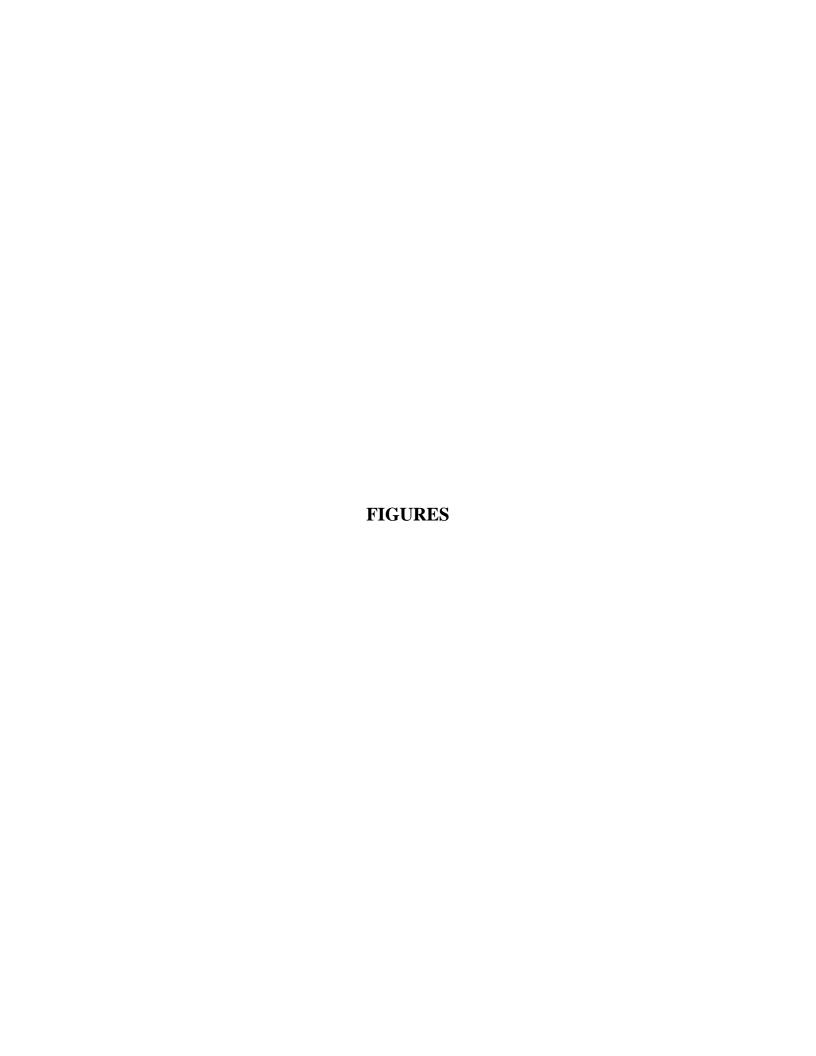




Map Output Page 1 of 1

Map Output

Map Output



APPENDIX A

COMPLETE FIGURES, TABLES, AND APPENDICES FROM THE SCSR (DECEMBER 2012, REVISED MARCH 2013)
AND THE SCSR ADDENDUM (MARCH 28, 2014)
(ON CD)

COMPLETE FIGURES, TABLES, AND APPENDICES FROM THE SCSR (DECEMBER 2012, REVISED MARCH 2013)

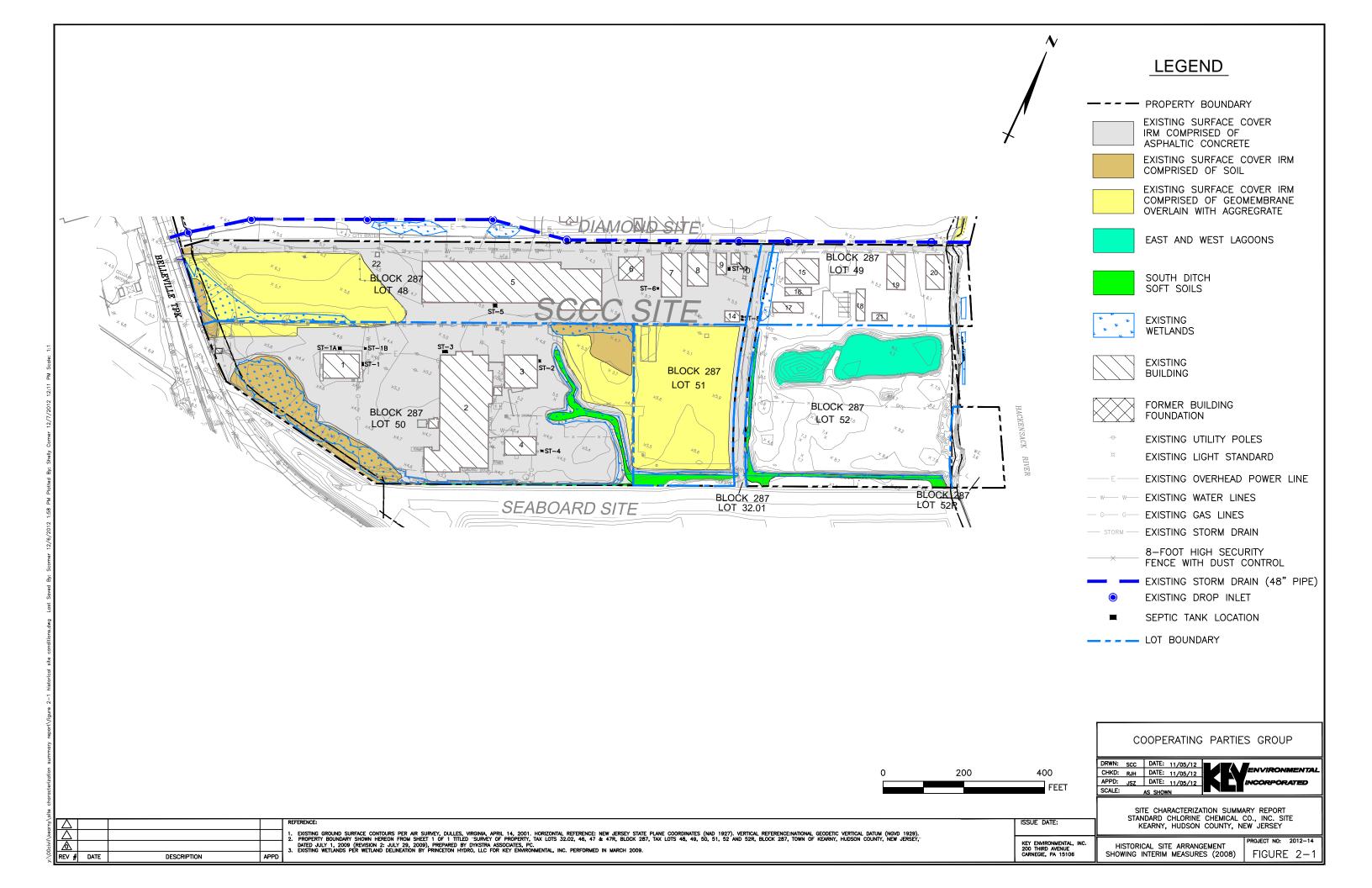
Saved By: Soomer 11/25/2012 2:58 PM Plotted By: Shelly Comer 12/7/2012 12:11 PM Scale: 1:1.016827

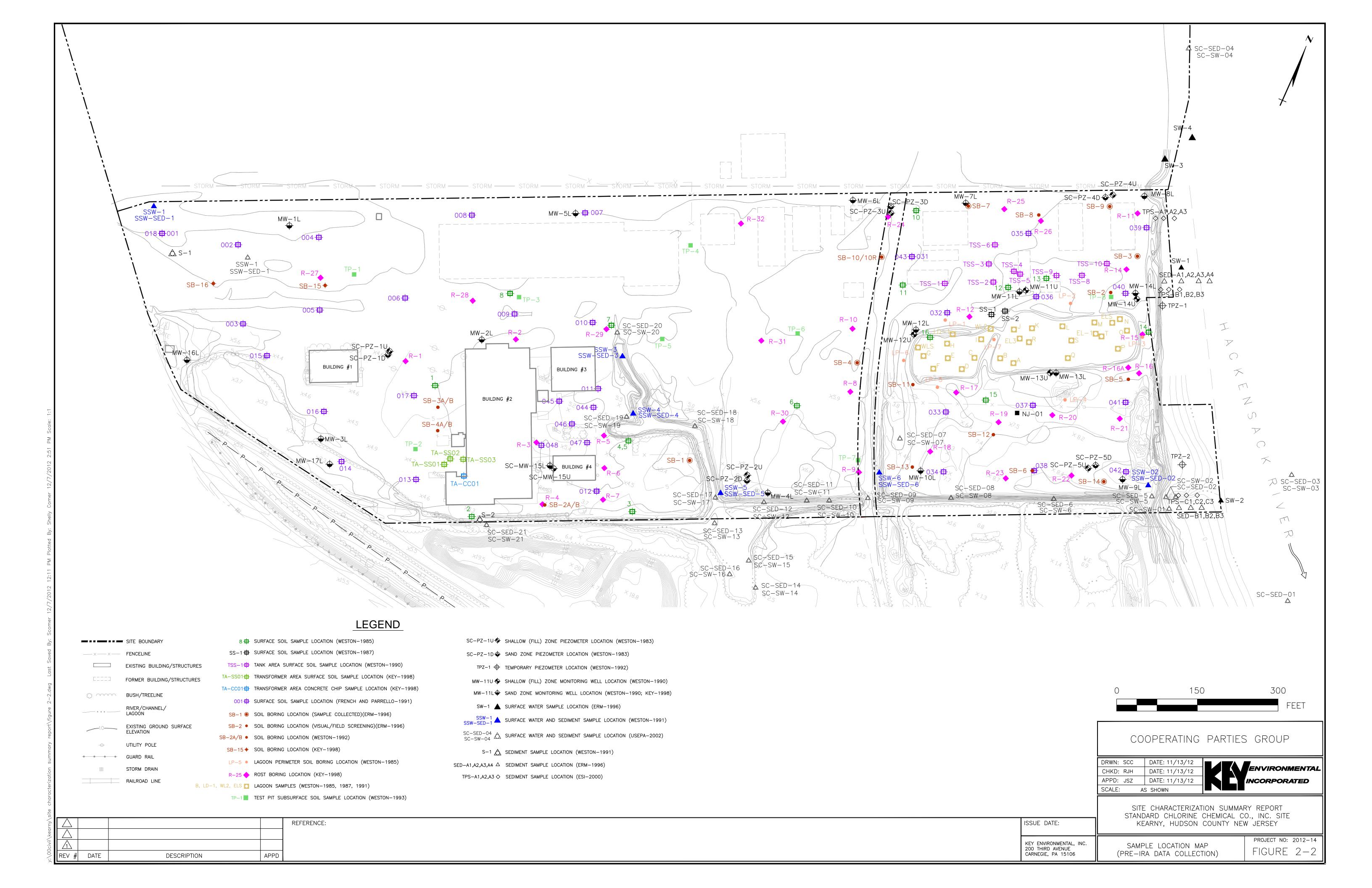
REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLES OF JERSEY CITY, AND WEEHAWKEN, NEW JERSEY

ISSUE DATE:

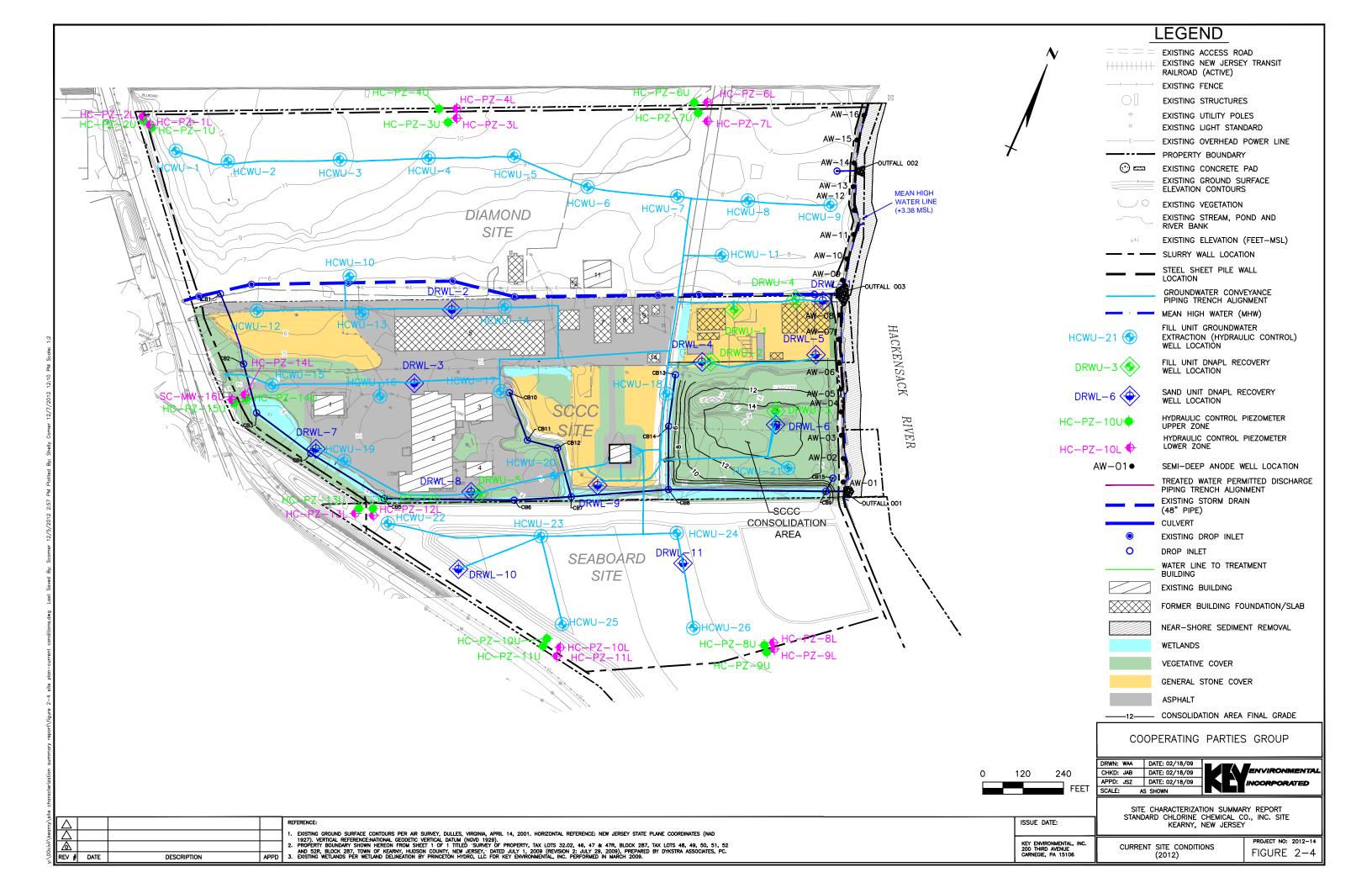
KEY ENVIRONMENTAL, INC. 200 THIRD AVENUE CARNEGIE, PA 15106

COOPERATING PARTIES GROUP


DRWN: SCC	DATE: 11/05/12
CHKD: RJH	DATE: 11/05/12
APPD: JSZ	DATE: 11/05/12
SCALE:	1"- 2000'


ENVIRONMENTAL INCORPORATED


SITE CHARACTERIZATION SUMMARY REPORT STANDARD CHLORINE CHEMICAL CO., INC. SITE KEARNY, HUDSON COUNTY, NEW JERSEY


SITE LOCATION MAP

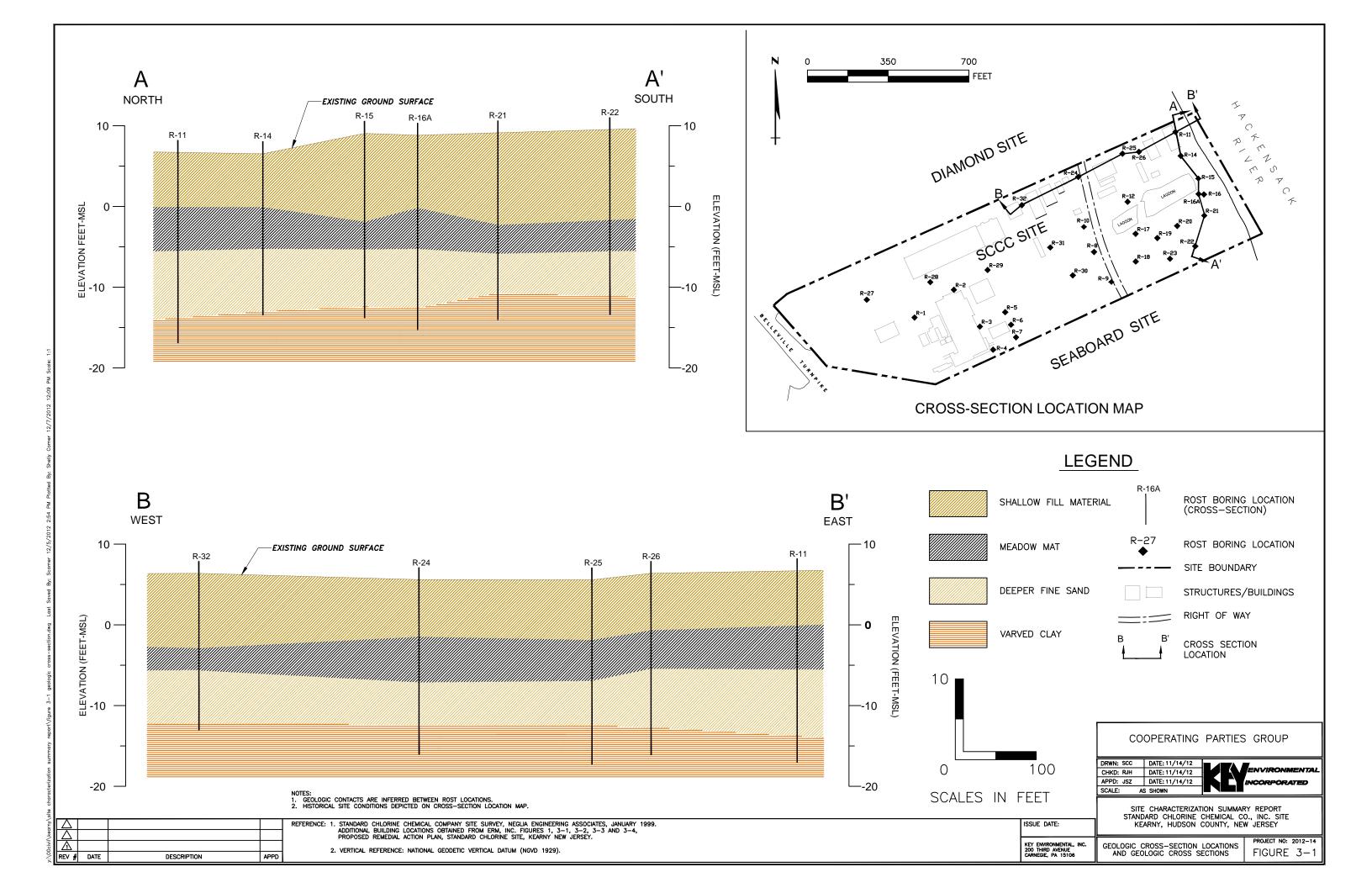
PROJECT NO: 2012-14 FIGURE 1-1

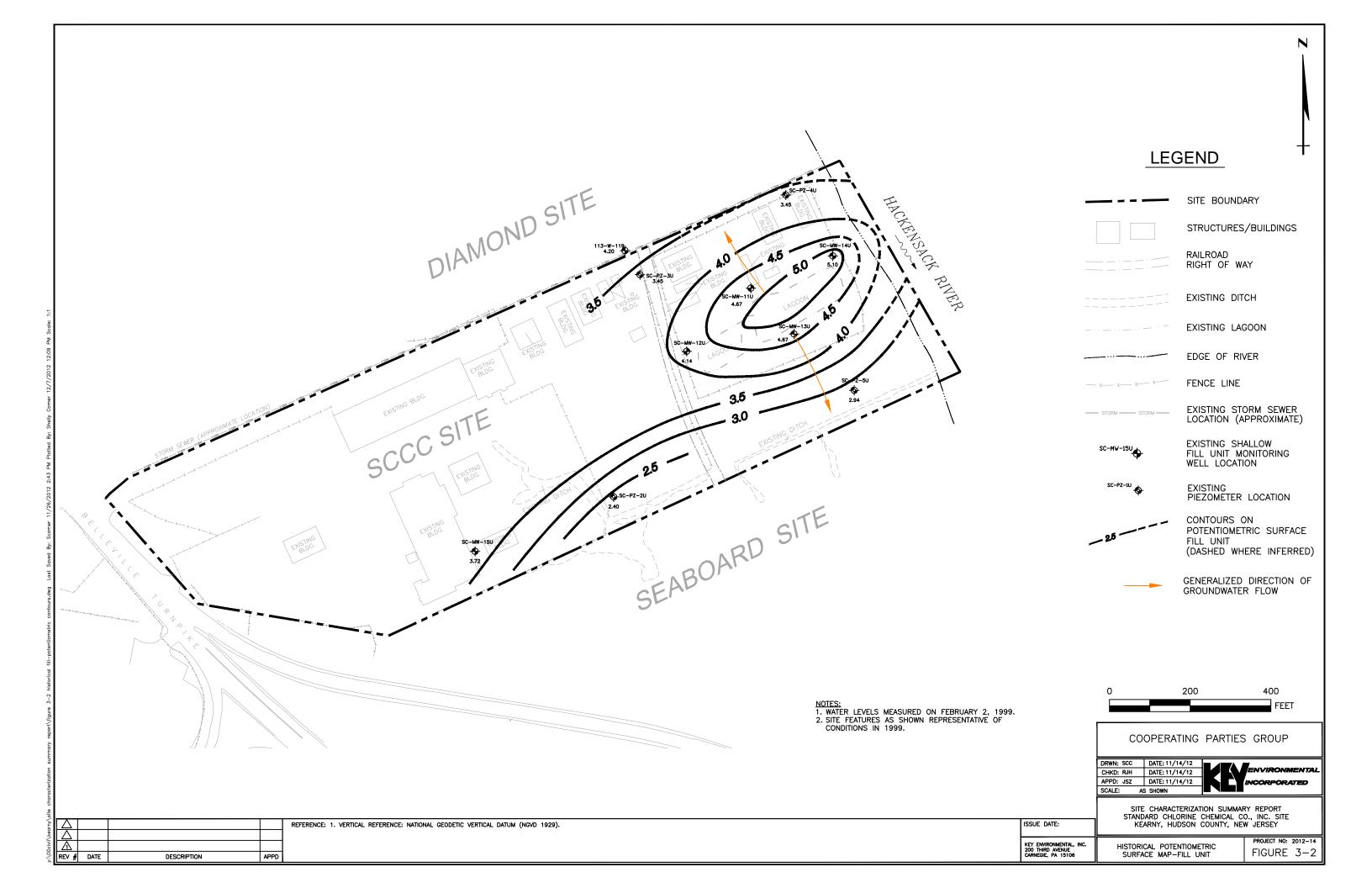
300

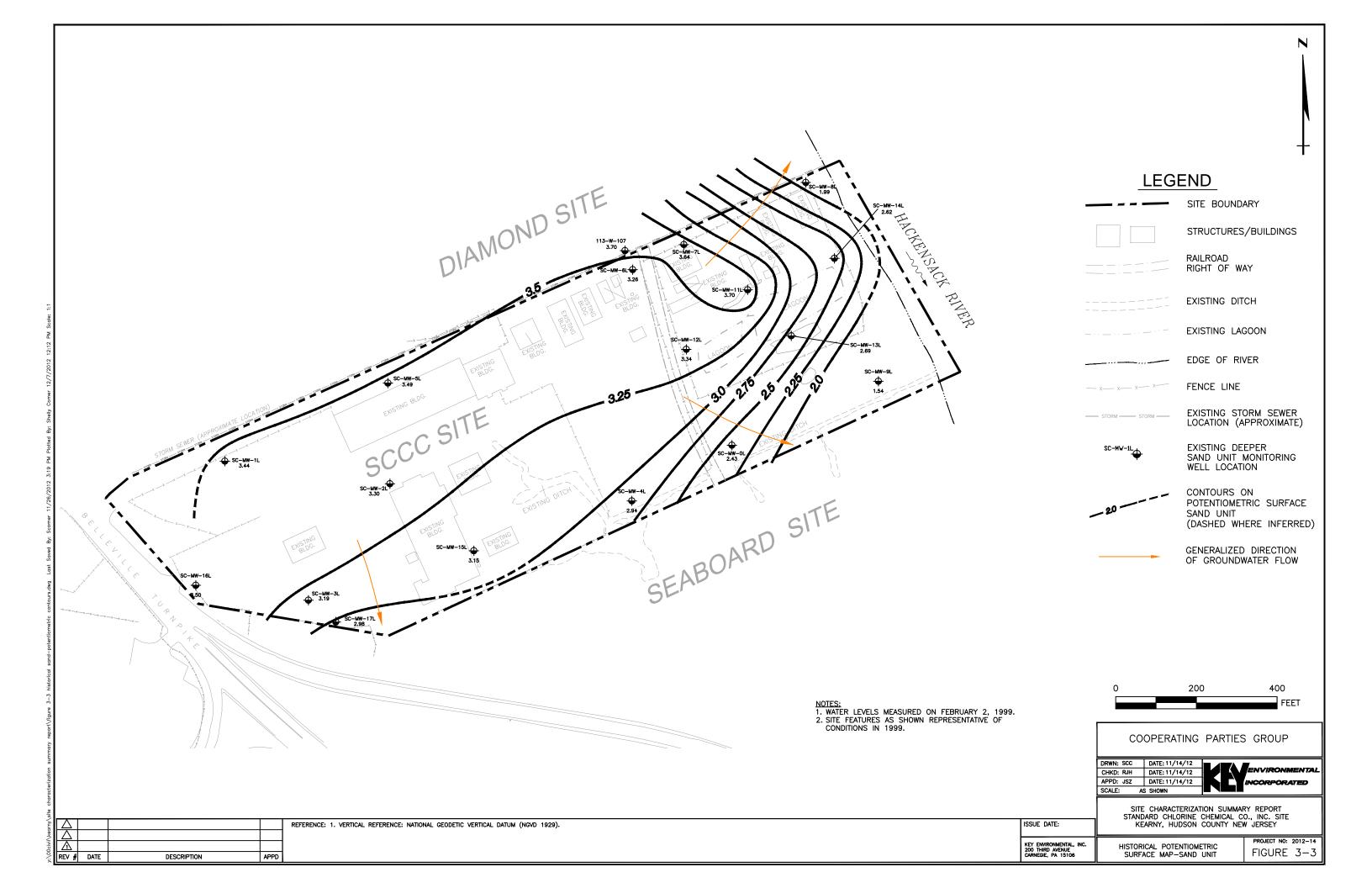
ISSUE DATE:

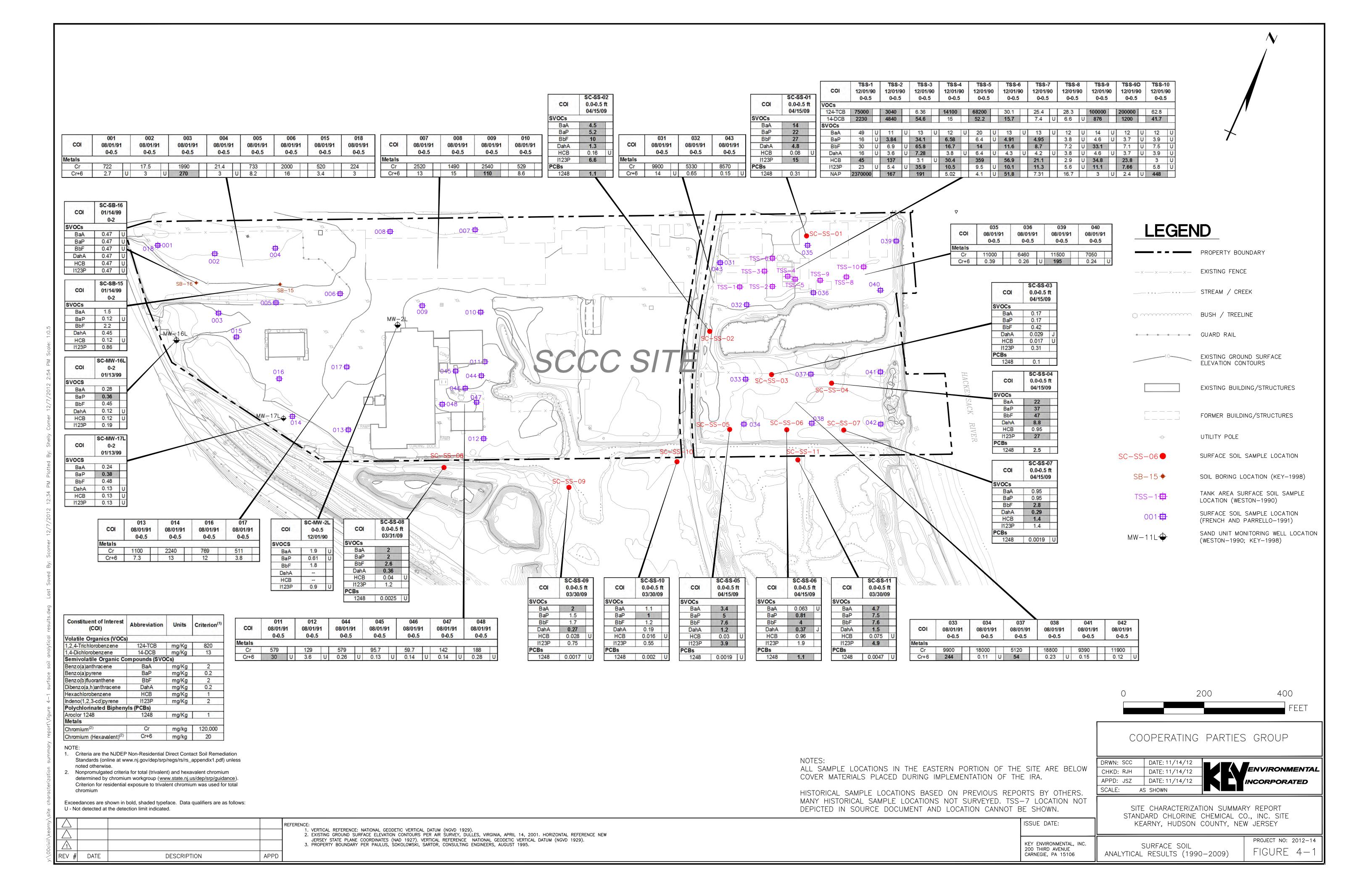
KEY ENVIRONMENTAL, INC. 200 THIRD AVENUE CARNEGIE, PA 15106

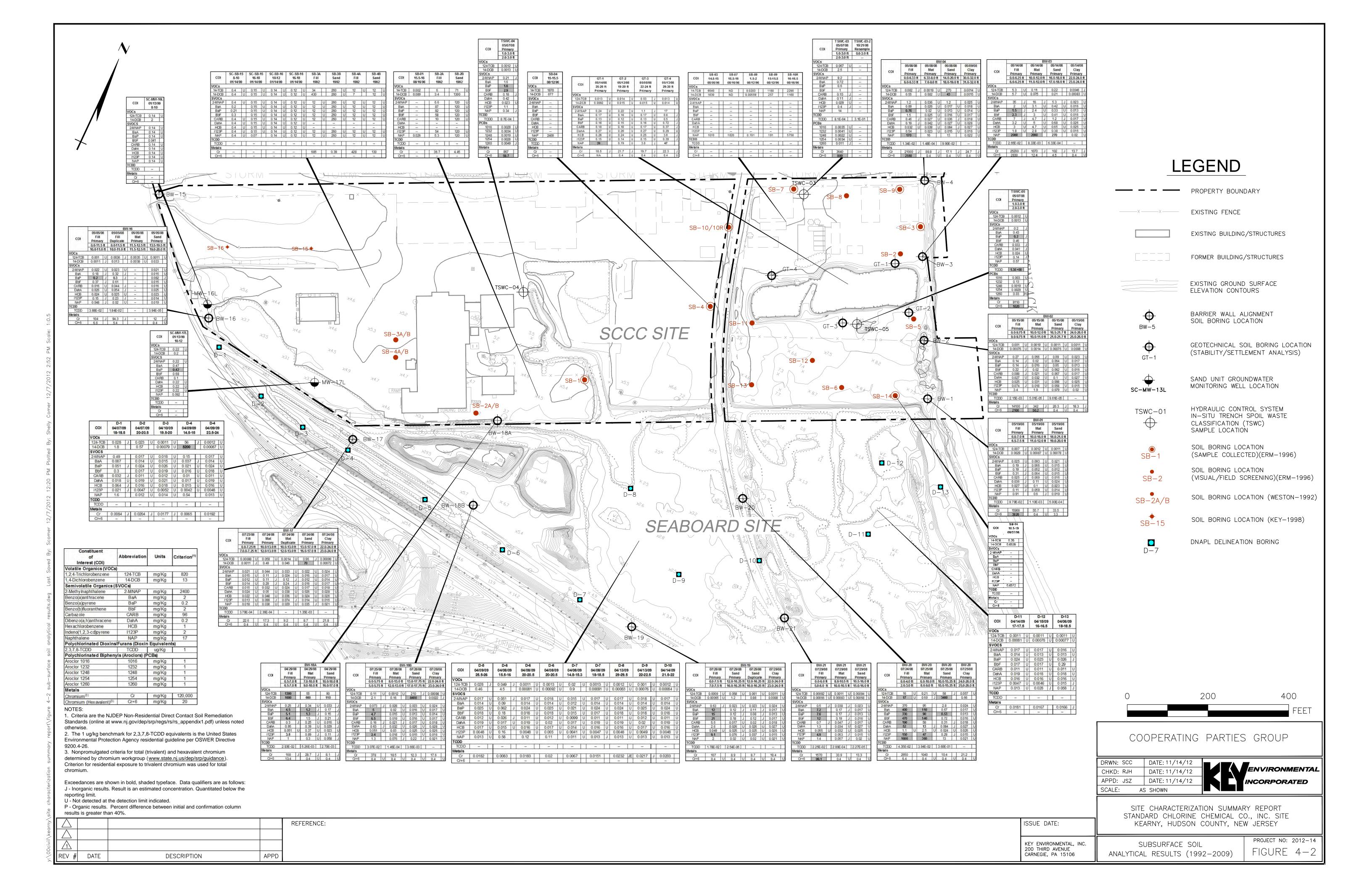
COOPERATING PARTIES GROUP

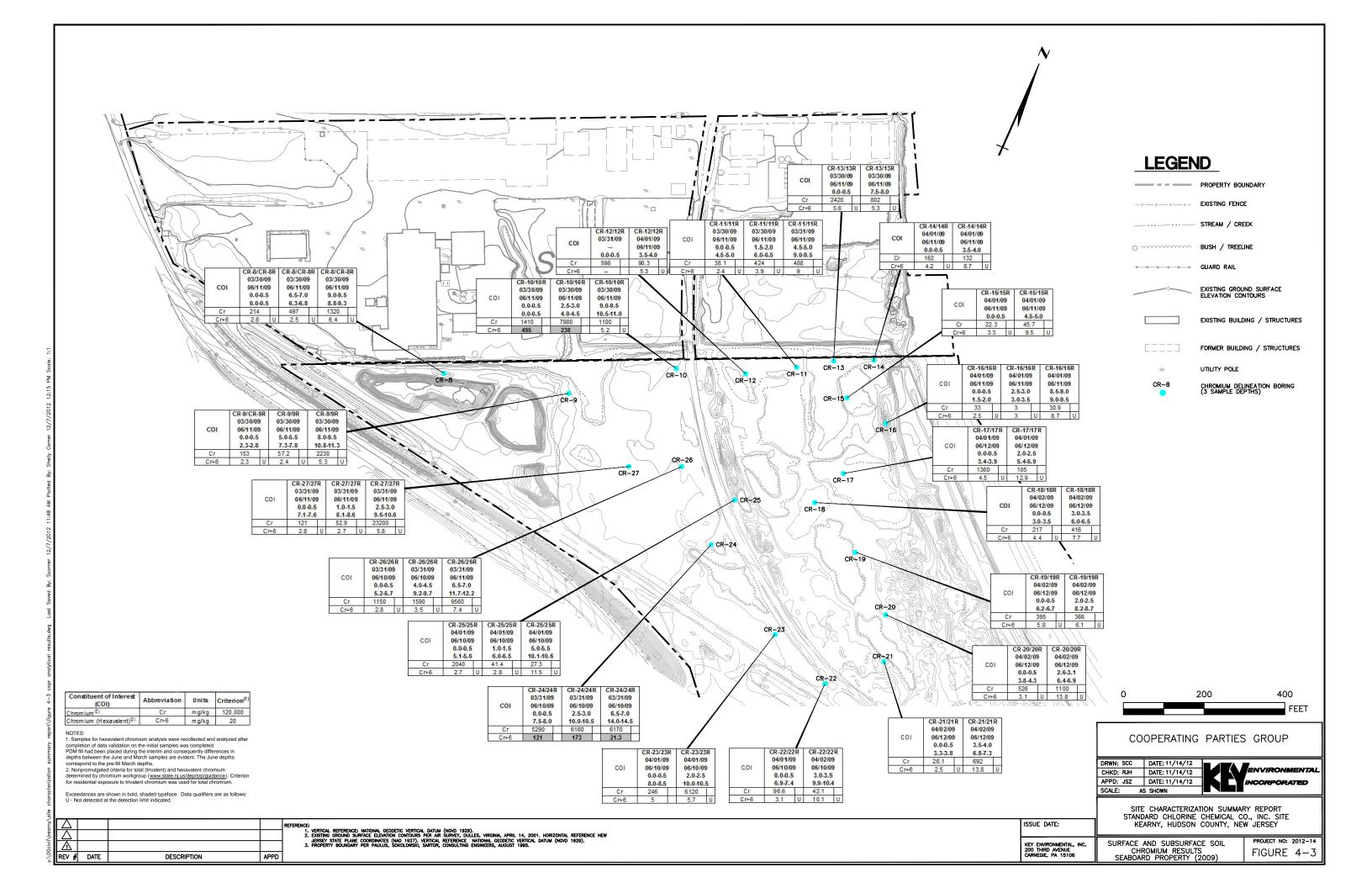

SITE CHARACTERIZATION SUMMARY REPORT	
STANDARD CHLORINE CHEMICAL CO., INC. SITE	
KEARNY, HUDSON COUNTY, NEW JERSEY	

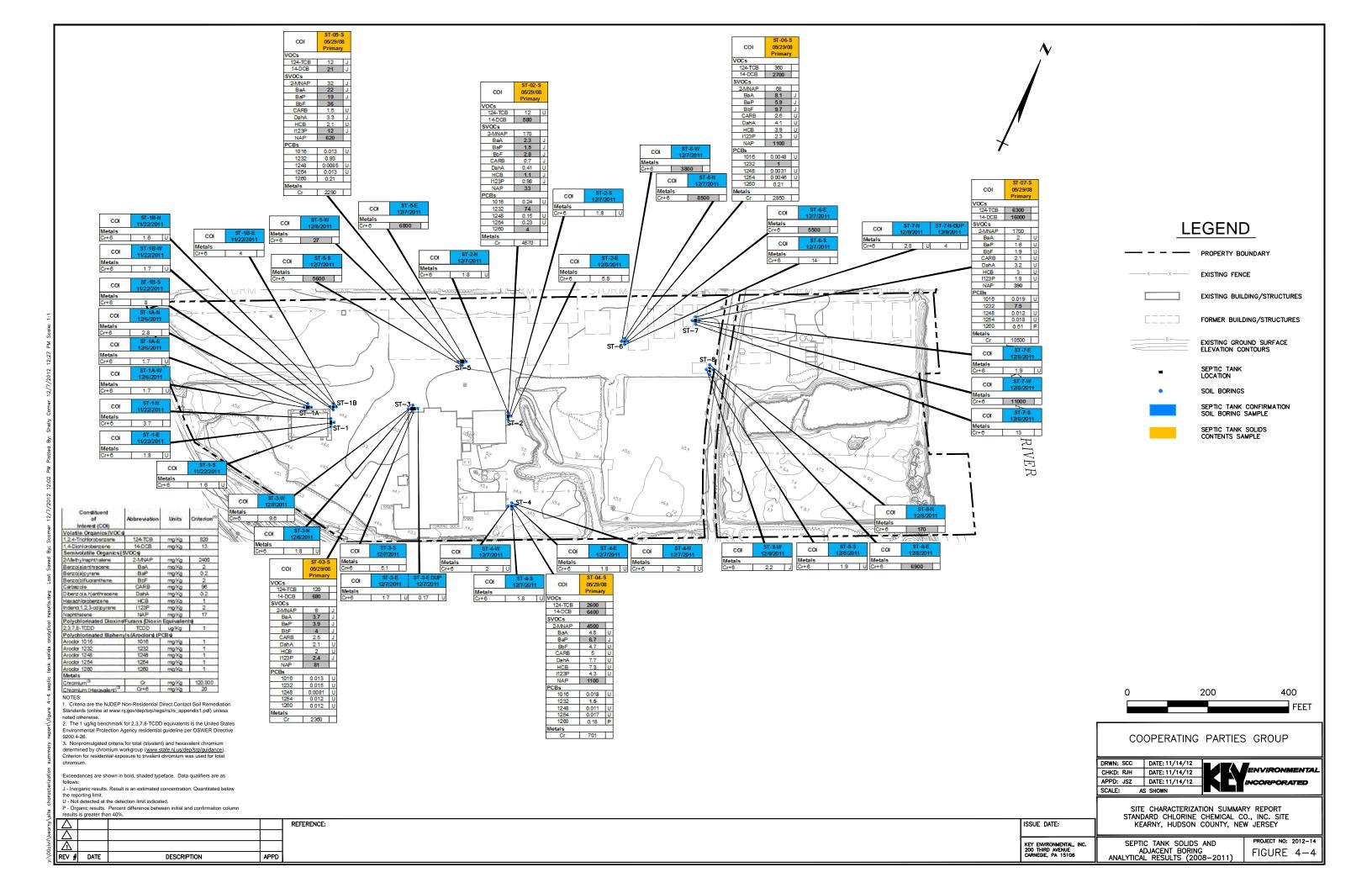

2012	AERIAL	PHOTOGRAPH	

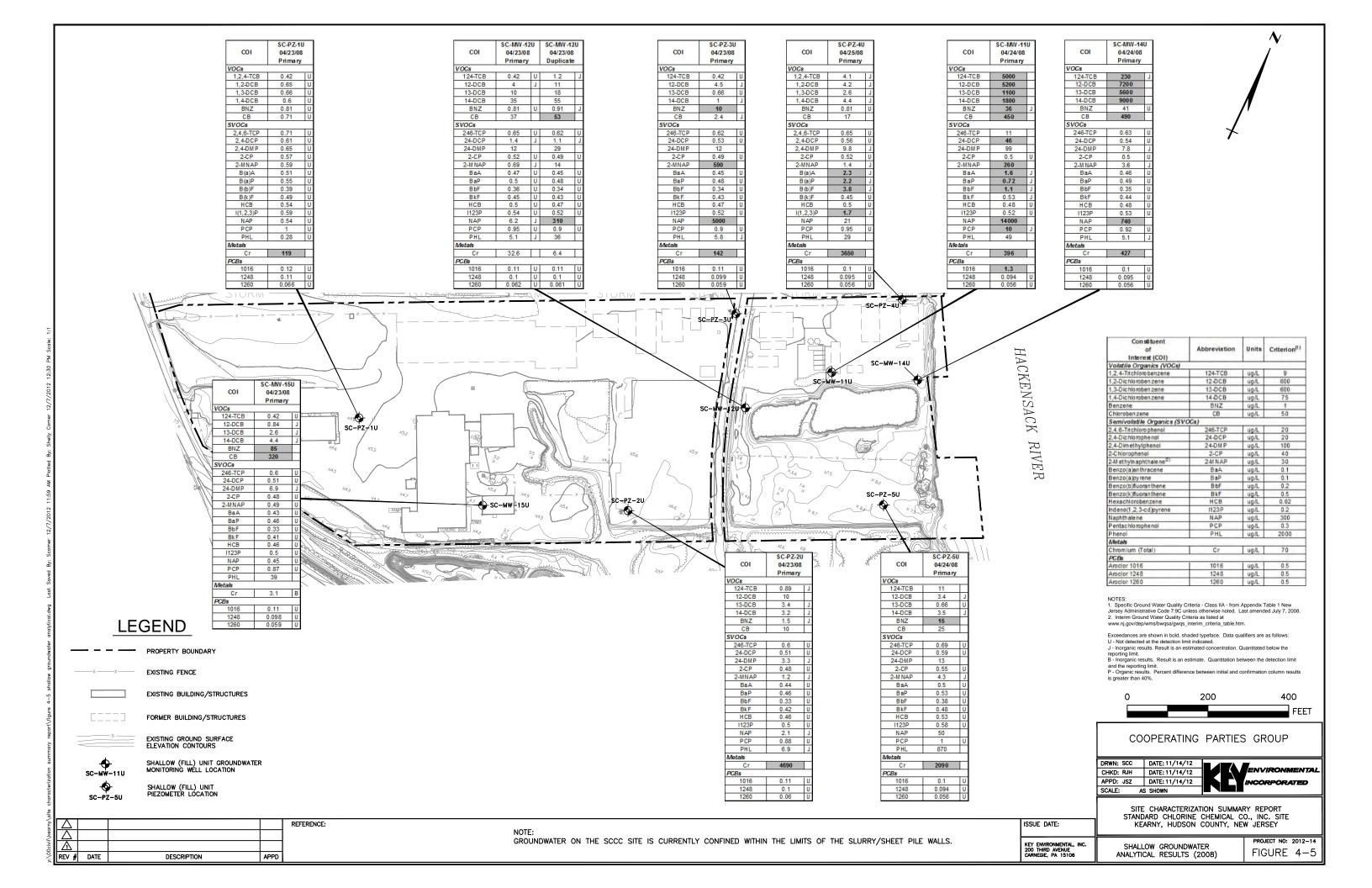

	PROJECT NO: 2012-14
AERIAL PHOTOGRAPH	FIGURE 2-5

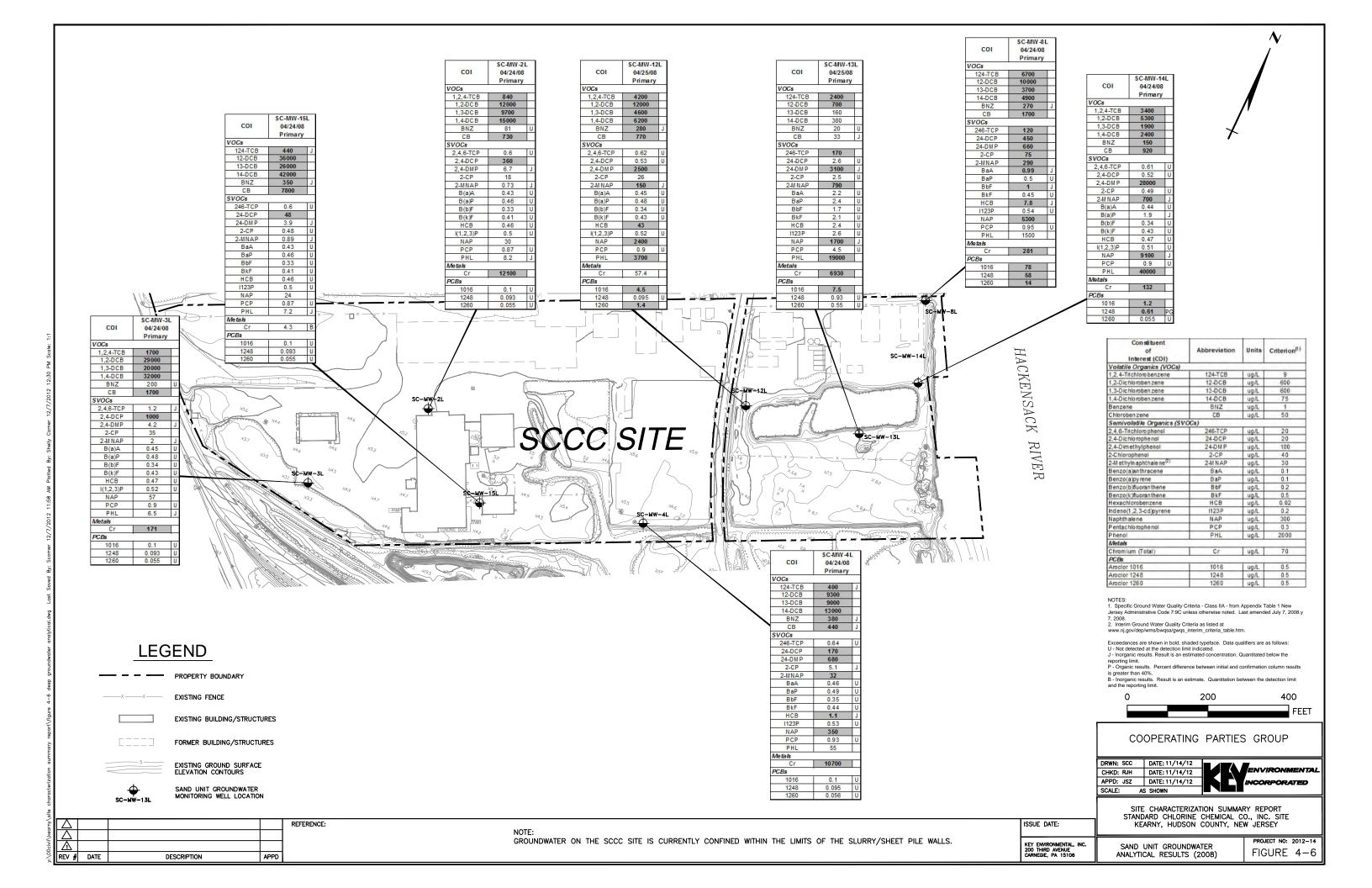

	Δ			
	Δ			
ı	◬			
1	REV #	DATE	DESCRIPTION	APPD

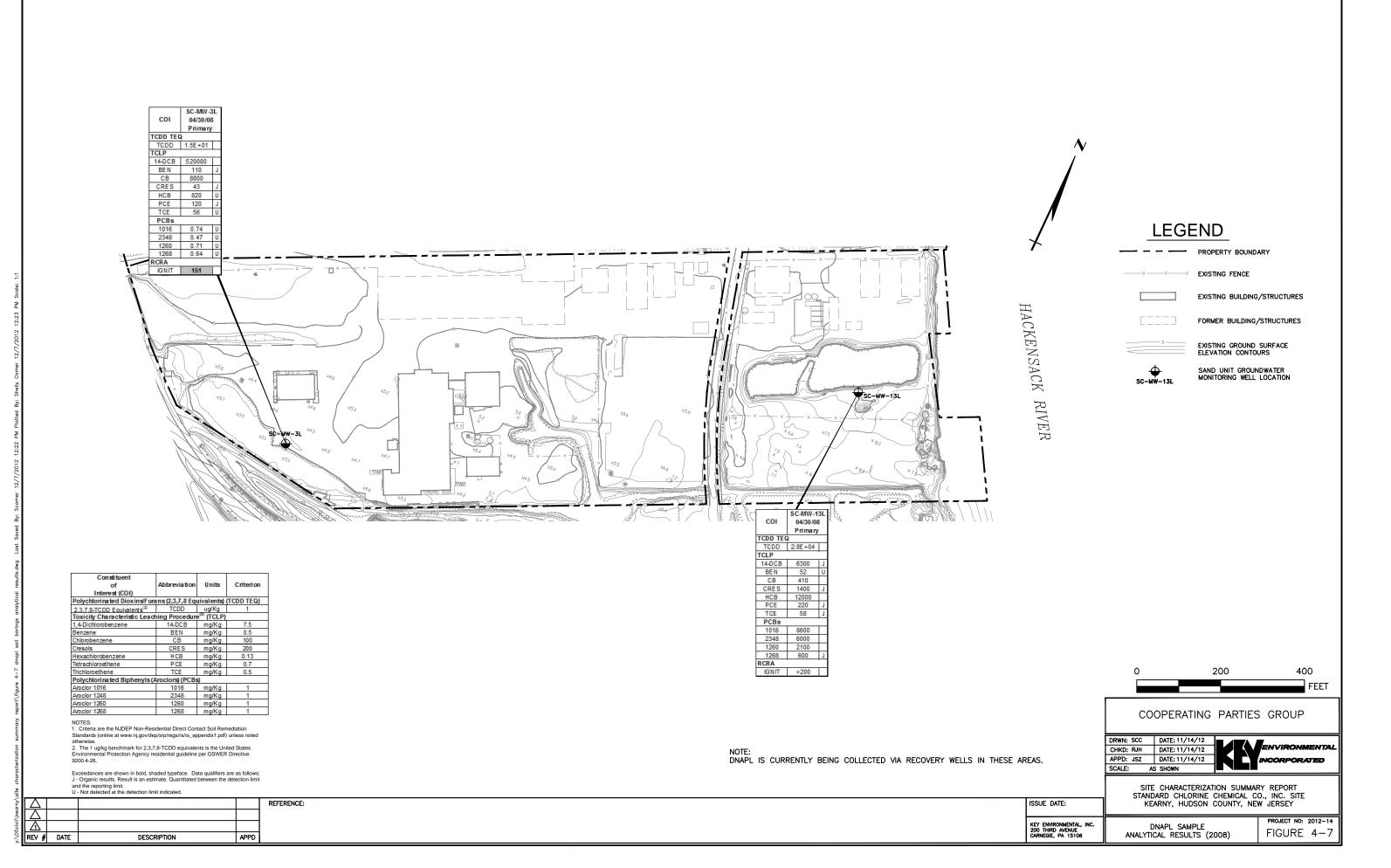

REFERENCE: 1. PROPERTY BOUNDARY SHOWN HEREON FROM SHEET 1 OF 1 TITLED "SURVEY OF PROPERTY, TAX LOTS 32.02, 46, 47 & 47R, BLOCK 287, TAX LOTS 48, 49, 50, 51, 52
AND 52R, BLOCK 287, TOWN OF KEARNY, HUDSON COUNTY, NEW JERSEY," DATED JULY 1, 2009 (REMSION 2: JULY 29, 2009), PREPARED BY DYKSTRA ASSOCIATES, PC.
2. IMAGE PROVIDED BY GOOGLE EARTH DATED JUNE, 2012.

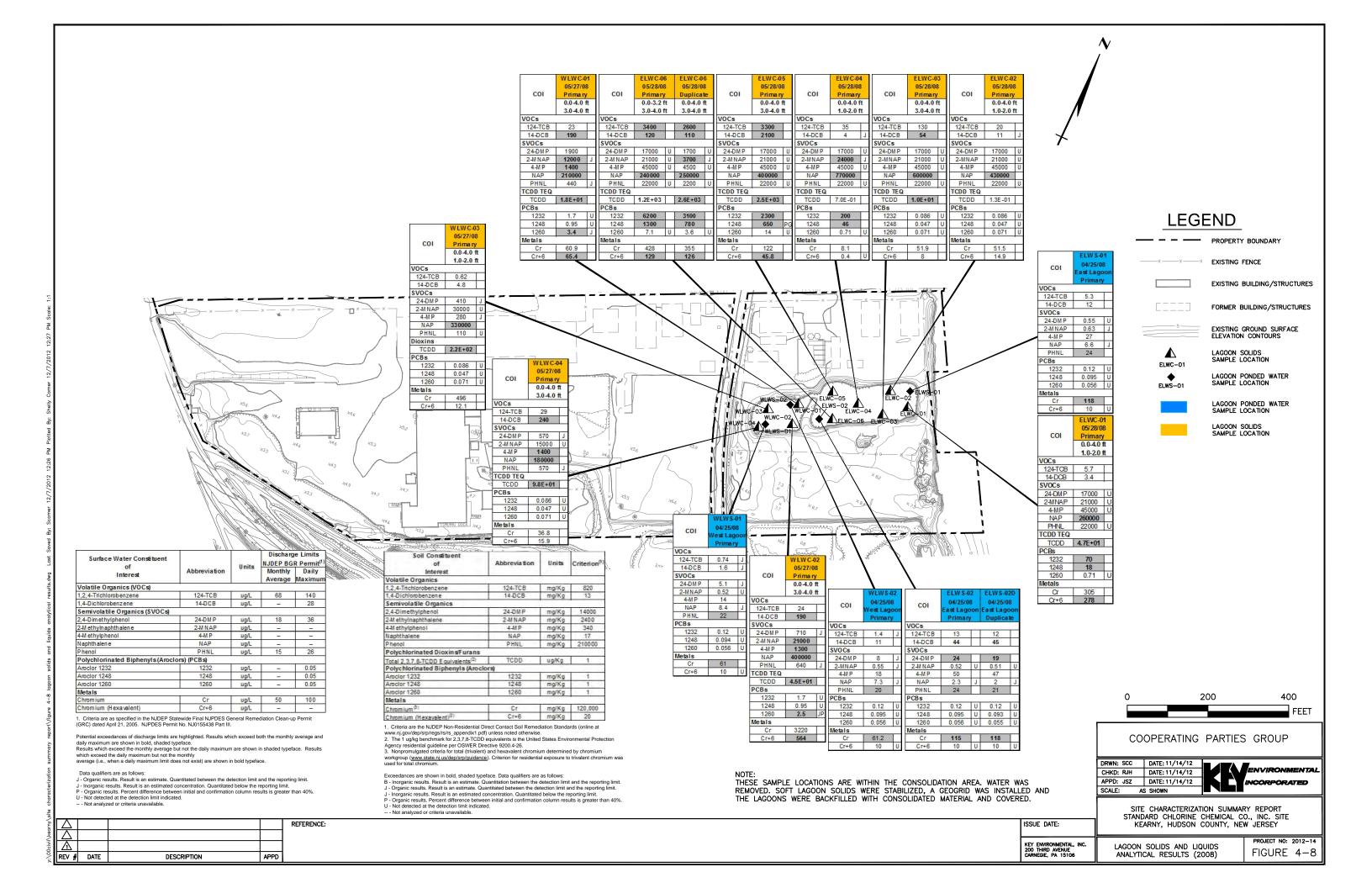


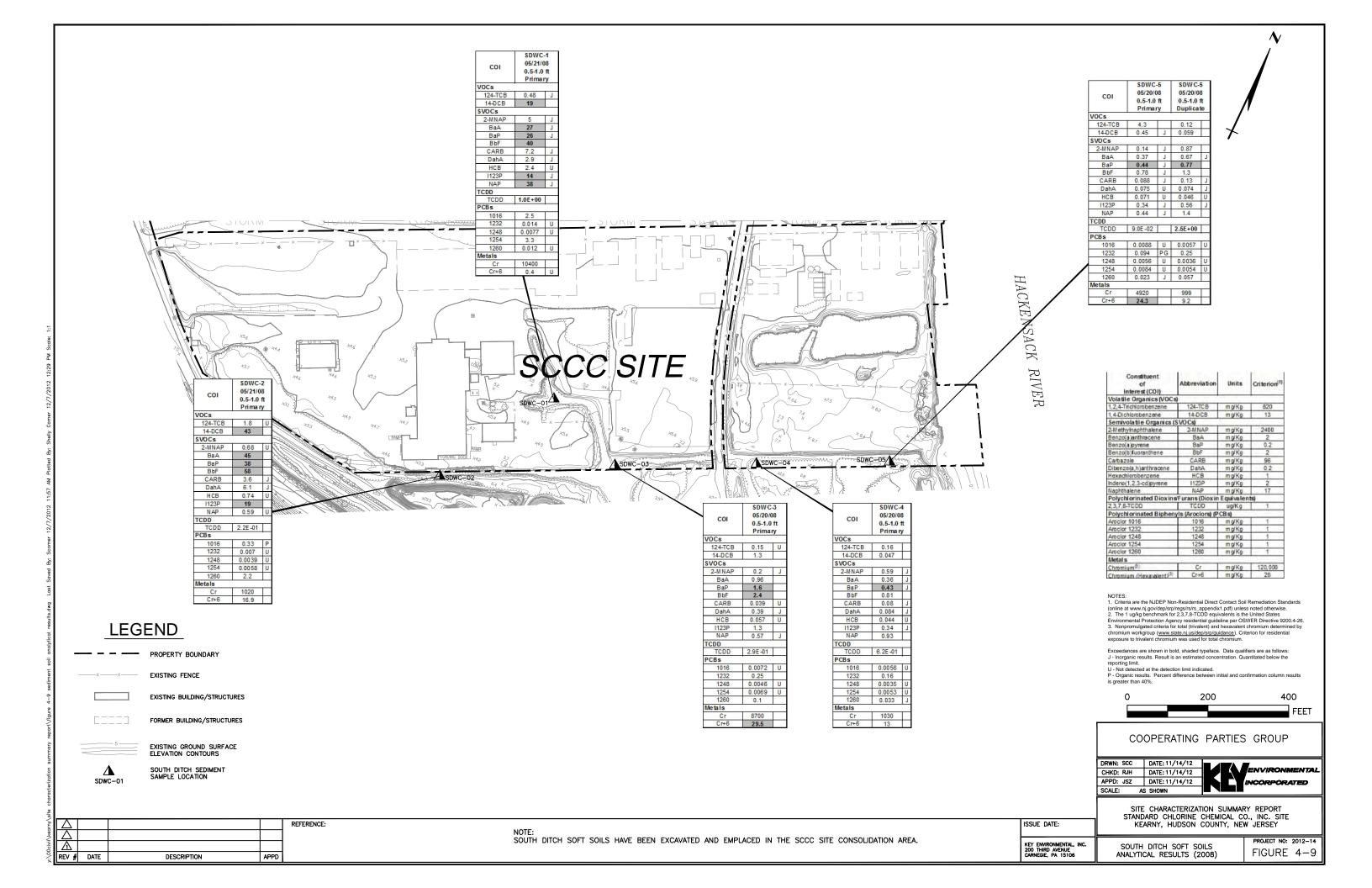












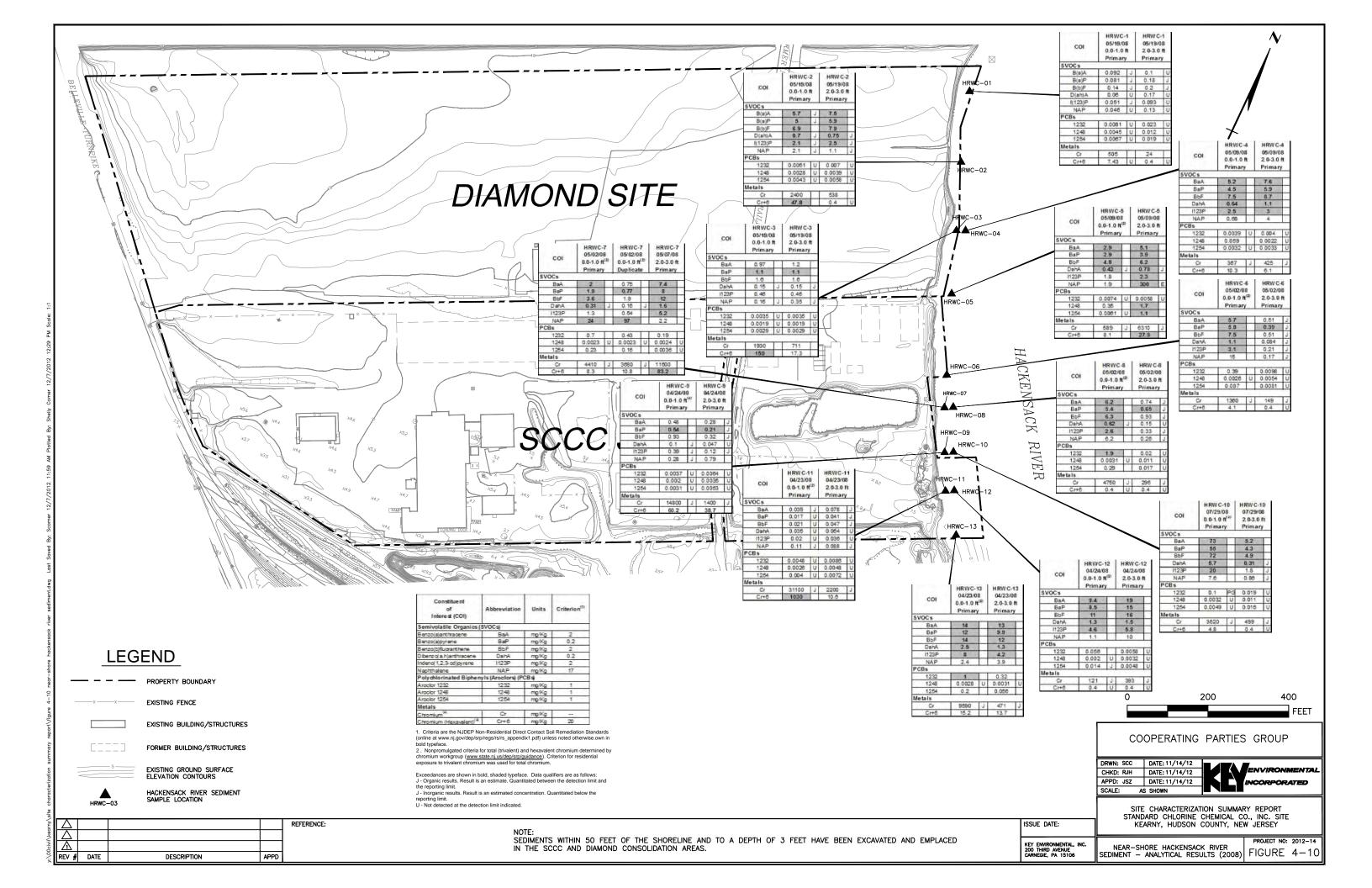


FIGURE 5-1

PRELIMINARY CONCEPTUAL SITE MODEL SCCC SITE - KEARNY, NEW JERSEY

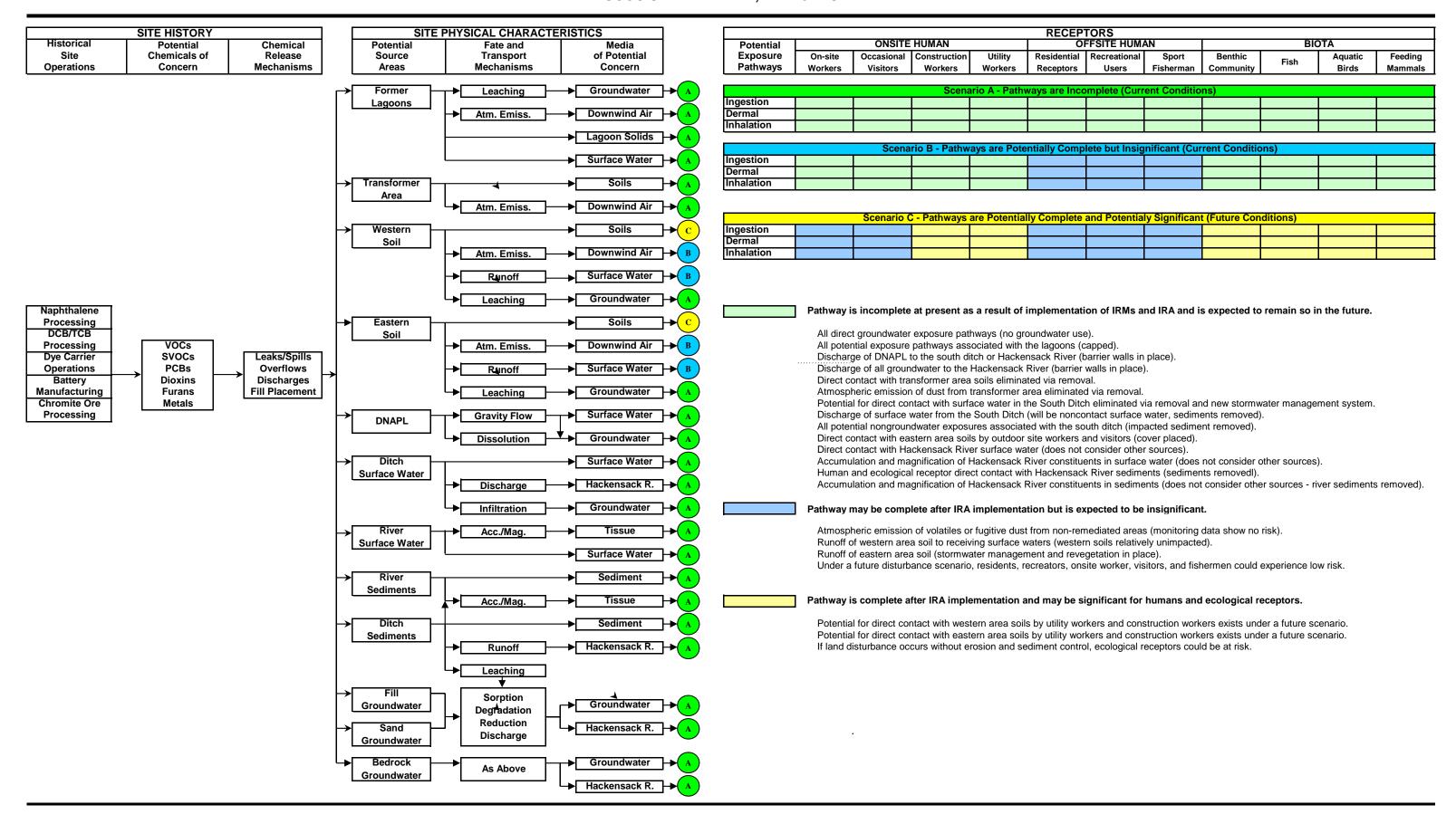
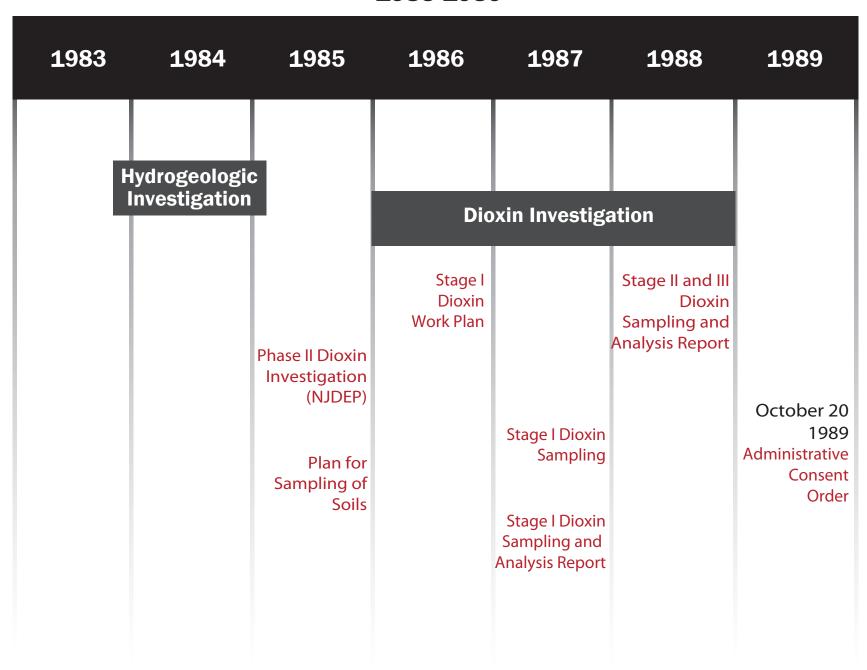
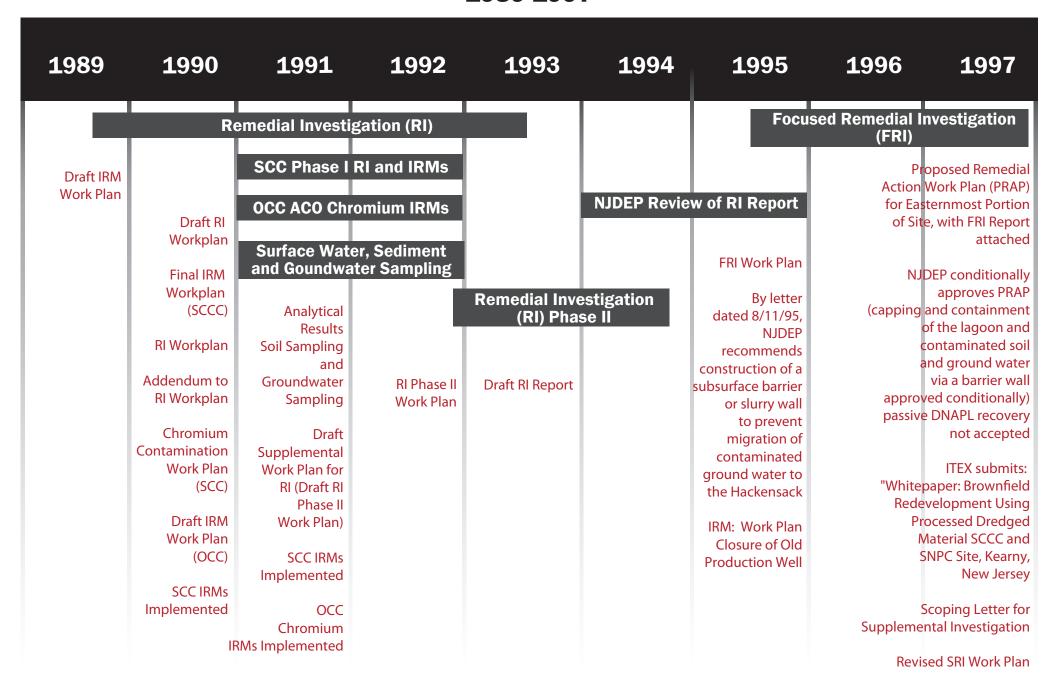




Table 2-1 SITE CHRONOLOGY 1983-1989

Table 2-1 SITE CHRONOLOGY 1989-1997

Table 2-1 SITE CHRONOLOGY 1998-2003

1998	1999	2000	2001	2002	2003
Supplemental Rem (SI Old production well sampled and closed	Additional SRI Sampling Supplemental RI Report Supplemental RI Report conditionally approved. Acquisition of additional field data must not delay preparation of the RASR and RAWP Conceptual Remedial Action Work Plan NJDEP issues comments on Conceptual RAWP - references need for "installation of the required hydraulic barrier along the perimeter of the site""to prevent further releases of DNAPL to the Hackensack River and sediments	Additional Soil and Sediment Sampling and Analysis Baseline Ecological Evaluation Work Plan for Characterization of Containerized Materials Containerized Materials inventoried, repacked, characterized and placed in secure onsite storage DGW IRM: Influent and effluent lnes from sanitary holding tanks sealed and NJPDES DSW permit inactivated Remedial Action Work Plan (November 2000 RAW) Northern Outfall IRM Work Plan Onyx Environmental Services provides notification that there are no available disposal options in the United States for organic-ntaminated asbestos waste	Additional sampling containerized materials Sediment Sampling Hackensack River Revised RAWP design and implementation schedule Addendum to November 2000 RAWP (May 2001 RAWP) RI Work Plan for SCC Site (OCC)	Additional surface water and sediment sampling (USEPA)	Sampling Report (USEPA) ASTDR Public Health Assessment Initiated Draft IRM Work Plan (May IRM WP) Revised IRM Work Plan (July IRM WP) Peninsula Restoration Group formed

Table 2-1 SITE CHRONOLOGY 2003-2005

2003	2004	2005
ATSDR Public Health Assessment	Peninsula Restoration Grou	up Activities, Submissions
	Interim Response Action Workplan	Asbestos Removal from Non-Process Buildings
	Asbestos/Lead Paint Survey Wetlands Delineation	RCRA Characterization of Demolition Debris
	Phase I Demolition Work Plan	Groundwater Model
	Pre-Design Investigation Workplan	
	Aerial Topographic Survey	
	Solidification Treatability Study Workplan	

Table 2-1 SITE CHRONOLOGY 2006-2009

2006	2007	2008	2009
	REGULATOR	Y ACTIVITIES	
NJDEP Comments 2004 IRAW NJDEP/EPA Comments AOC Request	Site Listed on NPL NJDEP Comments 2006 IRAW	IRAW Approval Waste Classification Letter Received	
	PRG ACT	TIVITIES	
Revised Draft IRAW AOC Policy Request Vault Discovery and SAP Vault Sampling/Analysis Vault Waste Classification Request AOC Policy Comment Response	IRAW Addendum (Response to NJDEP Comments)	Draft Phase II Supplemental RI Work Plan Containerized Material SAP IRAW Pre-Design Sampling/Analysis Groundwater Treatability Study 2nd Vault Waste Class. Request Removal/Disposal of Vault Contents Eng. Eval./Cost Analysis Submitted Final IRAW/Air Mon. Plan Submitted Cont. Material Sampling/Analysis Final Phase II Suppl. Work Plan South Ditch Probing Initiated	AOC Policy Submittal (Like vs. Like) Target Materials Waste Classification Forms Containerized Material Waste Classification Forms

Table 2-1 SITE CHRONOLOGY 2010-2012

2010 2011 2012

First Quarter

Response to IRAW Addendum Comments Response to Like vs. Like Comments Response to Phase I Cultural Survey Comments Track 1 (Bldg 16, 19, and 20) Sampling/Analysis

Second Quarter

IRA Design Completed
Construction Procurement Completed
Revised IRAW Addendum Submitted/Approved
Revised IRAW Air Monitoring Plan Submitted
Well Abandonment Plan Submitted/Approved
Building 16, 19, 20 WC Requests Submitted
Cathodic Protection Plan Submitted
Track 2 (Bldg 15, 17, 18, 21) Sampling/Analysis
Track 1 & Track 2 RA Work Plans Submitted
Phase I Archeological Survey on Waterfront
HCTS Footprint Surcharge Placed

Third Quarter

Preconstruction Permitting Completed
Track 1 & Track 2 RA Work Plan Comment Response
Track 1 Demolition Procurement Completed
Construction QA Plan Completed
Track 1 & Track 2 Building Dioxin/Furan Analysis
Cathodic Protection Plan Comment Response
Construction Contractor Mobilization
HCTS Building Embankment Constructed

Fourth Quarter

Steel Sheet Pile Wall Installation Initiated
HCTS Building Foundation Construction
PSEG Gas Line Decommissioning
Building Sealing (Removal Action) Completed
Lagoon Solidification Study Completed
Outlet Works Constructed
Track 1 Building Demolition
TCTS Placed in Operation
Revised Air Monitoring Plan Submitted

First Quarter

River Turbidity Curtain Installed HCTS Building Shell Constructed Transformer Pad Removal HC Well Installation Completed Consolidation Area Berm Constructed Steel Sheet Pile Wall Construction Western Lagoon Geogrid Installation Track 1 Building Demolition Completed Septic Tank Design Modification Letter Wetland Mitigation Design Modification Letter Lagoon Stabilization Design Modification Letter Initial Receptor Evaluation Form Submitted

Second Quarter

Offsite Smelting of Track 1 Building Scrap
Two Phases of Transformer Pad Soil Removal
Steel Sheet Pile Wall Waler Installation
Eastern Lagoon Stabilization and Geogrid Placement
Track 1 Building Demolition Report
Track 3 RA Work Plan Submitted

Third Quarter

S. Ditch Solidification/Excavation/Consolidation
S. Ditch Stormwater Piping/Catch Basins Placed
GW Conveyance Piping and Conduit Installed
River Sediment Excavation/Consolidation
Additional Transformer Pad Soil Removal
Slurry Wall Installation Complete

Fourth Quarter

Capillary Break Installation
Well Pump and Vault Installation
HCTS Treatment Plant Completed
TCTS Treatment Plant Shutdown
Hydrostatic Testing of Stormwater System
Final Consolidation Area Grading and Cover
In-place Closure of Septic Tanks
HC Monitoring Piezometer Installation
Final Backfill/Closure of Transformer Pad
Mulching/Seeding & Wetland Restoration
Slurry Wall Crossing Construction

First Quarter

Anode Well Installation Track 2 Building Demolition Complete Additional Capillary Break in Process Area Track 2 Demolition Report Submitted

Second Quarter

HCTS Shakedown/Startup
Final Seeding Completed
TCTS Residual Disposal
Track 3 Building Demolition
Cathodic Protection Startup
Track 2 and 3 Building Demolition Reports

Third Quarter

Wetland Mitigation Construction Completion Report HCTS Operation and Maintenance Hydraulic Control Monitoring DNAPL Recovery and Disposal

TABLE 4-1
ANALYTICAL RESULTS
SURFACE SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	SC-SS-01 0.0-0.5 ft	t	SC-SS-02 0.0-0.5 ft		SC-SS-0 0.0-0.5 f	it	SC-SS-04 0.0-0.5 ft		SC-SS-05 0.0-0.5 ft		SC-SS-06 0.0-0.5 ft		SC-SS-07 0.0-0.5 ft		SC-SS-08 0.0-0.5 ft		SC-SS-09 0.0-0.5 ft	SC-SS-1 0.0-0.5 f	it	SC-SS-11 0.0-0.5 ft
Semivolatile Organic Compounds			04/15/09	<u>, </u>	04/15/09		04/15/09		04/15/09	_	04/15/09		04/15/09		04/15/09		03/31/09		03/30/09	03/30/09	,	03/30/09
1.1'-Biphenyl	mg/Kg	34000	0.097	U	0.4	τl	0.021	U	0.17	ΤĪ	0.058	τ	0.099	ī	0.056	UI	0.056	ī	0.033 U	0.046	ΙŢΙ	0.09 U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.093	Ü		U	0.021	Ü	0.11	Ü	0.035 U	I	0.087	Ü	0.054	Ü	0.046	Ü	0.033 U	0.018	Ü	0.086 U
2.4.5-Trichlorophenol	mg/Kg	68000	0.052	Ü	0.17	U	0.011	Ü	0.00	U	0.000	IJ	0.049	U	0.03	Ü	0.026	Ü	0.018 U	0.01	Ü	0.049 U
2,4,6-Trichlorophenol	mg/Kg	74	0.032	U	0.111	U	0.023	U	0.000	U	0.00	IJ	0.098	U	0.061	Ü	0.052	U	0.036 U	0.021	U	0.049 U
2,4-Dichlorophenol	mg/Kg	2100	0.086	Ü	0.21	U	0.019	Ü	0.1	U	0.0.	IJ	0.08	U	0.05	Ü	0.043	Ü	0.03 U	0.017	Ü	0.08 U
2.4-Dimethylphenol	mg/Kg	14000	0.089	Ü	0117	J	0.019	Ü	0.000	J	0.053		0.083	U	0.052	Ü	0.044	Ü	0.031 U	0.017	U	0.51 J
2,4-Dinitrophenol	mg/Kg	1400	0.68	Ü	0177	U	0.15	Ü	*	U	0.000	IJ	0.64	U	0.032	Ü	0.34	U	0.031 U	0.13	U	0.63 U
2,4-Dinitrotoluene	mg/Kg	3	0.099	Ü		U	0.021	Ü	0.07	U	V V	U	0.093	U	0.058	Ü	0.049	Ü	0.034 U	0.02	U	0.092 U
2.6-Dinitrotoluene	mg/Kg	3	0.033	U	V	U	0.023	Ü		U		IJ	0.033	U	0.063	Ü	0.054	Ü	0.037 U	0.021	U	0.032 U
2-Chloronaphthalene	mg/Kg		0.057	Ü		U	0.023	U	0111	U	0.0.1	U	0.053	U	0.033	Ü	0.028	Ü	0.037 U	0.021	U	0.053 U
2-Chlorophenol	mg/Kg	2200	0.065	U	0.11	II	0.012	Ü	0.050	IJ		[]	0.061	U	0.038	U	0.028	U	0.022 U	0.011	U	0.061 U
2-Methylnaphthalene	mg/Kg	2400	0.003	J	1.3	\vdash	0.014	Ī	1.7	\dashv	0.023		0.001	J	0.038	J	0.032	J	0.022 C	0.013	+	0.001 C
2-Methylphenol	mg/Kg	3400	0.078	Ü		U	0.047	U	1.7	IJ	0.2	IJ	0.073	U	0.046	Ü	0.039	U	0.033 J 0.027 U	0.015	U	1.3 J
2-Nitroaniline	mg/Kg	23000	0.13	Ü	0.10	U	0.017	U	0.00	U	0.00	IJ	0.12	U	0.076	Ü	0.065	U	0.045 U	0.013	Ü	0.12 U
2-Nitrophenol	mg/Kg		0.081	Ü	0.20	U	0.028	U	0.1-0	U	0.045 U		0.075	U	0.047	Ü	0.003	Ü	0.043 U	0.020	Ü	0.075 U
3.3-Dichlorobenzidine	mg/Kg	4	0.4	Ü	0.120	U	0.017	U	0.00	U	0.00-	IJ	0.37	U	0.23	Ü	0.2	Ü	0.028 U	0.010	U	0.073 U
3-Nitroaniline	mg/Kg		0.069	Ü	0.0	U	0.015	Ü	0111	U	0.120	IJ	0.065	U	0.04	U	0.034	U	0.024 U	0.014	U	0.065 U
4.6-Dinitro-2-methylphenol	mg/Kg	68	2	U	011	U	0.44	Ü	0.071	U	0.020	IJ	1.9	U	1.2	Ü	1	U	0.024 U	0.4	U	1.9 U
4-Bromophenylphenyl ether	mg/Kg		0.09	Ü	111	U	0.019	Ü		U	0.77	U	0.084	U	0.052	Ü	0.045	Ü	0.031 U	0.018	Ü	0.084 U
4-Chloro-3-methylphenol	mg/Kg		0.063	U	0110	U	0.013	U		U		IJ	0.059	U	0.032	U	0.043	U	0.031 U	0.013	U	0.059 U
4-Chloroaniline	mg/Kg		0.066	Ü	0.13	U	0.014	Ü	0.00.	U	***	IJ	0.055	Ü	0.037	Ŭ	0.033	Ü	0.022 U	0.013	J	0.061 U
4-Chlorophenyl phenyl ether	mg/Kg		0.094	Ü	0.120	U	0.014	Ü	0.00.	U	0.00	U	0.087	U	0.055	Ü	0.033	Ü	0.023 U	0.042	Ü	0.087 U
4-Methylphenol	mg/Kg	340	0.093	U	0,	U	0.02	U		J	0.057	_	0.087	U	0.054	U	0.046	U	0.032 C	0.015	U	1.7 J
4-Nitroaniline	mg/Kg		0.073	U	0.17	U	0.022	U	0.0.	U	0.007	IJ	0.097	U	0.06	Ü	0.052	U	0.036 U	0.010	U	0.097 U
4-Nitrophenol	mg/Kg		1.2	U	0.21	U	0.022	Ü	0111	IJ	0.007	IJ	1.2	U	0.73	Ü	0.62	U	0.43 U	0.25	U	1.2 U
Acenaphthene	mg/Kg	37000	0.85	+ 0	0.84	Ī	0.045	J	3	-	0.38		0.064	U	0.12	J	0.082	Ī	0.43	0.25	+	0.47
Acenaphthylene	mg/Kg	300000	0.14	T	5.4	,	0.043	J	0.26	J	0.088	T	0.13	I	0.12	Ţ	0.062	3	0.17	0.15	+ +	0.37 0.33 J
Acetophenone	mg/Kg	5	0.098	U		H	0.043	U	00	IJ	0.000	[]	0.091	U	0.057	U	0.049	IJ	0.034 U	0.026	 	0.091 U
Anthracene	mg/Kg	30000	2	10	3.1		0.021	+ + +	2.9	Н	0.63		0.39	I	0.037	Ī	0.52	U	0.73	0.56	+ + +	0.83
Atrazine	mg/Kg	2400	0.1	U	U.1	IJ	0.022	U	0.1	ΙI	0.00	Ţ	0.094	Ü	0.058	U	0.05	II	0.035 U	0.02	IJ	0.094 U
Benzaldehyde	mg/Kg	68000	0.055	U	~	IJ	0.022	U	0.056	H	0.000	11	0.052	U	0.032	U	0.34	I	0.033 U	0.02	Ī	0.68 J
Benzo(a)anthracene	mg/Kg	2	1.033		4.5		0.012	10	22	4	3.4		0.052	U	0.032	U	2	J	2	1.1	+ -	4.7
Benzo(a)pyrene	mg/Kg	0.2	22		5.2	+	0.17	_	37	-	5.4		0.81	U	0.95	Н	2		1.5	1.1	-	7.5
Benzo(b)fluoranthene	mg/Kg	2	27		10	+	0.17		47	-	7.6		4		2.8	Н	2.6		1.3	1.2	_	7.6
Benzo(ghi)pervlene	mg/Kg	30000	17	1	6.4	+	0.42	_	34	-	4.7		1.6		1.3	Н	1 4		0.92	0.71	1	6.1
Benzo(k)fluoranthene	mg/Kg	23	0.088	U		IJ	0.019	U	ε.	IJ		IJ	0.082	U	0.051	U	1.4		0.71	0.71	+ +	2.5
Bis(2-chloroethoxy)methane	mg/Kg	<u> </u>	0.085	U	0.110	U	0.019	U		U	0.000	[]	0.082	U	0.051	U	0.042	U	0.029 U	0.017	U	0.079 U
Bis(2-chloroethyl)ether	mg/Kg	2	0.083	U	0117	U	0.018	U	0.00.	IJ	0.002	[]	0.075	U	0.03	U	0.042	U	0.029 U	0.0074	II	0.075 U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.18	U	0.075	U	0.008	Ī	0.050	IJ	0.01	U	1.6	I	0.022	Ī	0.018	I	1	0.0074	10	0.63 J
Butyl benzyl phthalate	mg/Kg mg/Kg	14000	0.18	IJ	0.50	U	0.26	IJ	0.10	U		IJ	0.14	IJ	0.91	IJ	0.17	IJ	0.051 U	0.86	Ť	0.63 J 0.14 IJ
Caprolactam	mg/Kg	340000	0.13	U	0.5	U	0.032	U	0.110	U	0.000	IJ	0.14	U	0.080	U	0.074	U	0.095 U	0.057	U	0.14 U
Carbazole	mg/Kg	96	1.5	+ 0	0.92		0.00	1	1.6	Ч	0.1		0.20	J	0.10	J	0.14	Ī	0.093 U	0.033	- 0	0.26
Chrysene	mg/Kg	230	1.5		3.8	+	0.097	+ +	1.0	\dashv	3.1	+	0.19	U	0.084	J	1.9	J	1.8	1 1	+	4.9
Dibenzo(a,h)anthracene	mg/Kg	0.2	4.8		1.3	+	0.16	J	8.8	\dashv	1.2		0.069	J	0.99		0.36		0.27	0.19	+	1.5
Dibenzofuran Dibenzofuran	mg/Kg		0.26	J		J	0.029	J		J	0.22	Т	0.25	J	0.29	J	0.36	J	0.075 J	0.19	J	0.24 J
Diethyl phthalate		550000	0.26	U		U		U		U		J U		U	0.11	J		U		0.17	J	
	mg/Kg		0.12	U		_	0.026			_		U	0.11			U	0.06 0.035				U	0.122
Dimethyl phthalate	mg/Kg	68000	0.071	U		U U	0.015	U		U		U U	0.067 0.11	U	0.042	U	0.035	U		0.014	_	
Di-n-butyl phthalate	mg/Kg		***-	U	*	U	0.025		***			IJ	****		0.00,	U	0.007	U	0.10.1-	0.055	J	
Di-n-octyl phthalate	mg/Kg	27000	0.055	U		U	0.012	U	0.000	U	0.000	U	0.051	U	0.032	U	0.027	U	0.019 U	0.017	J	0.051 U
Fluoranthene	mg/Kg	24000	17		5.7	T .	0.36	++	22	\dashv	4.2	+	2.1	TT	1.3	-	3.3	T	3.8	2.4	+	6.4
Fluorene	mg/Kg	24000	0.47		0.6	J	0.041	J	1.1		0.19		0.06	U	0.051	J	0.12	J	0.32	0.27		0.38 J

TABLE 4-1
ANALYTICAL RESULTS
SURFACE SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	SC-SS-02 0.0-0.5 ft 04/15/09	t	SC-SS-02 0.0-0.5 ft 04/15/09		SC-SS-03 0.0-0.5 ft 04/15/09	t	SC-SS-04 0.0-0.5 ft 04/15/09		SC-SS-05 0.0-0.5 ft 04/15/09		SC-SS-06 0.0-0.5 ft 04/15/09		SC-SS-07 0.0-0.5 ft 04/15/09		SC-SS-08 0.0-0.5 ft 03/31/09		SC-SS-09 0.0-0.5 ft 03/30/09		SC-SS-10 0.0-0.5 ft 03/30/09		SC-SS-11 0.0-0.5 ft 03/30/09
Semivolatile Organic Compounds (C	Continued)															•		•					
Hexachlorobenzene	mg/Kg	1	0.08	U	0.16	U	0.017	U	0.95			U	0.96		1.4		0.04	U		U	0.016	U	0.075 U
Hexachlorobutadiene	mg/Kg	25	0.09	U	0.18	U	0.019	U	0.092	U	0.034	U	0.084	U	0.052	U	0.045	U	0.031	U	0.018	U	0.084 U
Hexachlorocyclopentadiene	mg/Kg	110	0.081	U	0.16	U	0.017	U	0.082	U	0.03	U	0.075	U	0.047	U	0.04	U	0.028	U	0.016	U	0.075 U
Hexachloroethane	mg/Kg	140	0.072	U	0.14	U	0.015	U	0.073	U	0.027	U	0.067	U	0.042	U	0.036	U	0.025	U	0.014	U	0.067 U
ndeno(1,2,3-cd)pyrene	mg/Kg	2	15		6.6		0.31		27		3.9		1.9		1.4		1.2		0.75		0.55	П	4.9
sophorone	mg/Kg	2000	0.083	U	0.17	U	0.018	U	0.084	U	0.031	U	0.077	U	0.048	U	0.041	U	0.028	U	0.016	U	0.077 U
Naphthalene	mg/Kg	17	1.4		3.4		0.11		10		1.1		16		6.3		0.5		0.13	J	0.41	П	0.67
Vitrobenzene	mg/Kg	340	0.11	U	0.21	U	0.023	U	0.11	U	0.04	U	0.1	U	0.062	U	0.053	U	0.037	U	0.021	U	0.099 I
N-Nitrosodiphenylamine	mg/Kg	390	0.087	U	0.17	U	0.019	U	0.089	U	0.033	U	0.081	U	0.051	U	0.043	U	0.03	U	0.017	U	0.081 U
N-Nitrosodipropylamine	mg/Kg	0.3	0.12	U	0.24	U	0.025	U	0.12	Ū	0.044	U	0.11	U	0.068	U	0.058	Ū	0.041	Ü	0.023	U	0.11 U
Pentachlorophenol	mg/Kg	10	0.37	U	0.74	U	0.079	U		Ū		U	0.34	U	0.21	U	0.81	J		U	0.073	U	0.34 I
Phenanthrene	mg/Kg	300000	6.9		4.1	Ĭ	0.25		12	Ť	2.	Ť	3	Ť	0.77	Ť	1.2	Ť	2.7	Ť	1.5	Ť	2.8
Phenol	mg/Kg	210000	0.084	U		IJ	0.018	U		П	0.032	U	0.079	U	0.049	IJ	0.042	IJ	=	Ţ	0.017	U	8.6
Pyrene	mg/Kg	18000	15	Ť	4.2		0.29	1	26	Ť	4.3		1.9	Ĭ	1.2	Ŭ	2.6	Ĭ	3.7		1.8	ľ	5.3
Polychlorinated Dioxins and Furans		10000	13		1.2		0.27		20		1.3	_	1.2		1,2		2.0		3.7		1.0		3.3
2,3,4,6,7,8-HpCDF	ug/Kg							T		Т		T		П			0.92		0.03	O L	0.057	П	7.9
1,2,3,4,6,7,8-HpCDD	ug/Kg ug/Kg					\vdash		1 +		+		-		\vdash		\vdash	0.92	\Box	0.032	* 	0.037	+ +	0.25
1,2,3,7,8,9-HxCDF	ug/Kg ug/Kg			+		+		1 +		+		+		\vdash		\vdash	0.00054	ΟJ	0.00-	U	0.012	U	0.0035 C
1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	ug/Kg ug/Kg			+		\vdash		1 1		\dashv		-		\vdash		\vdash	0.00034	ΔJ		OJ	0.0003	Ī	0.0033
1,2,3,4,7,8,9-HPCDF	ug/Kg ug/Kg			+				+		\dashv							0.023		0.00090	23	0.0017	┵	2.5
1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDD	ug/Kg ug/Kg		<u></u>	+		$\vdash\vdash$		+		+		+		├	<u></u>	\vdash	0.24	J		QJ	0.0063	U	0.0053
1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF	ug/Kg ug/Kg			+		\vdash		1 +		+				⊢		\vdash	0.002	O		Ol Ol	0.0063	OJ	0.0055
				_		-		+ +		+				\vdash			0.00	ΙŸ		Ž1		Ol	O =
,2,3,6,7,8-HxCDD	ug/Kg			-						-		_		\vdash		\vdash	0.0055	J	0.0011	J		_	0.022
,2,3,7,8,9-HxCDD	ug/Kg					-		+		+		-		┢			0.0039	QJ	0.00071	J	0.00079	J	0.01
,2,3,7,8-PeCDF	ug/Kg									_		_					0.0083	ΩŢ	0.005	J		QJ	0.037
,2,3,7,8-PeCDD	ug/Kg									4				\vdash			0.0039	QJ	0.000	<u>Ų</u>	0.0063	U	0.0064 C
2,3,4,6,7,8-HxCDF	ug/Kg									_		_		\vdash		\vdash	0.015					QJ	0.12
2,3,4,7,8-TCDD	ug/Kg			\perp						4				\sqcup			0.023	Q		ΟJ		QJ	0.2
2,3,7,8-TCDF	ug/Kg									4							0.023	Q	0.007	Q		Q	0.051
2,3,7,8-TCDD	ug/Kg									4							0.00099	QJ	0.00-	U	0.0013	U	0.034
OCDF	ug/Kg									4							1.6		0.039		0.08	1_1	11
OCDD	ug/Kg																0.98	В		В	0.12	В	5.7 I
Total HpCDD	ug/Kg																0.22		0.062		0.027	ш	0.55
Total HpCDF	ug/Kg																1		0.0.	Q	0.066		9
Total HxCDD	ug/Kg																0.063	Q	0.0087 J	ſQ	0.0074	JQ	0.16
Total HxCDF	ug/Kg												-				0.61	Q	0.024	Q	0.04	Q	5.8
Total PeCDD	ug/Kg																0.05	Q	0.00079	ΟJ	0.001	QJ	0.15
Total PeCDF	ug/Kg																0.37	Q	0.022 J	ſQ	0.02	QJ	2.5
Fotal TCDD	ug/Kg																0.035	0	0.00051	ЭJ	0.0019	0	0.15
Total TCDF	ug/Kg																0.24	Q	0.03	Q	0.013	Q	1 4
Polychlorinated Dioxins/Furans		·		•					•							•			•	•			
.2.3.4.6.7.8-HpCDD	0.01																9.2E-03				5.7E-04	П	7.9E-02
.2.3.4.6.7.8-HpCDF	0.01																1.0E-03		3.2E-04		1.2E-04		2.5E-03
2.3.4.7.8.9-HpCDF	0.01									7													
.2.3.4.7.8-HxCDD	0.01									7							2.3E-03				1.7E-04	T	2.9E-02
.2.3.4.7.8-HxCDF	0.10									_		_		H			2.4E-02	H	7.7E-04	_	1.5E-03	\vdash	2.915-02
.2.3.6.7.8-HxCDD	0.10					$\vdash \vdash$		1 1		\dashv		+		\vdash			2.4E-02 2.0E-04	H	/./E-U4	\dashv	1.3E-U3	+	5.3E-04
.2.3.6.7.8-HXCDF	0.10					\vdash		1 +		\dashv		-		\vdash		\vdash	4.UE-U4	\Box		+		+	J.JE-V4
.2.3.7.8.9-HxCDF	0.10			+		\vdash		1 1		+		-		\vdash		\vdash	5.5E-04	\vdash	 1.1E-04	+		+ +	2.2E-03
.2.3.7.8.9-HXCDD .2.3.7.8.9-HxCDF	0.10			+		\vdash				+		-		\vdash		\vdash	.))E-U4	H	7.1E-04 7.1E-05	\dashv	7.9E-05	+ +	1.0E-03
.2.3.7.8-9-HxCDF .2.3.7.8-PCDD	1.00			+		\vdash		+ +		+		+		$\vdash \vdash$		\vdash	8.3E-03	╁	7.1E-05 3.0E-03	\dashv		+	3.7E-02
						\vdash		+ +		+	1	+		\vdash		\vdash	8.3E-U3	\vdash	3.UE-U3	+		+	5.7E-UZ
.2.3.7.8-PCDF	0.05			+		\vdash		1 +		+		+		┝		\vdash	1 5E 02	\vdash	 1 1E 04	+		+	1 OF 02
.3.4.6.7.8-HxCDF	0.10			+		\vdash		1		+				\vdash		\vdash	1.5E-03	\vdash	1.1E-04	+		+	1.2E-02
.3.4.7.8-PCDF	0.50			+		\vdash		\vdash		+		-		$\vdash \vdash$		₩		$\vdash\vdash$		+		+	
.3.7.8-TCDD	1.00			+		$\vdash \vdash$		1		-		-		$\vdash \vdash$		₩		\vdash		+		+	
.3.7.8-TCDF	0.10					\vdash		+		_				$\vdash \vdash$		\vdash		\sqcup		_		\vdash	3.4E-03
OCDD	0.0001			\perp		igspace				_				$\vdash \vdash$		╙	1.6E-04	Ш	3.9E-06		8.0E-06	\vdash	1.1E-03
OCDF	0.0001					oxdot		$\bot \bot$		_				Ш		ш	9.8E-05	\sqcup	3.3E-05	\bot	1.2E-05	\sqcup	5.7E-04
Cotal 2,3,7,8-TCDD Equivalents (3)	ug/Kg					. 1								. 1			4.73E-02	1	4.42E-03		2.46E-03		1.68E-01

TABLE 4-1 ANALYTICAL RESULTS SURFACE SOIL SAMPLES STANDARD CHLORINE SITE KEARNY, NEW JERSEY

			SC-SS-01	1	SC-SS-02	2	SC-SS-0	3	SC-SS-0	4	SC-SS-05		SC-SS-0	6	SC-SS-0	7	SC-SS-0	8	SC-SS-0	9	SC-SS-1	0	SC-SS-11	
Constituent	Units	Criterion ⁽¹⁾	0.0-0.5 ft	t	0.0-0.5 ft	t	0.0-0.5 f	it	0.0-0.5 f	t	0.0-0.5 ft		0.0-0.5 f	t	0.0-0.5 f	it	0.0-0.5 f	t	0.0-0.5 f		0.0-0.5 f	t	0.0-0.5 ft	
			04/15/09)	04/15/09	1	04/15/09	9	04/15/09)	04/15/09		04/15/09)	04/15/09	9	03/31/09)	03/30/09)	03/30/09)	03/30/09	
Polychlorinated Biphenyls																								
Aroclor 1016	mg/Kg	1	0.0031	U	0.0032	U	0.0034	U	0.0032	U	0.003	U	0.003	U	0.0031	U	0.0039	U	0.0027	U	0.0031	U	0.0074	J
Aroclor 1221	mg/Kg	1	0.004	U	0.0041	U	0.0043	U	0.0041	U	0.0038	U	0.0038	U	0.0039	U	0.005	U	0.0035	U	0.004	U	0.0095 1	U
Aroclor 1232	mg/Kg	1	0.0036	U	0.0036	U	0.0039	U	0.0037	U	0.0034	U	0.0034	U	0.0035	U	0.0045	U	0.0031	U	0.0035	U	0.0085 1	J
Aroclor 1242	mg/Kg	1	0.0034	U	0.0035	U	0.0037	U	0.0035	U	0.0033	U	0.0032	U	0.0033	U	0.0043	U	0.071		0.08		0.28	
Aroclor 1248	mg/Kg	1	0.31		1.1		0.1		2.5		0.0019	U	1.1		0.0019	U	0.0025	U	0.0017	U	0.002	U	0.0047	J
Aroclor 1254	mg/Kg	1	0.13		0.44		0.042	PG	1		0.068		0.32	PG	0.22	PG	0.13		0.067		0.16		0.3	
Aroclor 1260	mg/Kg	1	0.003	U	0.003	U	0.0032	U	0.0031	U	0.0028	U	0.0028	U	0.0029	U	0.15		0.037		0.1		0.2	
Aroclor 1262	mg/Kg	1	0.0046	U	0.0047	U	0.005	U	0.0047	U	0.0044	U	0.0043	U	0.0045	U	0.0058	U	0.004	U	0.0045	U	0.011 U	U
Aroclor 1268	mg/Kg	1	0.041	PG	0.17		0.0029	U	0.0028	U	0.0026	U	0.46		0.45		0.0034	U	0.0023	U	0.0027	U	0.0064	J
Miscellaneous	,																							
Percent Solids			78.7		78.4		73.1		76.1		83.3		83.1		81.2		63.4		91.4		79.6		33.5	╝

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise.
- Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:
 U Not detected at the reporting limit indicated.

 - B Analyte detected in associated method blank
 - J Result is an estimate. Quantitated between the detection limit and the reporting limit.
 - Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration.

TABLE 4-2

ANALYTICAL RESULTS

CHROMIUM BORINGS (1)

STANDARD CHLORINE SITE

KEARNY, NEW JERSEY

Constituent (1)	Units	Criterion ⁽²⁾	CR-8/CR-8 03/30/09 06/11/09 0.0-0.5 0.0-0.5	•	CR-8/CR-03/30/09 06/11/09 6.5-7.0 6.3-6.8)	CR-8/CR-8 03/30/09 06/11/09 9.0-9.5 8.8-9.3	8R	CR-9/CR-9 03/30/09 06/11/09 0.0-0.5 2.3-2.8)	CR-9/9R 03/30/09 06/11/09 5.0-5.5 7.3-7.8		CR-9/9R 03/30/09 06/11/09 8.0-9.5 10.8-11.3)	CR-10/10R 03/30/09 06/11/09 0.0-0.5 1.5-2.0	CR-10/10R 03/30/09 06/11/09 2.5-3.0 4.0-4.5	CR-10/10R 03/30/09 06/11/09 9.0-9.5 10.5-11.0	CR-11/11R 03/30/09 06/11/09 0.0-0.5 4.5-5.0	CR-11/11R 03/30/09 06/11/09 1.5-2.0 6.0-6.5	CR-11/11R 03/31/09 06/11/09 4.5-5.0 9.0-9.5
Chromium	mg/kg	120000	214		497		1320		153		57.2		2230		1410	7980	1100	38.1	424	488
Chromium (Hexavalent)	mg/kg	20	2.8	U	2.5	U	6.4	U	2.3	U	2.4	U	5.3	U	495	238	5.2 U	2.4 U	3.9 U	9 I
Hydronium Ion (pH)	SU		7.35		8.39		6.39		7.81		7.96		6.18		9.09	9.22	8.03	7.76	7.25	5.11
Oxidation Reduction Potential	mV		510		395		352		408		304		272		291	298	265	235	120	298

Constituent	Units	Criterion ⁽²⁾	CR-12/12R 03/31/09 0.0-0.5	CR-12/12 04/01/09 06/11/09 3.5-4.0 3.5-4.0		CR-13/13 03/30/09 06/11/09 0.0-0.5 3.5-4.0	١	CR-13/13R 03/30/09 06/11/09 7.5-8.0 11.0-11.5	2	CR-14/14I 04/01/09 06/11/09 0.0-0.5 5.6-6.0	R	CR-14/14 04/01/09 06/11/09 3.5-4.0 9.0-9.5)	CR-15/15 04/01/09 06/11/09 0.0-0.5 1.4-1.9		CR-15/15R 04/01/09 06/11/09 4.5-5.0 5.9-6.4		CR-16/16R 04/01/09 06/11/09 0.0-0.5 1.5-2.0		CR-16/16F 04/01/09 06/11/09 2.5-3.0 3.0-3.5		CR-16/16/ 04/01/09 06/11/09 8.5-9.0 9.0-9.5	R	CR-17/17R 04/01/09 06/12/09 0.0-0.5 3.4-3.9	₹	CR-17/17I 04/01/09 06/12/09 2.0-2.5 5.4-5.9	
Chromium	mg/kg		598	90.3		2420		802		162		132		22.3		45.7		33		3		30.9		1360		105	
Chromium (Hexavalent)	mg/kg	20		5.3	U	5.6	U	5.3	U	4.2	U	8.7	U	3.3	U	9.5 L	J	2.5 U	J	3	U	8.7	U	4.5	U	12.9	U
Hydronium Ion (pH)	SU			8.24		11.5		7.26		11.6		7.47		10.5		7.56		12.5		8.79		7.05		7.25		7.4	
Oxidation Reduction Potential	mV			223		52		184		132		168		179		228		91		370		280		217		412	

Constituent	Units	Criterion ⁽²⁾	CR-18/18 04/02/09 06/12/09 0.0-0.5 3.0-3.5)	CR-18/18 04/02/09 06/12/09 3.0-3.5 6.0-6.5)	CR-19/19 04/02/09 06/12/09 0.0-0.5 6.2-6.7	R	CR-19/19 04/02/09 06/12/09 2.0-2.5 8.2-8.7	R	CR-20/20 04/02/09 06/12/09 0.0-0.5 3.8-4.3)	CR-20/201 04/02/09 06/12/09 2.6-3.1 6.4-6.9	R	CR-21/21R 04/02/09 06/12/09 0.0-0.5 3.3-3.8	04	3-21/21R 4/02/09 5/12/09 3.5-4.0 5.8-7.3		CR-22/22R 04/01/09 06/10/09 0.0-0.5 6.9-7.4		CR-22/22R 04/02/09 06/10/09 3.0-3.5 9.9-10.4	CR-23/23R 04/01/09 06/10/09 0.0-0.5 8.0-8.5	CR-23/23R 04/01/09 06/10/09 2.0-2.5 10.0-10.5
Chromium	mg/kg		217		416		395		366		526		1100		26.1	(592		96.6		42.1	246	6120
Chromium (Hexavalent)	mg/kg	20	4.4	U	7.7	U	5.8	U	6.1	U	3.1	U	13.8	U	2.5 U	J 1	3.8	U	3.1 U	U	10.1 U	5	5.7 U
Hydronium Ion (pH)	SU		9.97		7.28		10.1		6.16		7.4		5.37		7.93	4	.33		8.6		6.59	8.42	6.94
Oxidation Reduction Potential	mV		117		187		-87		291		290		354		316	4	136		472		475	429	323

Constituent	Units	Criterion ⁽²⁾	CR-24/24R 03/31/09 06/10/09 0.0-0.5 7.5-8.0	CR-24/24R 03/31/09 06/10/09 2.5-3.0 10.0-10.5	CR-24/24R 03/31/09 06/10/09 6.5-7.0 14.0-14.5	CR-25/25R 04/01/09 06/10/09 0.0-0.5 5.1-5.6	CR-25/25R 04/01/09 06/10/09 1.0-1.5 6.0-6.5	CR-25/25R 04/01/09 06/10/09 5.0-5.5 10.1-10.6	CR-26/26R 03/31/09 06/10/09 0.0-0.5 5.2-5.7	CR-26/26R 03/31/09 06/10/09 4.0-4.5 9.2-9.7	CR-26/26R 03/31/09 06/11/09 6.5-7.0 11.7-12.2	CR-27/27R 03/31/09 06/11/09 0.0-0.5 7.1-7.6	CR-27/27R 03/31/09 06/11/09 1.0-1.5 8.1-8.6	CR-27/27R 03/31/09 06/11/09 2.5-3.0 9.6-10.6
Chromium	mg/kg		5290	6180	6170	2040	41.4	27.3	1150	1590	9560	121	52.9	23200
Chromium (Hexavalent)	mg/kg	20	121	173	21.3	2.7 U	2.8 U	11.5 U	2.8 U	3.5 U	7.4 U	2.8 U	2.7 U	5.8 U
Hydronium Ion (pH)	SU		10.2	11.4	10.1	8.42	7.41	6.58	7.92	8.68	8.44	7.34	7.87	7.79
Oxidation Reduction Potential	mV		307	260	268	103	191	158	211	210	377	394	362	164

Notes:

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

^{1.} Samples for hexavalent chromium analysis were recollected and analyzed after completion of data validation on the initial samples was completed.

PDM fill had been placed during the interim and consequently differences in depths between the June and March samples are evident. The June depths correspond to the pre-fill March depths.

^{2.} Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

			D-1		D-2		D-3		D-4		D-4		D-5		D-6		D-6		D-6		D-7		D-7)-8		D-9	
Constituent	Units	Criterion ⁽¹⁾	04/07/09		04/07/09		04/10/09		04/09/09		04/09/09		04/09/09		04/08/09		04/08/09		04/08/09		04/08/09		04/08/09		13/09		04/13/0	
			18-18.5		20-20.5		19.5-20		14.5-15		23.5-24		25.5-26		15.5-16	5	20-20.5		20-20.5		14.8-15.3	3	18-18.5	29-	-29.5		22-22.	<u>5</u>
Volatile Organic Compounds								,		,																		
1,1,1-Trichloroethane	mg/Kg	4200	0.06	U	0.062	U	0.0006	U	57	U	0.00067 U		0.067	U	0.058	U	0.00062 U	C	0.0007	U	0.055	U	0.0007 U	0.000)63	U	0.00058	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.054	U	0.056	U	0.00089	U	51	U		_	0.06	U	0.052	U	0.00091 U	•	0.001	U	0.05	U	0.001 U	0.000		U	0.00085	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.019	U	0.02	U	0.0013	U	18	U	0.0015 U		0.021	U	0.018	U	0.0014 U	C	0.0015	U	0.018	U	0.0015 U	0.00		U	0.0013	U
1,1,2-Trichloroethane	mg/Kg	6	0.068	U	0.07	U	0.001	U	64	U	0.0011 U		0.075	U	0.065	U	0.0011 U	_ `	0.0012	U	0.062	U	0.0012 U	0.00	11	U	0.00099	U
1,1-Dichloroethane	mg/Kg	24	0.059	U	0.061	U	0.00071	U	56	U	0.00079 U	_	0.065	U	0.057	U	0.00073 U	0.	.00083	U	0.054	U	0.00082 U	0.000)75	U	0.00068	U
1,1-Dichloroethene	mg/Kg	150	0.062	U	0.064	U	0.001	U	59	U	0.0012 U		0.069	U	0.06	U	0.0011 U	C	0.0012	U	0.057	U	0.0012 U	0.00	11	U	0.001	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.028	J	0.023	U	0.0011	U	56	J	0.0012 U		0.028	J	0.049	J	0.0011 U		0.0013	U	0.02	U	0.0013 U	0.00	12	U	0.001	U
1,2-Dibromoethane	mg/Kg	0.04	0.036	U	0.037	U	0.0011	U	34	U	0.0012 U		0.04	U	0.034	U	0.0011 U	0	0.0012	U	0.033	U	0.0012 U	0.00	11	U	0.001	U
1,2-Dichlorobenzene	mg/Kg	59000	1.3		0.53		0.00099	U	3700		0.0011 U		0.36		2.9		0.001 U	0	0.0011	U	0.64		0.0011 U	0.00)1	U	0.00095	U
1,2-Dichloroethane	mg/Kg	3	0.056	U	0.058	U	0.00076	U	53	U	0.00084 U		0.062	U	0.054	U	0.00078 U	0.	.00088	U	0.051	U	0.00088 U	0.00	08	U	0.00073	U
1,2-Dichloropropane	mg/Kg	5	0.074	U	0.077	U	0.00067	U	70	U	0.00074 U		0.082	U	0.071	U	0.00069 U	0.	.00078	U	0.068	U	0.00078 U	0.000)71	U	0.00064	U
1,3-Dichlorobenzene	mg/Kg	59000	1.2		0.39		0.00081	U	4200		0.0009 U		0.36		3.6		0.00083 U	0.	.00094	U	0.62		0.00094 U	0.000	086	U	0.00078	U
1,4-Dichlorobenzene	mg/Kg	13	1.8		0.57		0.00079	U	5200		0.00087 U		0.46		4.5	\Box	0.00081 U	0.	.00092	U	0.9		0.00091 U	0.000	083	U	0.00076	U
2-Butanone	mg/Kg	44000	0.063	U	0.065	U	0.0011	U	60	U	0.0012 U		0.07	U	0.061	U	0.0011 U		0.0013	U	0.058	U	0.0013 U	0.00		U	0.001	U
2-Hexanone	mg/Kg		0.033	U	0.034	U	0.00085	U	31	U	0.00095 U	_	0.037	Ū	0.032	Ū	0.00087 U	0.	.00099	U	0.031	U	0.00099 U	0.00	09	U	0.00082	U
4-Methyl-2-pentanone	mg/Kg		0.034	U	0.036	U	0.00081	U	33	U	0.00089 U	_	0.038	Ū	0.033	Ū	0.00083 U	0.	.00094	U	0.032	U	0.00093 U	0.000)85	U	0.00077	U
Acetone	mg/Kg		0.29	U	0.3	U	0.0062	U	280	U	0.007 J		0.32	U	0.28	U	0.0063 U	C	0.0072	U	0.27	U	0.0072 U	0.00	65	U	0.0059	U
Benzene	mg/Kg	5	0.058	U	0.15	J	0.00083	U	54	U	0.00092 U		0.064	U	0.055	U	0.00085 U	0.	.00097	U	0.053	U	0.00097 U	0.000	880	U	0.0008	U
Bromodichloromethane	mg/Kg	3	0.054	U	0.056	U	0.00069	U	51	U	0.00077 U		0.06	U	0.052	U	0.00071 U	0.	.00081	U	0.05	U	0.0008 U	0.000)73	U	0.00067	U
Bromoform	mg/Kg	280	0.062	U	0.064	U	0.00055	U	59	U	0.00061 U		0.069	U	0.06	U	0.00056 U	0.	.00064	U	0.057	U	0.00063 U	0.000)58	U	0.00052	U
Bromomethane	mg/Kg	59	0.092	U	0.095	U	0.00091	U	87	U	0.001 U		0.1	U	0.088	U	0.00094 U	0	0.0011	U	0.084	U	0.0011 U	0.000)96	U	0.00088	U
Carbon disulfide	mg/Kg	110000	0.062	U	0.065	U	0.00063	U	59	U	0.0007 U		0.069	U	0.06	U	0.00065 U	0.	.00074	U	0.058	U	0.00073 U	0.000)67	U	0.00061	U
Carbon Tetrachloride	mg/Kg	2	0.063	U	0.065	U	0.00055	U	60	U	0.00061 U		0.07	U	0.061	U	0.00057 U	0.	.00064	U	0.058	U	0.00064 U	0.000)58	U	0.00053	U
Chlorobenzene	mg/Kg	7400	0.17	J	0.43		0.00094	U	51	J	0.001 U		0.034	U	0.13	J	0.00096 U	0	0.0011	U	0.05	J	0.0011 U	0.000)99	U	0.0009	U
Chloroethane	mg/Kg	1100	0.043	U	0.045	U	0.0019	U	41	U	0.0021 U		0.048	U	0.042	U	0.002 U	0	0.0022	U	0.04	U	0.0022 U	0.00)2	U	0.0018	U
Chloroform	mg/Kg	2	0.059	U	0.061	U	0.00072	U	55	U	0.0008 U		0.065	U	0.056	U	0.00074 U	0.	.00084	U	0.054	U	0.00084 U	0.000)76	U	0.00069	U
Chloromethane	mg/Kg	12	0.081	U	0.084	U	0.0011	U	77	U	0.0012 U		0.09	U	0.078	U	0.0011 U	0	0.0012	U	0.075	U	0.0012 U	0.00	11	U	0.001	U
cis-1,2-Dichloroethene	mg/Kg	560	0.039	U	0.04	U	0.00087	U	37	U	0.00096 U		0.043	U	0.037	U	0.00089 U	. (0.001	U	0.036	U	0.001 U	0.000)92	U	0.00083	U
cis-1,3-Dichloropropene	mg/Kg	7	0.042	U	0.044	U	0.00084	U	40	U	0.00093 U		0.047	U	0.041	U	0.00086 U	0.	.00097	U	0.039	U	0.00097 U	0.000)88	U	0.0008	U
Cyclohexane	mg/Kg		0.035	U	0.036	U	0.00046	U	33	U	0.00051 U		0.039	U	0.033	U	0.00047 U	0.	.00053	U	0.032	U	0.00053 U	0.000)48	U	0.00044	U
Dibromochloromethane	mg/Kg	8	0.02	U	0.021	U	0.00093	U	19	U	0.001 U		0.023	U	0.02	U	0.00095 U	0	0.0011	U	0.019	U	0.0011 U	0.000)98	U	0.00089	U
Dibromochloropropane	mg/Kg		0.038	U	0.039	U	0.00088	U	36	U	0.00097 U		0.042	U	0.036	U	0.0009 U		0.001	U	0.035	U	0.001 U	0.000)93	U	0.00084	U
Dichlorodifluoromethane	mg/Kg	230000	0.037	U	0.038	U	0.00082	U	35	U	0.00091 U		0.041	U	0.035	U	0.00084 U	0.	.00096	U	0.034	U	0.00095 U	0.000)87	U	0.00079	U
Ethylbenzene	mg/Kg	110000	0.036	U	0.037	U	0.00079	U	34	U			0.04	U	0.035	U	0.00081 U	0.	.00092	U	0.033	U	0.00092 U	0.000)84	U	0.00076	U
Isopropylbenzene	mg/Kg		0.031	U	0.032	U	0.00084	U	29	U	0.00093 U		0.034	U	0.03	U	0.00086 U	0.	.00098	U	0.028	U	0.00097 U	0.000)89	U	0.00081	U
Methyl Acetate	mg/Kg		0.071	U	0.074	U	0.0011	U	68	U	0.0012 U		0.079	U	0.069	U	0.0011 U	0	0.0013	U	0.066	U	0.0013 U	0.00	12	U	0.0011	U
Methylcyclohexane	mg/Kg		0.032	U	0.034	U	0.0009	U	31	U	0.00099 U		0.036	U	0.031	U	0.00092 U		0.001	U	0.03	U	0.001 U	0.000)95	U	0.00086	U
Methylene chloride	mg/Kg	97	0.091	J	0.066	U	0.00083	U	60	U	0.00092 U		0.07	U	0.061	U	0.00085 U	0.	.00097	U	0.058	U	0.00096 U	0.00	16	JB	0.0008	U
Methyltert-butylether	mg/Kg	320	0.06	U	0.062	U	0.00092	U	56	U	0.001 U		0.066	U	0.057	U	0.00095 U	0	0.0011	U	0.055	U	0.0011 U	0.000)98	U	0.00089	U
Styrene	mg/Kg	260	0.037	U	0.039	U	0.00087	U	35	U	0.00097 U		0.041	U	0.036	U	0.00089 U		0.001	U	0.034	U	0.001 U	0.000)92	U	0.00084	U
Tetrachloroethene	mg/Kg	5	0.048	U	0.05	U	0.00084	U	45	U	0.00093 U		0.053	U	0.046	U	0.00086 U	0.	.00098	U	0.044	U	0.00097 U	0.000)89	U	0.00081	U
Toluene	mg/Kg	91000	0.049	U	0.051	U	0.0009	U	47	U	0.001 U		0.055	U	0.047	U	0.00092 U		0.001	U	0.045	U	0.001 U	0.000)95	U	0.00087	U
trans-1,2-Dichloroethene	mg/Kg	720	0.044	U	0.045	U	0.00074	U	41	U	0.00082 U		0.049	U	0.042	U	0.00075 U	0.	.00086	U	0.04	U	0.00085 U	0.000)78	U	0.00071	U
Frans-1,3-Dichloropropene	mg/Kg	7	0.034	U	0.035	U	0.00074	U	32	U	0.00082 U		0.038	U	0.033	U	0.00076 U	0.	.00086	U	0.031	U	0.00086 U	0.000)78	U	0.00071	U
Trichloroethene	mg/Kg	20	0.047	U	0.048	U	0.00081	U	44	U	0.0009 U		0.052	U	0.045	U	0.00083 U	0.	.00095	U	0.043	U	0.00094 U	0.000)86	U	0.00078	U
Trichlorofluoromethane	mg/Kg	340000	0.065	U	0.067	U	0.0011	U	62	U	0.0013 U		0.072	U	0.063	U	0.0012 U	C	0.0013	U	0.06	U	0.0013 U	0.00	12	U	0.0011	U
Vinyl chloride	mg/Kg	2	0.075	U	0.078	U	0.00058	U	71	U	0.00064 U		0.083	U	0.072	U	0.00059 U	0.	.00067	U	0.069	U	0.00067 U	0.000)61	U	0.00056	U
Xylene (total)	mg/Kg	170000	0.11	U	0.12	U	0.0028	U	110	U	0.0031 U		0.13	U	0.12	J	0.0028 U	0	0.0032	U	0.11	U	0.0032 U	0.00	29	U	0.0027	II

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	D-1 04/07/09	,	D-2 04/07/0	9	D-3 04/10/09	9	D-4 04/09/0	9	D-4 04/09/09		D-5 04/09/09)	D-6 04/08/09		D-6 04/08/09		D-6 04/08/09		D-7 04/08/09		D-7 04/08/09		D-8 /13/09		D-9 04/13/09	9
			18-18.5		20-20.	5	19.5-20)	14.5-15		23.5-24		25.5-26		15.5-16		20-20.5		20-20.5		14.8-15.3	;	18-18.5	29	-29.5		22-22.5	;
Semivolatile Organic Compounds								•																				
1,1'-Biphenyl	mg/Kg	34000	0.13	J	0.019	U	0.021	U	0.043	J	0.02 U	J	0.02	U	0.023	J	0.02	U	0.021 U	IJ	0.017	U	0.019 U	0.0)2	U	0.02	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.018	U	0.019	U	0.021	U	0.017	U	0.019 U	J	0.019	U	0.017	U	0.019	U	0.02 U	IJ	0.016	U	0.019 U	0.0	19	U	0.019	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.01	U	0.011	U	0.012	U	0.0095	U	0.011 U	J	0.011	U	0.0096	U	0.011	U	0.011 U	IJ	0.0093	U	0.011 U	0.0	11	U	0.011	U
2,4,6-Trichlorophenol	mg/Kg	74	0.02	U	0.021	U	0.023	U	0.019	U	0.022 U	J	0.022	U	0.019	U	0.022	U	0.023 U	IJ	0.019	U	0.021 U	0.0	22	U	0.022	U
2,4-Dichlorophenol	mg/Kg	2100	0.14		0.017	U	0.019	U	0.071	J	0.018 U	J	0.018	U	0.06	J	0.018	U	0.018 U	IJ	0.015	U	0.017 U	0.0	18	U	0.018	U
2,4-Dimethylphenol	mg/Kg	14000	0.017	U	0.018	U	0.02	U	0.016	U	0.018 U	J	0.018	U	0.016	U	0.018	U	0.019 U	IJ	0.016	U	0.018 U	0.0	18	U	0.019	U
2,4-Dinitrophenol	mg/Kg	1400	0.13	U	0.14	U	0.15	U	0.12	U	0.14 U	J	0.14	U	0.12	U	0.14	U	0.15 U	IJ	0.12	U	0.14 U	0.1	14	U	0.14	U
2,4-Dinitrotoluene	mg/Kg	3	0.019	U	0.02	U	0.022	U	0.018	U	0.02 U	J	0.021	U	0.018	U	0.02	U		IJ	0.018	U	0.02 U	0.0)2	U	0.021	U
2,6-Dinitrotoluene	mg/Kg	3	0.021	U	0.022	U	0.024	U	0.02	U		J	0.022	U	0.02	U	0.022	U	0.023 U	IJ	0.019	U	0.022 U	0.0	22	U	0.023	U
2-Chloronaphthalene	mg/Kg		0.011	IJ	0.012	IJ	0.013	IJ	0.01	IJ	0.012 U	J	0.012	IJ	0.01	U	0.012	U	0.012 U	IJ	0.01	U	0.012 U	0.0		U	0.012	U
2-Chlorophenol	mg/Kg	2200	0.012	IJ	0.013	IJ	0.014	IJ	0.012	IJ	0.013 U	Ţ	0.014	IJ	0.012	IJ	0.013	IJ	0.014 U	IJ	0.012	IJ	0.013 U	0.0		U	0.014	U
2-Methylnaphthalene	mg/Kg	2400	0.49	Ť	0.017	III	0.018	IJ	0.15		0.017 U	_	0.017	II _	0.051	J	0.017	U	0.018 U		0.015	IJ	0.013 U	0.0		U	0.018	II
2-Methylphenol	mg/Kg	3400	0.015	IJ	0.017	II	0.017	II	0.014	11		J	0.017	II	0.014	IJ	0.017	IJ	0.017 U	J	0.013	IJ	0.017 U	0.0		IJ	0.016	II
2-Nitroaniline	mg/Kg	23000	0.015	II	0.026	II	0.017	II	0.014	U	0.010 U	_	0.010	II	0.014	III	0.010	U	0.017 U	ī	0.023	II	0.016 U	0.0		IJ	0.010	II
2-Nitrophenol	mg/Kg		0.015	II	0.016	II	0.018	II	0.015	U	0.017 U	_	0.017	II	0.015	II	0.017	II		U	0.014	II	0.016 U	0.0		II	0.017	II
3,3-Dichlorobenzidine	mg/Kg	4	0.013	II	0.010	II	0.018	II	0.072	U	0.017 U	_	0.017	II	0.013	II	0.017	III		IJ	0.071	II	0.010 U	0.0		IJ	0.017	11
3-Nitroaniline	mg/Kg		0.013	II	0.014	II	0.005	II	0.012	U	0.014 U	_	0.003	II	0.013	II	0.002	II		IJ	0.012	II	0.014 U	0.0		II	0.015	II
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.013	II	0.41	II	0.013	II	0.37	U	0.014 C	_	0.014	II	0.013	II	0.42	II		IJ	0.36	II	0.014 U	0.4		U	0.43	11
4-Bromophenylphenyl ether	mg/Kg		0.017	II	0.018	II	0.43	II	0.016	U	0.42 C	_	0.42	II	0.017	II	0.42	TT.		IJ	0.016	II	0.41 U	0.0			0.43	II
1 11 1	mg/Kg		0.017	II	0.018	II	0.02	II	0.010	U	0.019 U	_	0.019	II	0.017	TT	0.019	TT.		IJ	0.010	II	0.018 U	0.0			0.019	11
4-Chloro-3-methylphenol 4-Chloroaniline			0.012	U	0.013	TT	0.014	T.I	0.011	U	0.013 U	_	0.013	TT	0.012	U	0.013	TI		IJ	0.011	TT	0.013 U	0.0		U	0.013	II
	mg/Kg		0.013	U	0.013	TT	0.013	T.I	0.012	U	0.013 U		0.014	TT	0.012	TT	0.013	TI		IJ	0.012	TT	0.013 U	0.0		U	0.014	II
4-Chlorophenyl phenyl ether	mg/Kg	240		U		TT		U		U	0.019 U	_	0.019	U	0.017	U		TT		IJ	0.017	TT	0.019 U	0.0		U		II
4-Methylphenol	mg/Kg	340	0.018	U	0.019	U	0.021	U	0.017	IJ		_		U		U	0.019	U	****	U		U		0.0		U	0.02	II
4-Nitroaniline	mg/Kg		0.02	U	0.021	U	0.023	U	0.019	U	0.021	_	0.022	U	0.019	U	0.021	U	0.022 U	U	0.018	U	0.021 U		-	U		TT
4-Nitrophenol	mg/Kg	27000	0.24	U	0.25	U	0.28	U	0.23	U	0.26 U	J	0.26	U	0.23	U	0.26	U	0.27 U	U	0.22	U	0.25 U	0.2	_	U II	0.26	TT
Acenaphthene	mg/Kg	37000	0.19	т	0.014	U	0.015	U	0.012	U	0.011	_	0.014	U	0.012	J	0.014	U	0.015 U	U	0.012	U	0.014 U	0.0		0	0.014	U
Acenaphthylene	mg/Kg	300000	0.076	J	0.017	U	0.019	U	0.019	J	0.017 U	_	0.018	U	0.054	J	0.017	U	0.018 U	U	0.015	U	0.017 U	0.0		U	0.018	U
Acetophenone	mg/Kg	5	0.019	U	0.02	U	0.022	U	0.018	U	0.02 U	_	0.02	U	0.018	U	0.02	U	0.021 U	J	0.017	U	0.02 U	0.0	-	U	0.021	U
Anthracene	mg/Kg	30000	0.15	7.7	0.015	U	0.016	U	0.054	J		J	0.015	U	0.15	7.7	0.015	U	0.017	J	0.013	U	0.015 U	0.0		U	0.016	I U
Atrazine	mg/Kg	2400	0.019	U	0.02	U	0.022	U	0.018	U	0.021	J	0.021	U	0.018	U	0.021	U	0.021 U	U	0.018	U	0.02 U	0.0		U	0.021	TU I
Benzaldehyde	mg/Kg	68000	0.011	U	0.011	U	0.012	U	0.01	U	0.011 U		0.012	U	0.01	U	0.011	U	0.012 U	U	0.0098	U	0.011 U	0.0	_	U	0.012	TU I
Benzo(a)anthracene	mg/Kg	2	0.087	+	0.014	U	0.015	U	0.037	J			0.014	U	0.09	+		U		IJ		U	0.014 U	0.0			0.014	TU I
Benzo(a)pyrene	mg/Kg	0.2	0.051	J	0.024	U	0.026	U	0.021	U	0.024 U		0.025	U	0.062	J		U	0.025 U	_		U	0.024 U	0.0		_	0.025	U
Benzo(b)fluoranthene	mg/Kg	20000	0.3	+	0.017	U	0.019	U	0.016	U	0.018 U	_	0.018	U	0.18	+	0.000	U		IJ	0.015	U	0.017 U	0.0		_	0.018	U
Benzo(ghi)perylene	mg/Kg	30000	0.027	J	0.0063	U	0.0069	U	0.0056	U	0.0064 U	_	0.0065	U	0.031	J	0.000.	U	0.0066 U	_	0.0055	U	0.0063 U	0.00		_	0.0065	U
Benzo(k)fluoranthene	mg/Kg	23	0.023	J	0.018	U	0.02	U	0.016	U	0.018 U	_	0.018	U	0.016	U	0.018	U	0.019 U	_	0.016	U	0.018 U	0.0		_	0.019	U
Bis(2-chloroethoxy)methane	mg/Kg		0.016	U	0.017	U	0.019	U	0.015	U	0.017 U		0.018	U	0.016	U	0.017	U	0.018 U	_	0.015	U	0.017 U	0.0		_	0.018	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.0071	U	0.0075	U	0.0082	U	0.0067	U	0.0076 U	_	0.0077	U	0.0068	U	0.0076	U	0.0077	IJ	0.0066	U	0.0075 U	0.00			0.0078	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.09	J	0.036	U	0.04	U	0.032	U	0.037 U	_	0.037	U	0.033	U	0.037	U		IJ	0.032	U	0.036 U	0.0	_	U	0.038	U
Butyl benzyl phthalate	mg/Kg	14000	0.028	U	0.03	U	0.033	U	0.027	U	0.03 U	_	0.031	U	0.027	U	0.03	U	0.002	IJ	0.026	U	0.03 U	0.0	, ,	U	0.031	U
Caprolactam	mg/Kg	340000	0.053	U	0.056	U	0.061	U	0.05	U	0.057 U	_	0.058	U	0.051	U	0.057	U	0.059 U	IJ	0.049	U	0.056 U	0.0			0.058	U
Carbazole	mg/Kg	96	0.032	J	0.011	U	0.012	U	0.01	U	0.011 U		0.012	U	0.026	J	0.011	U	0.012 U	IJ	0.0099	U	0.011 U	0.0		U	0.012	U
Chrysene	mg/Kg	230	0.066	J	0.015	U	0.016	U	0.035	J	0.015 U	_	0.015	U	0.076	J	0.015	U	0.016 U	IJ	0.013	U	0.015 U	0.0		U	0.016	U
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.018	U	0.019	U	0.021	U	0.017	U		J	0.019	U	0.017	U	0.019	U	0.02 U	IJ	0.017	U	0.019 U	0.0		U	0.02	U
Dibenzofuran	mg/Kg		0.048	J	0.014	U	0.016	U	0.013	U	0.015 U	J	0.015	U	0.061	J	0.015	U		IJ	0.013	U	0.014 U	0.0		U	0.015	U
Diethyl phthalate	mg/Kg	550000	0.023	U	0.024	U	0.027	U	0.022	U	0.025 U		0.025	U	0.022	U	0.025	U	0.026 U	IJ	0.021	U	0.024 U	0.0		U	0.025	U
Dimethyl phthalate	mg/Kg		0.014	U	0.014	Ū	0.016	U	0.013	U	0.015 U	J	0.015	U	0.013	U	0.015	U		IJ	0.013	U	0.014 U	0.0		U	0.015	U
Di-n-butyl phthalate	mg/Kg	68000	0.023	IJ	0.024	IJ	0.026	IJ	0.021	U	0.024 U	Ţ	0.025	IJ	0.022	IJ	0.024	IJ	0.025 U	IJ	0.021	IJ	0.024 U	0.0	24	U	0.025	[]

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

			D-1	D	-2	D-3		D-4		D-4		D-5		D-6			D-6		D-6		D-7		D-7		D-8		D-9	
Constituent	Units	Criterion ⁽¹⁾	04/07/09	04/0		04/10/09		04/09/09		04/09/09		04/09/0		04/08/09			1/08/09)4/08/09		04/08/09		04/08/09	,	04/13/0		04/13/0	
			18-18.5	20-	20.5	19.5-20		14.5-15		23.5-24	ļ.	25.5-26	•	15.5-16	5	20	0-20.5	丄	20-20.5	5	14.8-15.	3	18-18.5		29-29.5	5	22-22.	5
Semivolatile Organic Compounds (C	ontinued)			_		1																						
Di-n-octyl phthalate	mg/Kg	27000	0.01 U	0.01		0.012	U	0.0099	U	0.011	U	0.011	U	0.01	U	0.0		_	0.012	U	0.0097	U	0.011	U	0.011	U	0.011	U
Fluoranthene	mg/Kg	24000	0.16	0.00	_		U	0.058	J	0.0073	U	0.0074	U	0.3		0.0		_	0.041	J	0.012	J	0.021	J	0.0073	U	0.0075	U
Fluorene	mg/Kg	24000	0.14	0.01			U	0.037	J	0.013	U	0.013	U	0.11		0.0		_	0.014	U	0.011	U	0.013	U	0.013	U	0.013	U
Hexachlorobenzene	mg/Kg	1	0.064 J	0.01			U	0.015	U	0.016	U	0.017	U	0.015	U	0.0		_	0.017	U	0.014	U	0.016	U	0.016	U	0.017	U
Hexachlorobutadiene	mg/Kg	25	0.017 U	0.01			U	0.016	U	0.018	U	0.019	U	0.016	U	0.0		_	0.019	U	0.016	U	0.018	U	0.018	U	0.019	U
Hexachlorocyclopentadiene	mg/Kg	110	0.015 U	0.01		0.018	U	0.015	U	0.017	U	0.017	U	0.015	U	0.0		_	0.017	U	0.014	U	0.016	U	0.017	U	0.017	U
Hexachloroethane	mg/Kg	140	0.014 U	0.01		0.016	U	0.013	U	0.015	U	0.015	U	0.013	U	0.0		_	0.015	U	0.013	U	0.014	U	0.015	U	0.015	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.021 J	0.004		0.0052	U	0.0042	U	0.0048	U	0.0048	U	0.16			0048 U	_	0.005	U	0.0041	U	0.0047	U	0.0048	U	0.0049	U
Isophorone	mg/Kg	2000	0.016 U	0.01		0.018	U	0.015	U	0.017	U	0.017	U	0.015	U	0.0		_	0.018	U	0.015	U	0.017	U	0.017	U	0.017	U
Naphthalene	mg/Kg	17	1.6	0.01		0.014	U	0.54		0.013	Ü	0.013	Ü	0.58	1		.12	_	0.11	Ļ	0.011	Ü	0.013	J	0.013	U	0.013	U
Nitrobenzene	mg/Kg	340	0.02 U	0.02		0.024	U	0.019	U	0.022	Ü	0.022	Ü	0.02	Ü	0.0			0.023	Ü	0.019	Ü	0.021	U	0.022	U	0.022	U
N-Nitrosodiphenylamine	mg/Kg	390	0.017 U	0.01		0.019	U	0.016	U	0.018	Ü	0.018	Ü	0.016	U	0.0			0.019	Ü	0.015	Ü	0.017	U	0.018	U	0.018	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.022 U	0.02		0.026	U	0.021	U	0.024	U	0.024	U	0.022	U	0.0			0.025	U	0.021	U	0.024	U	0.024	U	0.025	U
Pentachlorophenol	mg/Kg	10	0.07 U	0.07		0.081	U	0.067	U	0.076	U	0.076	U	0.067	U	0.0		_	0.079	Ů	0.065	Ū	0.074	Ű	0.076	U	0.077	U
Phenanthrene	mg/Kg	300000	0.34	0.0	U	0.011	U	0.14	**	0.01	U	0.011	U	0.59	1	0.0		_	0.064	J	0.013	J	0.023	J	0.01	U	0.011	U
Phenol	mg/Kg	210000	0.016 U	0.01		0.019	U	0.015	U	0.017	U	0.017	U	0.015	U	0.0			0.018	Ū	0.015	U	0.017	U	0.017	U	0.018	U
Pyrene	mg/Kg	18000	0.17	0.02	3 U	0.025	U	0.085		0.023	U	0.023	U	0.23		0.0	031 J	(0.036	IJ	0.02	U	0.023	U	0.023	ΙUΙ	0.024	IU
Metals		ı		T		1			- 1		1 - 1				1 . 1		-	_		1 - 1	- 10	1 . 1	0.01	- 1	100	1 = 1		
Aluminum	mg/Kg		3.54 J	11.5		11.3		2.72	J	11.5	J	10.6	J	3.25	J	10		+	11.5	J	3.13	J	8.81	J	13.9	Е	12.1	1
Antimony	mg/Kg	450	0.00026 U	0.000	_	0.00034	В	0.00024	U	0.00028	U	0.00028	U	0.00025	U		0028 U		00029	В	0.00024	U	0.00027	В	0.00028	U	0.00028	U
Arsenic	mg/Kg	19	0.0034	0.004		0.0042		0.0017	Б	0.0067		0.007		0.003	<u>-</u>		0055	_	.0056		0.0013		0.0041		0.0082	+	0.0059	+
Barium	mg/Kg	59000	0.0199 BJ			0.066		0.0158	R	0.0725	-	0.0647	- T	0.0125	B		0604	_	.0874	H.	0.0119	B	0.0425	T	0.0836	+	0.0789	+
Beryllium	mg/Kg	140	0.00033 B	0.000		0.00085	* *		BJ	0.00088	J	0.00081	J	0.00039	BJ		0082 J	_	00088	J	0.0003	Rì	0.00073	J	0.00096	DI	0.00093	DI
Cadmium	mg/Kg	78	0.000047 B	0.000	_	0.00003	U	0.000084	B	0.00041	В	0.00035	В	0.00011	В	0.00		_	00041	В	0.000062	В	0.00027	В	0.000033	Bl	0.000041	BJ
Calcium	mg/Kg	120000	0.814 J	4.1		5.66	J		BJ	6.34	J	7.75	J	0.818	l J	5.		_	6.89	J	0.484	BJ	2.74	J	7.66	JE	5.7 0.0217	J
Cabalt	mg/Kg	120000	0.0084 J 0.0036 B	0.020		0.0177	J	0.0065	D	0.0192		0.0182	TZ	0.0083	D		0183		0.02		0.0067 0.0027	D	0.0151 0.0091		0.0232	JE	0.0217	1
Conner	mg/Kg mg/Kg	590 45000	0.0036 B	0.010		0.0121		0.0025 0.0055	В	0.011		0.01	E	0.0051	В)204		.0222		0.0027	В	0.0091		0.0127	E	0.0127	+
Copper		1		25	I T	35	T			27.7		25.5	+	11.8	+	27		_	28.6		7.78	Н	20.5		32.2	TE	30	+
Iron Lead	mg/Kg mg/Kg	800	11.7 J 0.0028	0.012	J	0.0135	J	6.4 0.0021		0.0124	\vdash	0.0093	\vdash	0.0026	\vdash		0125	_	.0129	Н	0.0022	\vdash	0.0115	_	0.0118	JE	0.0142	+-
Magnesium	mg/Kg		1.44 J	6.2		7.08	\vdash	1.17		7.43	\vdash	7.08	\vdash	1.47	\vdash		.85	_	7.6	Н	1.23	Н	4.82		8.85	F	7.59	++
Manganese	mg/Kg		0.0619 J			0.957	┢	0.0409		0.57	\vdash	0.527	\vdash	0.0529	\vdash		625		0.659	H	0.0423	H	0.432		0.636	E		+
Mercury	mg/Kg	65		0.0000			R		В		R	0.00003	В	0.0029	\vdash	0.00			00026	R	0.000012	II	0.000015	R	0.00003		0.000029	R
Nickel	mg/Kg	23000	0.0007	0.000		0.000029	٦	0.0057	ע	0.000031	<u>رر</u>	0.00003	Е	0.0002	\vdash)227	_	0.024	H	0.0058		0.0194	ע	0.00003	E	0.000029	+-
Potassium	mg/Kg	23000	0.457 B			1.71	\vdash		В	1.71	\vdash	1.56	1	0.377	В	1.		_	1.79	Н	0.396	В	1.42		2.02	1	1.81	+
Selenium	mg/Kg	5700	0.00021 U	0.000		0.00025	II	0.0002	IJ	0.00023	IJ	0.00023	IJ	0.0002	II		0023 U	_	00024	IJ	0.0002	II	0.00022	IJ	0.00023	IJ	0.00023	11
Silver	mg/Kg	5700	0.000021 U	0.000	_	0.00019	B	0.0002	IJ	0.00026	BJ	0.00029	BI	0.0002	Ī		0015 J	_	00027	BJ	0.0002	BI		BJ	0.00025	В	0.00017	B
Sodium	mg/Kg		0.271 BJ				В	0.248	В	0.315	В	0.289	В	0.137	В	0.5		_	0.62	В	0.205	В	0.606	В	0.519	В	1.03	+=
Thallium	mg/Kg	79	0.00038 U	0.000		0.00044	II	0.00035	IJ	0.0004	IJ	0.00041	IJ	0.00036	II		0004 U	_	00042	IJ	0.00035	II	0.00039	IJ	0.0004	II.	0.00041	11
Vanadium	mg/Kg	1100	0.0115	0.020	_	0.0212	Ť	0.0088		0.0244	Ĭ	0.0244	J	0.00030	Ť)232	_	.0261	Ť	0.0092	Ť	0.00037	J	0.0306	E	0.0285	+
Zinc	mg/Kg		0.0187 J	0.060		0.067	J	0.0136	J	0.0601	J	0.052	JЕ	0.0172	J		579 J	_	.0613	Ţ	0.0146	Ţ	0.0522	J	0.0664	JE	0.0671	J
Miscellaneous	1 8' 5	110000	0.0207	3.55	_ 3			3.3133	ات	3.3001		5.552	1,12	0.0172	ب	3.0				ٿ	0.0110	۳	0.0022	-	0.0001	,	0.0071	
Percent Solids	%		81.7	78	T	70.4	П	87		76.7	П	75.1	П	85.9		76	6.6	T	73.7	П	87.7		78.2	T	76.7	П	75	\Box
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/0	ļ.	U1./	, 0		, 0. 1		07	ш	, 5.7		, 5.1	ш	00.7	\perp	, (J. J			\perp	07.7	ш	, 0.2		, 5. /	1	, 5	

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	D-10 04/14/09 21.5-22		D-11 04/14/09 17-17.5		D-12 04/15/09 16-16.5		D-13 04/06/09 18-18.5	
Volatile Organic Compounds										
1,1,1-Trichloroethane	mg/Kg	4200	0.00064	U	0.00062	U	0.00059	U	0.00059	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.00095	U	0.00092	U	0.00088	U	0.00087	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.0014	U	0.0014	U	0.0013	U	0.0013	U
1,1,2-Trichloroethane	mg/Kg	6	0.0011	U	0.0011	U	0.001	U	0.001	U
1,1-Dichloroethane	mg/Kg	24	0.00076	U	0.00074	U	0.0007	U	0.0007	U
1,1-Dichloroethene	mg/Kg	150	0.0011	U	0.0011	U	0.001	U	0.001	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.0012	U	0.0011	U	0.0011	U	0.0011	U
1,2-Dibromoethane	mg/Kg	0.04	0.0011	U	0.0011	U	0.0011	U	0.001	U
1,2-Dichlorobenzene	mg/Kg	59000	0.001	U	0.001	U	0.00097	U	0.00097	U
1,2-Dichloroethane	mg/Kg	3	0.00081	U	0.00078	U	0.00075	U	0.00074	U
1,2-Dichloropropane	mg/Kg	5	0.00071	U	0.00069	U	0.00066	U	0.00066	U
1,3-Dichlorobenzene	mg/Kg	59000	0.00086	U	0.00084	U	0.0008	U	0.0008	U
1,4-Dichlorobenzene	mg/Kg	13	0.00084	U	0.00081	U	0.00078	U	0.00077	U
2-Butanone	mg/Kg	44000	0.0012	U	0.0011	U	0.0011	U	0.0011	U
2-Hexanone	mg/Kg		0.00091	U	0.00088	U	0.00084	U	0.00084	U
4-Methyl-2-pentanone	mg/Kg		0.00086	U	0.00083	U	0.0008	U	0.00079	U
Acetone	mg/Kg		0.0066	U	0.0086	J	0.0061	U	0.0061	U
Benzene	mg/Kg	5	0.00089	U	0.00086	U	0.00082	U	0.00082	U
Bromodichloromethane	mg/Kg	3	0.00074	U	0.00072	U	0.00068	U	0.00068	U
Bromoform	mg/Kg	280	0.00058	U	0.00057	U	0.00054	U	0.00054	U
Bromomethane	mg/Kg	59	0.00097	U	0.00094	U	0.0009	U	0.0009	U
Carbon disulfide	mg/Kg	110000	0.00067	U	0.00065	U	0.00062	U	0.00062	U
Carbon Tetrachloride	mg/Kg	2	0.00059	U	0.00057	U	0.00054	U	0.00054	U
Chlorobenzene	mg/Kg	7400	0.001	U	0.00097	U	0.00092	U	0.00092	U
Chloroethane	mg/Kg	1100	0.002	U	0.002	U	0.0019	U	0.0019	U
Chloroform	mg/Kg	2	0.00077	U	0.00075	U	0.00071	U	0.00071	U
Chloromethane	mg/Kg	12	0.0011	U	0.0011	U	0.001	U	0.001	U
cis-1,2-Dichloroethene	mg/Kg	560	0.00093	U	0.0009	U	0.00086	U	0.00085	U
cis-1,3-Dichloropropene	mg/Kg	7	0.00089	U	0.00087	U	0.00083	U	0.00082	U
Cyclohexane	mg/Kg		0.00049	U	0.00047	U	0.00045	U	0.00045	U
Dibromochloromethane	mg/Kg	8	0.00098	U	0.00096	U	0.00091	U	0.00091	U
Dibromochloropropane	mg/Kg		0.00093	U	0.00091	U	0.00087	U	0.00086	U
Dichlorodifluoromethane	mg/Kg	230000	0.00088	U	0.00085	U	0.00081	U	0.00081	U
Ethylbenzene	mg/Kg	110000	0.00085	U	0.00082	U	0.00078	U	0.00078	U
Isopropylbenzene	mg/Kg		0.00089	U	0.00087	U	0.00083	U	0.00082	U
Methyl Acetate	mg/Kg		0.0012	U	0.0012	U	0.0011	U	0.0011	U
Methylcyclohexane	mg/Kg		0.00095	U	0.00093	U	0.00088	U	0.00088	U
Methylene chloride	mg/Kg	97	0.0017	JB	0.00086	U	0.0014	JB	0.00082	U
Methyltert-butylether	mg/Kg	320	0.00098	U	0.00096	U	0.00091	U	0.00091	U
Styrene	mg/Kg	260	0.00093	U	0.0009	U	0.00086	U	0.00086	U
Tetrachloroethene	mg/Kg	5	0.0009	U	0.00087	U	0.00083	U	0.00082	U
Toluene	mg/Kg	91000	0.00096	U	0.00093	U	0.00089	U	0.00088	U
trans-1,2-Dichloroethene	mg/Kg	720	0.00078	U	0.00076	U	0.00073	U	0.00072	U
Trans-1,3-Dichloropropene	mg/Kg	7	0.00079	U	0.00076	U	0.00073	U	0.00072	U
Trichloroethene	mg/Kg	20	0.00087	U	0.00084	U	0.0008	U	0.0008	U
Trichlorofluoromethane	mg/Kg	340000	0.0012	U	0.0012	U	0.0011	U	0.0011	U
Vinyl chloride	mg/Kg	2	0.00062	U	0.0006	U	0.00057	U	0.00057	U
Xylene (total)	mg/Kg	170000	0.0029	U	0.0029	U	0.0027	U	0.0027	U

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	D-10 04/14/09 21.5-22		D-11 04/14/09 17-17.5		D-12 04/15/09 16-16.5		D-13 04/06/0 18-18.5	
Semivolatile Organic Compounds										
1,1'-Biphenyl	mg/Kg	34000	0.02	U	0.02	U	0.019	U	0.019	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.019	U	0.019	U	0.018	U	0.018	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.011	U	0.011	U	0.01	U	0.01	U
2,4,6-Trichlorophenol	mg/Kg	74	0.022	U	0.021	U	0.021	U	0.021	U
2,4-Dichlorophenol	mg/Kg	2100	0.018	U	0.017	U	0.017	U	0.017	U
2,4-Dimethylphenol	mg/Kg	14000	0.018	U	0.018	U	0.018	U	0.017	U
2,4-Dinitrophenol	mg/Kg	1400	0.14	U	0.14	U	0.13	U	0.13	U
2,4-Dinitrotoluene	mg/Kg	3	0.02	U	0.02	U	0.02	U	0.019	U
2,6-Dinitrotoluene	mg/Kg	3	0.022	U	0.022	U	0.021	U	0.021	U
2-Chloronaphthalene	mg/Kg		0.012	U	0.012	U	0.011	U	0.011	U
2-Chlorophenol	mg/Kg	2200	0.013	U	0.013	U	0.013	U	0.013	U
2-Methylnaphthalene	mg/Kg	2400	0.017	U	0.017	U	0.017	U	0.016	U
2-Methylphenol	mg/Kg	3400	0.016	U	0.016	U	0.091	J	0.015	U
2-Nitroaniline	mg/Kg	23000	0.027	U	0.026	U	0.026	U	0.025	U
2-Nitrophenol	mg/Kg		0.017	U	0.016	U	0.016	U	0.016	U
3,3-Dichlorobenzidine	mg/Kg	4	0.082	U	0.081	U	0.079	U	0.078	U
3-Nitroaniline	mg/Kg		0.014	U	0.014	U	0.014	U	0.013	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.42	U	0.41	U	0.4	U	0.4	U
4-Bromophenylphenyl ether	mg/Kg		0.018	U	0.018	U	0.018	U	0.018	U
4-Chloro-3-methylphenol	mg/Kg		0.013	U	0.013	U	0.013	U	0.012	U
4-Chloroaniline	mg/Kg		0.013	U	0.013	U	0.013	U	0.013	U
4-Chlorophenyl phenyl ether	mg/Kg		0.019	U	0.019	U	0.019	U	0.018	U
4-Methylphenol	mg/Kg	340	0.019	U	0.019	U	0.25	J	0.018	U
4-Nitroaniline	mg/Kg		0.021	U	0.021	U	0.021	U	0.02	U
4-Nitrophenol	mg/Kg		0.26	U	0.25	U	0.25	U	0.24	U
Acenaphthene	mg/Kg	37000	0.014	U	0.014	U	0.013	U	0.013	U
Acenaphthylene	mg/Kg	300000	0.017	U	0.017	U	0.017	U	0.031	J
Acetophenone	mg/Kg	5	0.02	U	0.02	U	0.017	U	0.019	U
Anthracene	mg/Kg	30000	0.015	U	0.02	U	0.015	U	0.021	J
Atrazine	mg/Kg	2400	0.013	U	0.013	U	0.013	U	0.021	U
Benzaldehyde	mg/Kg	68000	0.021	U	0.02	U	0.02	U	0.011	U
Benzo(a)anthracene	mg/Kg		0.011	U	0.011	U	0.011	U	0.011	U
Benzo(a)pyrene	mg/Kg	0.2	0.014	U	0.014	U	0.013	U	0.013	J
Benzo(b)fluoranthene	mg/Kg	2	0.024	U	0.024	U	0.023	U	0.020	+
Benzo(ghi)perylene	mg/Kg	30000	0.0064	U	0.0063	U	0.0062	U	0.29	J
Benzo(k)fluoranthene	mg/Kg	23	0.0004	U	0.0003	U	0.0002	U	0.02	U
Bis(2-chloroethoxy)methane			0.018	U	0.018	U	0.017	U	0.017	U
Bis(2-chloroethyl)ether	mg/Kg mg/Kg	2	0.017	U	0.017	U	0.017	U	0.017	U
Bis(2-ethylhexyl)phthalate		140		U		U		J		J
` 7 7/1	mg/Kg	14000	0.037	U	0.5	U	0.25	U	0.069	U
Butyl benzyl phthalate	mg/Kg	340000		U	0.03	_	0.029	U	0.029	U
Carbonala	mg/Kg		0.057	U	0.056	U	0.055	_	0.054	U
Chryson	mg/Kg	96	0.011		0.011	U	0.011	U	0.011	_
Chrysene Diberge (a b) anthropous	mg/Kg	230	0.015	U	0.015	U	0.015	U	0.014	U
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.019	U	0.019	U	0.018	U	0.018	U
Dibenzofuran Di da la	mg/Kg		0.015	U	0.015	U	0.014	U	0.017	J
Diethyl phthalate	mg/Kg	550000	0.025	U	0.024	U	0.024	U	0.023	U
Dimethyl phthalate	mg/Kg		0.015	U	0.015	U	0.014	U	0.014	U
Di-n-butyl phthalate	mg/Kg	68000	0.024	U	0.024	U	0.023	U	0.023	U

TABLE 4-3

ANALYTICAL RESULTS

DNAPL DELINEATION BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	D-10 04/14/09 21.5-22		D-11 04/14/09 17-17.5		D-12 04/15/09 16-16.5)	D-13 04/06/09 18-18.5	
Semivolatile Organic Compounds (Cor	tinued)									
Di-n-octyl phthalate	mg/Kg	27000	0.011	U	0.011	U	0.011	U	0.011	U
Fluoranthene	mg/Kg	24000	0.0073	U	0.0073	U	0.024	J	0.092	
Fluorene	mg/Kg	24000	0.013	U	0.013	U	0.013	U	0.022	J
Hexachlorobenzene	mg/Kg	1	0.016	U	0.016	U	0.016	U	0.016	U
Hexachlorobutadiene	mg/Kg	25	0.018	U	0.018	U	0.018	U	0.018	U
Hexachlorocyclopentadiene	mg/Kg	110	0.017	U	0.016	U	0.016	U	0.016	U
Hexachloroethane	mg/Kg	140	0.015	U	0.015	U	0.014	U	0.014	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.0048	U	0.0047	U	0.0046	U	0.015	J
Isophorone	mg/Kg	2000	0.017	U	0.017	U	0.016	U	0.016	U
Naphthalene	mg/Kg	17	0.013	U	0.013	U	0.028	J	0.058	J
Nitrobenzene	mg/Kg	340	0.022	U	0.022	U	0.021	U	0.021	U
N-Nitrosodiphenylamine	mg/Kg	390	0.018	U	0.018	U	0.017	U	0.017	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.024	U	0.024	U	0.023	U	0.023	U
Pentachlorophenol	mg/Kg	10	0.075	U	0.075	U	0.073	U	0.072	U
Phenanthrene	mg/Kg	300000	0.01	U	0.01	U	0.032	J	0.1	
Phenol	mg/Kg	210000	0.017	U	0.017	U	0.63		0.016	U
Pyrene	mg/Kg	18000	0.023	U	0.023	U	0.022	U	0.056	J
Metals										
Aluminum	mg/Kg		12.7		11		9.92		6.69	J
Antimony	mg/Kg	450	0.00028	U	0.00027	U	0.00027	U	0.00026	U
Arsenic	mg/Kg	19	0.0065	Е	0.0048		0.0037		0.0017	
Barium	mg/Kg	59000	0.0699		0.065		0.0529		0.0204	BJ
Beryllium	mg/Kg	140	0.00047	BE	0.00049	В	0.00044	В	0.00047	В
Cadmium	mg/Kg	78	0.00082		0.00081		0.00071		0.000057	В
Calcium	mg/Kg		7.41		5.07		3.38		1.34	J
Chromium	mg/Kg	120000	0.0203		0.0181		0.0167		0.0166	J
Cobalt	mg/Kg	590	0.014		0.0117		0.0108		0.0056	В
Copper	mg/Kg	45000	0.023		0.0198		0.0176		0.0082	
Iron	mg/Kg		27.5	JЕ	27	J	23.6	J	12.9	J
Lead	mg/Kg	800	0.0135		0.0133		0.0124		0.0052	
Magnesium	mg/Kg		7.89	Е	6.95		6.08		2.35	J
Manganese	mg/Kg	5900	0.579	Е	0.657		0.497		0.134	J
Mercury	mg/Kg	65	0.00003	В	0.000031	В	0.000014	U	0.000019	В
Nickel	mg/Kg	23000	0.0296		0.0259		0.0232		0.011	
Potassium	mg/Kg		1.9		1.67		1.64		0.947	
Selenium	mg/Kg	5700	0.00023	U	0.00022	U	0.00022	U	0.00022	U
Silver	mg/Kg	5700	0.000087	U	0.000085	U	0.000083	U	0.000082	U
Sodium	mg/Kg		0.688		1.14		1.47		1.08	J
Thallium	mg/Kg	79	0.00051	В	0.00057	В	0.00043	В	0.00038	U
Vanadium	mg/Kg	1100	0.0267		0.0231		0.0208		0.0188	
Zinc	mg/Kg	110000	0.0607	JE	0.0553	J	0.0509	J	0.0287	J
Miscellaneous										
Percent Solids	%		76		77.5		79.5		80.8	

TABLE 4-3

ANALYTICAL RESULTS DNAPL DELINEATION BORINGS STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise.
- 2. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.
- 3. Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:
 U Not detected at the reporting limit indicated.

 - B Analyte detected in associated method blank
 - J Result is an estimate. Quantitated between the detection limit and the reporting limit.
 - E Result is an estimate. Result is for diluted sample.

7 of 7

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

			BW-01		BW-01		BW-01		BW-02		BW-02		BW-02		BW-02		BW-03	,	BW-03		BW-03		BW-03	3
Constituent	·	(1)	05/19/0	8	05/19/08	3	05/19/08	3	05/15/08		05/15/08	3	05/15/08	3	05/15/08	₈	05/14/0	8	05/14/08	3	05/14/08	3	05/14/0	8
of	Units	Criterion ⁽¹⁾	Fill		Mat		Sand		Fill		Mat		Sand		Clay		Fill		Mat		Sand		Clay	
Interest			Primary	7	Primary		Primary		Primary		Primary	7	Primary		Primary	7	Primary	v	Primary	7	Primary		Primary	V
	Ļ	Sample Depth	0.0-7.0 1		10.0-16.0	ft.	18.0-21.0		0.0-9.75 f	t.	10.0-12.0	ft	16.5-21.7		24.0-26.0		0.0-6.25		10.0-12.0		16.0-18.0	ft	22.0-24.0	
	VOC	Sample Depth	6.5-7.5 1		11.0-12.0		19.0-20.0		9.0-9.75 f		10.0-11.0		21.0-21.7		25.0-26.0		6.0-6.25		11.0-12.0		17.0-18.0		23.0-24.0	
Volatile Organics		T I	7,7	,										_,			317 3123							
1,1,1-Trichloroethane	mg/Kg	4200	0.0022	U	0.00066	U	0.0006	U	0.00058	U	0.0011	U	0.00058	U	0.00061	U	5.2	U	0.0037	U	0.00071	U	0.00064	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.0033	U	0.00098	U	0.00088	U	0.00085	U	0.0016	U	0.00086	U	0.0009	U	5.8	U	0.0055	U	0.0011	U	0.00094	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	6	0.0049	U	0.0015	U	0.0013	U	0.0013	U	0.0023	U	0.0013	U	0.0013	U	6.3	U	0.0082	U	0.0016	U	0.0014	U
1,1,2-Trichloroethane	mg/Kg		0.0038	U	0.0011	U	0.001	U	0.00099	U	0.0018	U	0.00099	U	0.001	U	5.4	U	0.0064	U	0.0012	U	0.0011	U
1,1-Dichloroethane	mg/Kg	24	0.0027	U	0.00078	U	0.00071	U	0.00068	U	0.0013	U	0.00069	U	0.00072	U	5	U	0.0044	U	0.00084	U	0.00075	U
1,1-Dichloroethene	mg/Kg	150	0.0039	U	0.0012	U	0.001	U	0.001	U	0.0019	U	0.001	U	0.0011	U	6	U	0.0065	U	0.0012	U	0.0011	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.007	J	0.0012	U	0.0011	U	0.001	U	0.0019	U	0.0011	U	0.0011	U	5.3	U	0.11		0.22		0.0046	J
1,2-Dibromoethane	mg/Kg	0.04	0.004	U	0.0012	U	0.0011	U	0.001	U	0.0019	U	0.001	U	0.0011	U	5.3	U	0.0066	U	0.0013	U	0.0011	U
1,2-Dichlorobenzene	mg/Kg	59000	0.0037	U	0.0011	U	0.00098	U	0.00095	U	0.0017	U	0.00095	U	0.001	U	5.6	U	0.022	J	0.12		0.001	U
1,2-Dichloroethane	mg/Kg	3	0.0028	U	0.00083	U	0.00075	U	0.00073	U	0.0013	U	0.00073	U	0.00077	U	5.6	U	0.0047	U	0.0009	U	0.0008	U
1,2-Dichloropropane	mg/Kg	5	0.0025	U	0.00074	U	0.00067	U	0.00064	U	0.0012	U	0.00065	U	0.00068	U	5.7	U	0.0042	U	0.00079	U	0.00071	U
1,3-Dichlorobenzene	mg/Kg	59000	0.003	U	0.00089	U	0.0008	U	0.00078	U	0.0014	U	0.00078	U	0.00082	U	5.4	U	0.043		0.13		0.00086	U
1,4-Dichlorobenzene	mg/Kg	13	0.0029	U	0.00087	U	0.00078	U	0.00076	U	0.0014	U	0.00076	U	0.0008	U	5.7	U	0.075		0.21		0.00083	U
2-Butanone	mg/Kg	44000	0.0041	U	0.0012	U	0.0011	U	0.001	U	0.0019	U	0.0074		0.0011	U	5	U	0.0068	U	0.0013	U	0.0012	U
2-Hexanone	mg/Kg		0.0032	U	0.00094	U	0.00085	U	0.00082	U	0.0015	U	0.00082	U	0.00086	U	4	U	0.0053	U	0.001	U	0.0009	U
4-Methyl-2-pentanone	mg/Kg		0.003	U	0.00089	U	0.0008	U	0.00077	U	0.0014	U	0.00078	U	0.00082	U	4.4	U	0.005	U	0.00095	U	0.00086	U
Acetone	mg/Kg		0.023	U	0.0068	U	0.0061	U	0.0059	U	0.048		0.029		0.0063	U	6.1	U	0.046	J	0.012	J	0.0066	U
Benzene	mg/Kg	5	0.0031	U	0.00092	U	0.00083	U	0.0015	J	0.0056	J	0.011		0.00084	U	5.3	U	0.016	J	0.0019	J	0.00088	U
Bromodichloromethane	mg/Kg	3	0.0026	U	0.00076	U	0.00069	U	0.00067	U	0.0012	U	0.00067	U	0.0007	U	5	U	0.0043	U	0.00082	U	0.00074	U
Bromoform	mg/Kg	280	0.002	U	0.0006	U	0.00054	U	0.00052	U	0.00097	U	0.00053	U	0.00055	U	5.2	U	0.0034	U	0.00065	U	0.00058	U
Bromomethane	mg/Kg	59	0.0034	U	0.001	U	0.00091	U	0.00088	U	0.0016	U	0.00088	U	0.00092	U	6.5	U	0.0057	U	0.0011	U	0.00097	U
Carbon disulfide	mg/Kg	110000	0.0024	U	0.0007	U	0.00063	U	0.00061	U	0.0011	U	0.00061	U	0.00064	U	6.3	U	0.0039	U	0.00075	U	0.00067	U
Carbon tetrachloride	mg/Kg	2	0.0021	U	0.00061	U	0.00055	U	0.00053	U	0.00098	U	0.00053	U	0.00056	U	4.6	U	0.0034	U	0.00065	U	0.00058	U
Chlorobenzene	mg/Kg	7400	0.0035	U	0.001	U	0.00093	U	0.0009	U	0.0017	U	0.0009	U	0.00095	U	5.7	U	0.0058	U	0.0048	J	0.00099	U
Chloroethane	mg/Kg	1100	0.0072	U	0.0021	U	0.0019	U	0.0018	U	0.0034	U	0.0018	U	0.0019	U	7.3	U	0.012	U	0.0023	U	0.002	U
Chloroform	mg/Kg	2	0.0027	U	0.00079	U	0.00072	U	0.00069	U	0.0013	U	0.0007	U	0.00073	U	5.4	U	0.0045	U	0.00086	U	0.00077	U
Chloromethane	mg/Kg	12	0.0039	U	0.0012	U	0.001	U	0.001	U	0.0019	U	0.001	U	0.0011	U	5.7	U	0.0065	U	0.0012	U	0.0011	U
cis-1,2-Dichloroethene	mg/Kg	560	0.0032	U	0.00096	U	0.00086	U	0.00083	U	0.0015	U	0.00084	U	0.00088	U	5.5	U	0.0054	U	0.001	U	0.00092	U
cis-1,3-Dichloropropene	mg/Kg	7	0.0031	U	0.00092	U	0.00083	U	0.0008	U	0.0015	U	0.00081	U	0.00085	U	4.6	U	0.0052	U	0.00099	U	0.00089	U
Cyclohexane	mg/Kg		0.0017	U	0.0005	U	0.00046	U	0.00044	U	0.00081	U	0.00044	U	0.00046	U	5.1	U	0.0029	U	0.00054	U	0.00049	U
Dibromochloromethane	mg/Kg		0.0033	U	0.00096	U	0.00087	U	0.00084	U	0.0016	U	0.00085	U	0.00089	U	4.7	U	0.0055	U	0.001	U	0.00093	U
Dibromochloropropane	mg/Kg	8	0.0035	U	0.001	U	0.00092	U	0.00089	U	0.0016	U	0.00089	U	0.00094	U	4.3	U	0.0058	U	0.0011	U	0.00098	U
Dichlorodifluoromethane	mg/Kg	230000	0.0031	U	0.0009	U	0.00082	U	0.00079	U	0.0015	U	0.00079	U	0.00083	U	6.5	U	0.0051	U	0.00097	U	0.00087	U
Ethylbenzene	mg/Kg	110000	0.003	U	0.00087	U	0.00079	U	0.00076	U	0.0014	U	0.00077	U	0.0008	U	6	U	0.0049	U	0.0015	J	0.00084	U
Isopropylbenzene	mg/Kg		0.0031	U	0.00092	U	0.00083	U	0.00081	U	0.0015	U	0.00081	U	0.00085	U	5.5	U	0.0052	U	0.00099	U	0.00089	U
Methyl acetate	mg/Kg		0.0042	U	0.0012	U	0.0011	U	0.0011	U	0.002	U	0.0011	U	0.0011	U	5.4	U	0.0069	U	0.0013	U	0.0012	U
Methylcyclohexane	mg/Kg		0.0033	U	0.00099	U	0.00089	U	0.00086	U	0.0016	U	0.00087	U	0.00091	U	5.7	U	0.0056	U	0.0011	U	0.00095	U
Methylene chloride	mg/Kg	97	0.0031	U	0.00091	U	0.0027	J	0.0008	U	0.0024	J	0.0008	U	0.00095	J	3.9	U	0.0054	J	0.001	J	0.00088	U
Methyltert-butylether	mg/Kg	320	0.0035	U	0.001	U	0.00092	U	0.00089	U	0.0016	U	0.00089	U	0.00093	U	4.7	U	0.0057	U	0.0011	U	0.00098	U
Styrene	mg/Kg	260	0.0025	U	0.00072	U	0.00065	U	0.00063	U	0.0012	U	0.00063	U	0.00066	U	5.7	U	0.0041	U	0.00078	U	0.0007	U
Tetrachloroethene	mg/Kg	5	0.0031	U	0.00092	U	0.00083	U	0.00081	U	0.0015	U	0.00081	U	0.00085	U	6.6	U	0.0052	U	0.001	U	0.00089	U
Toluene	mg/Kg	91000	0.0034	U	0.00099	U	0.00089	U	0.00087	U	0.0056	J	0.00087	U	0.00091	U	4	U	0.016	J	0.0029	J	0.00096	U
trans-1,2-Dichloroethene	mg/Kg	720	0.0028	U	0.00081	U	0.00073	U	0.00071	U	0.0013	U	0.00071	U	0.00075	U	5.9	U	0.0046	U	0.00087	U	0.00078	U
trans-1,3-Dichloropropene	mg/Kg	/	0.0028	U	0.00081	U	0.00073	U	0.00071	U	0.0013	U	0.00071	U	0.00075	U	4.4	U	0.0046	U	0.00087	U	0.00078	U TT
Trichlorothene Trichlorothene	mg/Kg	20	0.003	U	0.00089	U	0.00081	U	0.00078	U II	0.0014	U	0.00079	U II	0.00082	U	5.7	U II	0.0051	U	0.0034	J	0.00086	T T
Trichlorofluoromethane	mg/Kg	340000	0.0042	U	0.0012	U	0.0011	U	0.0011	U	0.002	U	0.0011	U	0.0011	U	8.3	U TT	0.0071	U	0.0013	U	0.0012	U
Vinyl chloride	mg/Kg	7	0.0022	U	0.00064	U	0.00058	U	0.00056	U	0.001	U	0.00056	U	0.00059	U	5.7	U TT	0.0036	U	0.00069	U	0.00062	U
Xylene (total)	mg/Kg	170000	0.01	U	0.003	U	0.0027	U	0.0027	LU	0.0063	J	0.0027	U	0.0028	U	18	U	0.017	U	0.0091	J	0.0029	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

		1	BW-01	1	BW-01		BW-01		BW-02		BW-02	- 1	BW-02	- 1	BW-02	1	BW-03	1	BW-03		BW-03		BW-03	
Constituent			05/19/0		05/19/08	2	05/19/03		05/15/08		05/15/08		05/15/08		05/15/08	.	05/14/03		05/14/08	2	05/14/08		05/14/03	
of	Units	Criterion ⁽¹⁾	Fill	o .	Mat	,	Sand	U	Fill	•	Mat		Sand	'	Clay	'	Fill		Mat	'	Sand	9	Clay	,
Interest			Primar	17	Primary	,	Primary	17	Primary		Primary	.,	Primary	,	Primarv		Primary	17	Primary	,	Primary	7	Primary	£7
		Sample Depth	0.0-7.0		10.0-16.0	ft	18.0-21.0		0.0-9.75		10.0-12.0		16.5-21.7		24.0-26.0	ft	0.0-6.25		10.0-12.0		16.0-18.0		22.0-24.0	/
	VOC	Sample Depth	6.5-7.5		11.0-12.0		19.0-20.0		9.0-9.75		10.0-12.0		21.0-21.7		25.0-26.0		6.0-6.25		11.0-12.0		17.0-18.0		23.0-24.0	
Semivolatile Organics	, 66	Sumpre Beptin	0.2 7.2		11.0 12.0	10	15.0 20.0	10	210 2110 1		10.0 11.0	10	21.0 21.7	10	20.0 20.0	10	0.0 0.22		11.0 12.0	10	17.0 10.0	10	2310 2410	
1,1'-Biphenyl	mg/Kg	34000	0.025	U	0.092	U	0.021	U	0.044	ī	0.028	U	0.089	U	0.023	U	4.6	ΙīΙ	4.3	IJ	0.69	Īī	0.023	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.027	U	0.1	U	0.023	U	0.025	U	0.031	U	0.097	U	0.025	U	3	U	4.7	U	0.64	U	0.025	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.027	U	0.14	U	0.032	U	0.035	U	0.042	U	0.13	U	0.035	U	4.1	U	6.5	U	0.89	U	0.034	U
2,4,6-Trichlorophenol	mg/Kg	74	0.036	U	0.14	U	0.031	U	0.034	U	0.041	Ü	0.13	U	0.034	U	4	U	6.3	U	0.87	U	0.034	U
2,4-Dichlorophenol	mg/Kg	2100	0.013	U	0.05	U	0.011	U	0.012	U	0.015	U	0.048	U	0.013	Ū	1.5	U	2.3	U	0.32	U	0.012	U
2,4-Dimethylphenol	mg/Kg	14000	0.019	U	0.072	U	0.9	Ť	0.018	U	0.77	1	4.8	 	0.018	U	2.2	U	280	Ť	5.4	J	0.018	U
2,4-Dinitrophenol	mg/Kg	1400	0.53	U	2.	U	0.45	IJ	0.5	U	0.6	U	1.9	IJ	0.5	U	59	U	93	IJ	13	U	0.49	U
2,4-Dinitrotoluene	mg/Kg	3	0.023	U	0.087	U	0.02	U	0.022	U	0.026	Ü	0.084	U	0.022	U	2.6	U	4.1	U	0.55	U	0.022	U
2,6-Dinitrotoluene	mg/Kg	3	0.029	U	0.11	U	0.025	U	0.027	U	0.033	U	0.1	U	0.027	Ü	3.2	U	5.1	U	0.69	U	0.027	U
2-Chloronaphthalene	mg/Kg		0.026	U	0.097	U	0.022	U	0.024	U	0.03	U	0.094	U	0.024	U	2.9	U	4.5	U	0.62	U	0.024	U
2-Chlorophenol	mg/Kg	2200	0.023	U	0.084	U	0.019	U	0.021	Ū	0.026	U	0.082	Ü	0.021	U	2.5	U	3.9	U	0.54	Ü	0.021	U
2-Methylnaphthalene	mg/Kg	2400	0.025	U	0.093	U	0.021	U	0.27	J	0.056	J	0.09	U	0.023	U	35	J	16	J	5.3	J	0.023	U
2-Methylphenol	mg/Kg	3400	0.028	U	0.1	U	2.4	Ť	0.031	J	0.032	U	6.2		0.026	U	3.1	U	180		3.2	J	0.026	U
2-Nitroaniline	mg/Kg	23000	0.027	U	0.1	U	0.023	U	0.025	U	0.031	U	0.098	U	0.025	U	3	U	4.7	U	0.65	U	0.025	U
2-Nitrophenol	mg/Kg		0.036	U	0.13	U	0.03	U	0.033	U	0.041	U	0.13	U	0.033	U	4	U	6.2	U	0.85	U	0.033	U
3,3'-Dichlorobenzidine	mg/Kg	4	0.1	U	0.38	U	0.086	U	0.094	U	0.12	U	0.37	Ü	0.094	Ū	11	U	18	U	2.4	U	0.094	U
3-Nitroaniline	mg/Kg		0.039	U	0.14	U	0.033	U	0.036	U	0.044	U	0.14	U	0.036	U	4.3	U	6.7	U	0.92	U	0.036	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.32	U	1.2	U	0.27	U	0.3	U	0.36	U	1.1	U	0.3	U	35	U	55	U	7.6	U	0.29	U
4-Bromophenylphenyl ether	mg/Kg		0.02	U	0.075	U	0.017	U	0.019	U	0.023	U	0.073	U	0.019	U	2.3	U	3.5	U	0.48	U	0.019	U
4-Chloro-3-methylphenol	mg/Kg		0.027	U	0.1	U	0.023	U	0.026	U	0.031	U	0.099	U	0.026	U	3.1	U	4.8	U	0.65	U	0.025	U
4-Chloroaniline	mg/Kg		0.022	U	0.083	U	0.019	U	0.021	U	0.025	U	0.08	U	0.021	U	2.5	U	3.9	U	0.53	U	0.021	U
4-Chlorophenyl phenyl ether	mg/Kg		0.039	U	0.14	U	0.033	U	0.036	U	0.044	U	0.14	U	0.036	U	4.3	U	6.8	U	0.92	U	0.036	U
4-Methylphenol	mg/Kg	340	0.028	U	0.1	U	11		0.08	J	0.032	U	29		0.026	U	8.8	J	490		13		0.026	U
4-Nitroaniline	mg/Kg		0.019	U	0.07	U	0.016	U	0.018	U	0.022	U	0.068	U	0.018	U	2.1	U	3.3	U	0.45	U	0.018	U
4-Nitrophenol	mg/Kg		0.035	U	0.13	U	0.03	U	0.033	U	0.04	U	0.13	U	0.033	U	3.9	U	6.1	U	0.84	U	0.032	U
Acenaphthene	mg/Kg	37000	0.023	U	0.087	U	0.02	U	0.12	J	0.027	U	0.084	U	0.022	U	11	J	4.1	U	2.3	J	0.022	U
Acenaphthylene	mg/Kg	300000	0.026	U	0.097	U	0.022	U	0.044	J	0.03	U	0.094	U	0.024	U	2.9	U	4.6	U	0.62	U	0.024	U
Acetophenone	mg/Kg	5	0.027	U	0.1	U	0.023	U	0.025	U	0.031	U	0.099	U	0.025	U	3	U	4.8	U	0.65	U	0.025	U
Anthracene	mg/Kg	30000	0.046	J	0.095	U	0.022	U	0.1	J	0.029	U	0.092	U	0.024	U	5.9	J	4.6	J	1.5	J	0.024	U
Atrazine	mg/Kg	2400	0.031	U	0.12	U	0.026	U	0.029	U	0.035	U	0.11	U	0.029	U	3.5	U	5.4	U	0.74	U	0.029	U
Benzaldehyde	mg/Kg	68000	0.048	U	0.18	U	0.041	U	0.044	U	0.054	U	0.17	U	0.045	U	5.3	U	8.3	U	1.1	U	0.044	U
Benzo(a)anthracene	mg/Kg	2	0.19	J	0.066	U	0.015	U	0.14	J	0.02	U	0.064	U	0.017	U	2	U	3.1	U	0.42	U	0.016	U
Benzo(a)pyrene	mg/Kg	0.2	0.19	J	0.052	U	0.012	U	0.14	J	0.016	U	0.05	U	0.013	U	1.5	J	2.4	U	0.33	U	0.013	U
Benzo(b)fluoranthene	mg/Kg	2	0.31	J	0.064	U	0.015	U	0.22	J	0.02	U	0.062	U	0.016	U	2.3	J	3	U	0.41	U	0.016	U
Benzo(ghi)perylene	mg/Kg	30000	0.13	J	0.057	U	0.013	U	0.11	J	0.017	U	0.055	U	0.014	U	1.7	U	2.7	U	0.37	U	0.014	U
Benzo(k)fluoranthene	mg/Kg	23	0.014	U	0.054	U	0.012	U	0.013	U	0.016	U	0.052	U	0.013	U	1.6	U	2.5	U	0.34	U	0.013	U
Bis(2-chloroethoxy)methane	mg/Kg		0.021	U	0.078	U	0.018	U	0.02	U	0.024	U	0.076	U	0.02	U	2.3	U	3.7	U	0.5	U	0.019	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.01	U	0.038	U	0.0086	U	0.0094	U	0.012	U	0.037	U	0.0094	U	1.1	U	1.8	U	0.24	U	0.0094	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.035	U	0.13	U	0.029	U	0.032	U	0.039	U	0.12	U	0.032	U	3.8	U	6	U	0.82	U	0.032	U
Butyl benzyl phthalate	mg/Kg	14000	0.036	U	0.13	U	0.031	U	0.034	U	0.041	U	0.13	U	0.034	U	4	U	6.3	U	0.86	U	0.033	U
Caprolactam	mg/Kg	340000	0.085	U	0.32	U	0.072	U	0.079	U	0.097	U	0.31	U	0.079	U	9.5	U	15	U	2	U	0.079	U
Carbazole	mg/Kg	96	0.025	J	0.069	U	0.016	U	0.088	J	0.021	U	0.067	U	0.017	U	7	J	4.7	J	1.2	J	0.017	U
Chrysene	mg/Kg	230	0.19	J	0.066	U	0.015	U	0.14	J	0.02	U	0.064	U	0.017	U	2	U	3.1	U	0.43	U	0.017	U
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.036	J	0.11	U	0.024	U	0.027	U	0.032	U	0.1	U	0.027	U	3.2	U	5	U	0.68	U	0.026	U
Dibenzofuran	mg/Kg		0.025	U	0.092	U	0.021	U	0.13	J	0.028	U	0.09	U	0.023	U	14	J	4.8	J	1.6	J	0.023	U
Diethyl phthalate	mg/Kg	550000	0.04	U	0.15	U	0.034	U	0.037	U	0.046	U	0.14	U	0.037	U	4.5	U	7	U	0.96	U	0.037	U
Dimethyl phthalate	mg/Kg		0.025	U	0.095	U	0.022	U	0.024	U	0.029	U	0.092	U	0.024	U	2.8	U	4.4	U	0.61	U	0.024	U
Di-n-butyl phthalate	mg/Kg	68000	0.075	U	0.28	U	0.063	U	0.069	U	0.085	U	0.27	U	0.07	U	8.3	U	13	U	1.8	U	0.069	U
Di-n-octyl phthalate	mg/Kg	27000	0.031	U	0.12	U	0.027	U	0.029	U	0.036	U	0.11	U	0.029	U	3.5	U	5.5	U	0.75	U	0.029	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

<u></u>		l I	DXV 01		DW 01		DW 01		DW 02		DXV 02		DW 02		DW 02		DW 02		DXX 02		DW 02		DW 02	
Constituent			BW-01	0	BW-01		BW-01	,	BW-02	,	BW-02	,	BW-02		BW-02		BW-03		BW-03		BW-03	,	BW-03	
of	Units	Criterion ⁽¹⁾	05/19/08	5	05/19/08		05/19/08	•	05/15/08	•	05/15/08	•	05/15/08	•	05/15/08	•	05/14/08	5	05/14/08	5	05/14/08	'	05/14/08	•
Interest			Fill		Mat		Sand		Fill		Mat		Sand		Clay		Fill		Mat		Sand		Clay	
		C1- D41-	Primary		Primary	e ₄	Primary		Primary	94	Primary	r C4	Primary		Primary	e ₄	Primary		Primary		Primary	C4	Primary	′
	VOC	Sample Depth Sample Depth	0.0-7.0 f 6.5-7.5 f		10.0-16.0 11.0-12.0		18.0-21.0 19.0-20.0		0.0-9.75 f 9.0-9.75 f		10.0-12.0 10.0-11.0		16.5-21.7 21.0-21.7		24.0-26.0 25.0-26.0		0.0-6.25 t 6.0-6.25 t		10.0-12.0 11.0-12.0		16.0-18.0 17.0-18.0		22.0-24.0 23.0-24.0	
Semivolatile Organics (Continued)	VOC	Sample Depth	0.5-7.5 1	ı	11.0-12.0	Ιι	19.0-20.0	Ιι	9.0-9.751	ı	10.0-11.0	Ιι	21.0-21.7	11	25.0-20.0	Ιι _	0.0-0.25	Ιι	11.0-12.0	11	17.0-18.0	1ι	23.0-24.0	11
Fluoranthene	mg/Kg	24000	0.38	T	0.11	U	0.025	U	0.41	T	0.033	U	0.1	ΙI	0.027	U	4.8	Т	5.1	II	0.69	ΙI	0.027	U
Fluorene	mg/Kg	24000	0.022	U	0.081	U	0.023	U	0.41	Ī	0.033	U	0.079	II	0.027	U	8.2	J	3.8	U	1.2	ī	0.027	U
Hexachlorobenzene	mg/Kg	1	0.022	U	0.081	U	0.019	U	0.10	II	0.023	U	0.079	II	0.025	U	3	U	4.7	U	0.65	U	0.025	U
Hexachlorobutadiene	mg/Kg	25	0.028	U	0.1	U	0.023	U	0.026	II	0.031	U	0.099	U	0.026	U	3.1	U	4.8	U	0.66	U	0.025	U
Hexachlorocyclopentadiene	mg/Kg	110	0.021	U	0.077	U	0.018	U	0.019	U	0.024	U	0.075	U	0.019	U	2.3	U	3.6	U	0.49	U	0.019	U
Hexachloroethane	mg/Kg	140	0.02	U	0.075	U	0.017	U	0.019	U	0.023	U	0.073	U	0.019	Ü	2.2	U	3.5	U	0.48	U	0.019	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.11	J	0.059	U	0.014	U	0.074	J	0.018	U	0.058	U	0.015	U	1.8	U	2.8	U	0.38	U	0.015	U
Isophorone	mg/Kg	2000	0.025	U	0.093	U	0.021	U	0.023	U	0.028	U	0.09	U	0.023	U	2.8	U	4.4	U	0.6	U	0.023	U
Naphthalene	mg/Kg	17	0.91		0.6	J	0.019	U	3.4		1.9		0.079	U	0.02	U	2000		2000		270		0.02	U
Nitrobenzene	mg/Kg	340	0.011	U	0.042	U	0.0095	U	0.01	U	0.013	U	0.04	U	0.01	U	1.2	U	2	U	0.27	U	0.01	U
N-Nitrosodiphenylamine	mg/Kg	390	0.024	U	0.091	U	0.021	U	0.023	U	0.028	U	0.088	U	0.023	U	2.7	U	4.3	U	0.58	U	0.023	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.011	U	0.041	U	0.0094	U	0.01	U	0.013	U	0.04	U	0.01	U	1.2	U	1.9	U	0.26	U	0.01	U
Pentachlorophenol	mg/Kg	10	0.034	U	0.12	U	0.028	U	0.031	U	0.038	U	0.12	U	0.031	U	3.7	U	5.8	U	0.8	U	0.031	U
Phenanthrene	mg/Kg	300000	0.31	J	0.08	U	0.018	U	0.51		0.041	J	0.078	U	0.02	U	18	J	8	J	2.3	J	0.02	U
Phenol	mg/Kg	210000	0.027	U	0.1	U	51		0.025	U	0.031	U	20		0.025	U	3	U	65	J	5.2	J	0.025	U
Pyrene	mg/Kg	18000	0.34	J	0.1	U	0.023	U	0.31	J	0.031	U	0.099	U	0.026	U	3.1	U	4.8	U	0.66	U	0.025	U
Polychlorinated Dioxins/Furans				_																				
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.0089		0.0011	QJ	0.00035	J	0.0042	J	0.0037	J	0.0002	QJ			0.059		0.012	Q	0.0065	U		┷
1,2,3,4,6,7,8-HpCDF	ug/Kg		1.5		0.023	J	0.013		0.025		0.00053	QJ	0.002	J			0.98		0.23		0.012			
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.055	ļ.,	0.0017	J	0.00041	QJ	0.00079	J	0.0077	U	0.0061	U			0.035		0.0086	Q	0.0065	U		₩
1,2,3,4,7,8-HxCDD	ug/Kg		0.00079	J	0.025	U	0.0058	U	0.0063	U	0.0077	U	0.0061	U			0.0039	J	0.032	U	0.0065	U		₩
1,2,3,4,7,8-HxCDF	ug/Kg		0.55	т	0.0084	J	0.0043	J	0.0091	Q	0.0077	U	0.00056	J			0.35	Q	0.11	Q	0.0051	J		+
1,2,3,6,7,8-HxCDD	ug/Kg		0.0025	J	0.025	U	0.0058	U	0.0063	U	0.0077	U	0.0061	U			0.013		0.032	U	0.0065	U		+-
1,2,3,6,7,8-HxCDF	ug/Kg		0.1	Q	0.0015	QJ U	0.00064 0.0058	QJ U	0.0013 0.0063	J	0.0077 0.0077	U	0.00019 0.0061	J			0.046	т т	0.015 0.032	Q U	0.00069 0.0065	QJ		+
1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	ug/Kg ug/Kg		0.0001	J Q	0.025 0.025	U	0.0058	U	0.0063	II	0.0077	U	0.0061	U		\vdash	0.0062	U	0.032	U	0.0065	U		+
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PCDD	ug/Kg ug/Kg		0.00088	OJ	0.025	U	0.0058	U	0.0063	II	0.0077	U	0.0061	U			0.0057	J	0.032	U	0.0065	U		+
1,2,3,7,8-PCDF	ug/Kg ug/Kg		0.0011	QJ	0.025	U	0.0058	U	0.0003	Ī	0.0077	II	0.0061	II			0.0068	J	0.032	Q	0.0065	U		+
2,3,4,6,7,8-HxCDF	ug/Kg		0.014		0.00068	QJ	0.00038	I	0.00029	QJ	0.0077	U	0.0061	U			0.0008	3	0.0018	J	0.0065	U		+
2,3,4,7,8-PCDF	ug/Kg		0.046			QJ	0.00023	QJ	0.00077	I	0.0077	U	0.0061	U			0.039	Q		J	0.00055	QJ		+
2,3,7,8-TCDD	ug/Kg		0.00016	QJ	0.0051	U	0.0012	U	0.0013	Ť	0.0015	U	0.0012	U			0.00093	QJ		U	0.0013	U		+
2,3,7,8-TCDF	ug/Kg		0.003	Q		QJ	0.00027	QJ		QJ	0.00016	QJ		U			0.0061	-	0.004	Q	0.00074	QJ		1
OCDD	ug/Kg		0.16		0.027	J	0.0042	J	0.13		0.13		0.0019	J			3.5	В	0.34	В	0.014	В		+
OCDF	ug/Kg		3.3		0.066		0.029		0.048		0.00092	J	0.009	J			1.5		0.28		0.016			
Total HpCDD	ug/Kg		0.022		0.004	QJ	0.001	QJ	0.031		0.012		0.00061	QJ			0.13		0.028	J	0.0015	QJ		
Total HpCDF	ug/Kg		1.7	Q	0.03	QJ	0.016	Q	0.03	Q	0.00053	QJ	0.0023	QJ			1.2		0.28	Q	0.013	Q		
Total HxCDD	ug/Kg		0.016	J	0.025	U	0.0015	QJ	0.0027	QJ	0.0028	J	0.00048	QJ			0.077	Q	0.012	Q	0.0019	QJ		
Total HxCDF	ug/Kg		1.3	Q	0.019	QJ	0.009	QJ	0.02	Q	0.00025	J	0.0013	J			0.78	Q	0.24	Q	0.011	QJ		
Total PeCDD	ug/Kg		0.013	QJ	0.025	U	0.0014	QJ	0.00026	J	0.00043	QJ	0.00034	J			0.23	Q	0.03	Q	0.0024	QJ		
Total PeCDF	ug/Kg		0.55	Q		QJ	0.0029	QJ	0.012	QJ	0.00026	J	0.0061	U			0.43	Q	0.12	J	0.0033	QJ		$oldsymbol{\perp}$
Total TCDD	ug/Kg		0.012	Q		QJ	0.00079	QJ	0.0024	Q	0.00096	QJ	0.0012	U		Ш	0.068	Q	0.028	Q	0.0027	Q		
Total TCDF	ug/Kg		0.23	Q	0.0047	QJ	0.001	QJ	0.0081	Q	0.002	QJ	0.0012	U			0.3	Q	0.063	Q	0.0014	QJ		<u> </u>
Polychlorinated Dioxins/Furans (2,3,		ents)							1		1									1		,		4
1,2,3,4,6,7,8-HpCDD	0.01		8.90E-05	+			3.50E-06	-	4.20E-05		3.70E-05		 2 00E 05	\vdash		\vdash	5.90E-04			1		$\vdash \vdash$		+
1,2,3,4,6,7,8-HpCDF	0.01		1.50E-02		2.30E-04		1.30E-04	1	2.50E-04				2.00E-05	igoplus		\vdash	9.80E-03	1	2.30E-03		1.20E-04	$\vdash \vdash$		+
1,2,3,4,7,8,9-HpCDF	0.01		5.50E-04		1.70E-05			-	7.90E-06								3.50E-04			1				+
1,2,3,4,7,8-HxCDD	0.10		7.90E-05		9.40E.04		4 20E 04	1				1	 5 (OE 05	\vdash		$\vdash\vdash$	3.90E-04	1		}	 5 10E 04	\vdash		+
1,2,3,4,7,8-HxCDF	0.10		5.50E-02	+	8.40E-04		4.30E-04	1				+	5.60E-05	+		\vdash	1 205 02			1	5.10E-04			+-
1,2,3,6,7,8-HxCDD	0.10		2.50E-04											$oldsymbol{oldsymbol{\sqcup}}$			1.30E-03			1				

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

			BW-01		BW-01		BW-01		BW-02		BW-02		BW-02		BW-02		BW-03		BW-03		BW-03	I	BW-03	
Constituent		(1)	05/19/08		05/19/08	1	05/19/08		05/15/08	:	05/15/08		05/15/08		05/15/08	:	05/14/08	1	05/14/08		05/14/08		05/14/03	
of	Units	Criterion ⁽¹⁾	Fill		Mat		Sand	'	Fill		Mat	,	Sand		Clay	,	Fill	,	Mat	'	Sand		Clay	,
Interest			Primary		Primary		Primary		Primary		Primary	,	Primary		Primary		Primary		Primary		Primary	7	Primary	v
		Sample Depth	0.0-7.0 f		10.0-16.0	ft	18.0-21.0	ft	0.0-9.75	 Ft	10.0-12.0		16.5-21.7	ft	24.0-26.0	ft	0.0-6.25 1		10.0-12.0		16.0-18.0		22.0-24.0	
		Sample Depth	6.5-7.5 f		11.0-12.0		19.0-20.0		9.0-9.75		10.0-11.0		21.0-21.7		25.0-26.0		6.0-6.25 1		11.0-12.0		17.0-18.0		23.0-24.0	
Polychlorinated Dioxins/Furans (2,3,																								
1,2,3,6,7,8-HxCDF	0.10								1.30E-04				1.90E-05				4.60E-03					Т		\Box
1,2,3,7,8,9-HxCDD	0.10		1.00E-04														6.20E-04							
1,2,3,7,8,9-HxCDF	0.10																							
1,2,3,7,8-PCDD	1.00																5.70E-03							
1,2,3,7,8-PCDF	0.05		7.00E-04						1.45E-05								3.40E-04							
2,3,4,6,7,8-HxCDF	0.10		2.80E-03				2.30E-05										1.70E-03		4.70E-04					
2,3,4,7,8-PCDF	0.50		2.30E-02						3.85E-04										5.50E-03					
2,3,7,8-TCDD	1.00								1.30E-03															
2,3,7,8-TCDF	0.10																6.10E-04							T
OCDD	0.0001		1.60E-05		2.70E-06		4.20E-07		1.30E-05		1.30E-05		1.90E-07				3.50E-04		3.40E-05		1.40E-06			
OCDF	0.0001		3.30E-04		6.60E-06		2.90E-06		4.80E-06		9.20E-08		9.00E-07				1.50E-04		2.80E-05		1.60E-06			
Total 2,3,7,8-TCDD Equivalents ⁽²⁾	ug/Kg	1	9.79E-02		1.10E-03		5.90E-04		2.15E-03		5.01E-05		9.61E-05				2.65E-02		8.33E-03		6.33E-04			
Polychlorinated Biphenyls (Aroclors)																							
Aroclor 1016	mg/Kg	1	0.0034	U	0.012	U	0.0029	U	0.0031	U	0.0038	U	0.003	U			0.0038	U	0.012	U	0.0032	U		$\overline{}$
Aroclor 1221	mg/Kg	1	0.0043	U	0.016	U	0.0037	U	0.004	U	0.0049	U	0.0039	U			0.0048	U	0.015	U	0.0041	U		+
Aroclor 1232	mg/Kg	1	0.0039	U	0.014	U	0.0033	U	0.0036	U	0.0044	U	0.0035	U			0.0043	U	0.014	U	0.0037	U		+
Aroclor 1242	mg/Kg	1	0.0037	U	0.014	U	0.0032	U	0.0034	U	0.0042	U	0.0033	U			0.0041	U	0.013	U	0.0035	U		+
Aroclor 1248	mg/Kg	1	0.0021	U	0.0079	U	0.0018	U	0.002	U	0.0024	U	0.0019	U			0.052		0.0076	U	0.002	U		+
Aroclor 1254	mg/Kg	1	0.0032	U	0.012	U	0.0028	U	0.003	U	0.0037	U	0.0029	U			0.0036	U	0.011	U	0.003	U		+
Aroclor 1260	mg/Kg	1	0.0032	U	0.012	U	0.0028	U	0.003	U	0.0037	Ü	0.0029	U			0.022	JP	0.011	U	0.003	U		+
Aroclor 1262	mg/Kg	1	0.005	U	0.018	U	0.0042	U	0.0046	U	0.0056	U	0.0044	U			0.0055	U	0.018	U	0.0047	U		+
Aroclor 1268	mg/Kg	1	0.0029	U	0.011	U	0.0025	U	0.0027	U	0.0033	U	0.0026	U			0.0032	U	0.01	U	0.0027	U		1
Metals																			•			•		
Aluminum	mg/Kg		18200		2990		3700		16000		11900		3110		10100		27600	J	10800	J	839	J	8790	J
Antimony	mg/Kg	450	1.2	U	1.1	BJ	0.24	BJ	1.2	U	0.14	U	0.11	U	0.12	U	1.4	U	1.1	В	0.12	U	0.12	U
Arsenic	mg/Kg	19	3.1	U	2.3	В	4.2		2.9	U	37.2		1.5		4.5		3.5	U	1.2	В	1	В	4.5	
Barium	mg/Kg	59000	45.9		12	В	23	В	57.1		43		20	В	113		132		15.9	В	19.3	В	29.6	
Beryllium	mg/Kg	140	0.042	U	0.39	В	0.24	В	0.039	U	0.59	В	0.32	В	0.73		0.047	U	0.81	В	0.066	В	0.67	
Cadmium	mg/Kg	78	0.42	В	0.25	В	0.055	U	1.1		0.75	В	0.08	В	0.67		2.1		0.36	В	0.061	U	0.5	В
Calcium	mg/Kg		109000		8220		1710		94600		2180		952		4680		239000		16600		2500		3110	
Chromium ⁽³⁾	mg/Kg	120000	15900		55.7		33.5		14100	J	342	J	20.3	J	18.3	J	25200	J	1070	J	102	J	13.7	J
Chromium (Hexavalent)(3)	mg/Kg	20	3820		0.4	U	3.3		2100		50.2		0.4	U	0.4	U	2830		12.4		4.5		0.4	U
Cobalt	mg/Kg	590	55.9		4.2	В	6.1		48.2		6.1	В	2.3	В	10.3		122		7.3	В	1.6	В	10	
Copper	mg/Kg	45000	21.4		6.3	В	28.2		19.8		16		5		22.1		21.4		4.6	В	1.4	В	16.8	
Iron	mg/Kg		45500		10600		8560		39300		35300		5930		27700		57200		13700		2050		19800	
Lead	mg/Kg	800	101	J	6.4	J	2.4	J	88.9		19.7		3.7		12.4		110		125		8.8		10.3	
Magnesium	mg/Kg		17400		6640		1790		14600		4250		652		7160		37400		3560		299	В	5790	 _'
Manganese	mg/Kg	5900	457		254		71.6		458		270		48.1		557		915	J	166	J	19.3	J	429	J
Mercury	mg/Kg	65	0.12		0.056	В	0.0083	U	0.2		0.054		0.016	В	0.022	В	1.3		3		0.099		0.02	В
Nickel	mg/Kg	23000	175		6.1	В	13	\Box	145	J	17.8	J	4.7	BJ	22.4	J	583	J	50.6	J	4.2	BJ	20.2	J
Potassium	mg/Kg		515	В	815	В	497	В	751	L	2050		473	В	1530	<u> </u>	292	В	500	В	372	В	1300	4
Selenium	mg/Kg	5700	0.39	U	1.5	U	0.33	U	0.36	U	0.98		0.35	U	0.42	В	0.43	U	1.6	В	0.37	U	0.36	U
Silver	mg/Kg	5700	0.2	BJ	0.35	BJ	0.051	BJ	0.23	В	0.11	В	0.045	U	0.14	В	0.46	BJ		BJ	0.067	BJ	0.19	BJ
Sodium	mg/Kg		1080	Е	13000	.	608	L_	882		2150		553	В	1340		956		2920	ļ.,	208	В	1250	+_
Thallium	mg/Kg	79	6.1		1.6	U	0.37	U	4.5	 	0.84	В	0.39	U	0.41	U	9.4		1.5	U	0.42	U	0.41	В
Vanadium	mg/Kg	1100	295		11.8	В	14.7		280	-	29.1	1	9.5		22.6		513	<u> </u>	28.7	Ļ	4.4	В	16.1	+-
Zinc	mg/Kg	110000	197		23		24.2		167		68.1		9.5		60		211	J	29.8	J	5	J	55.1	J

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	BW-01 05/19/03 Fill Primary	8	BW-01 05/19/08 Mat Primary	,	BW-01 05/19/08 Sand Primary		BW-02 05/15/08 Fill Primary		BW-02 05/15/08 Mat Primary	3	BW-02 05/15/08 Sand Primary		BW-02 05/15/08 Clay Primary	BW-03 05/14/08 Fill Primary	3	BW-03 05/14/08 Mat Primary	3	BW-03 05/14/08 Sand Primary	3	BW-03 05/14/08 Clay Primary	
		Sample Depth	0.0-7.0 1		10.0-16.0		18.0-21.0		0.0-9.75		10.0-12.0	ft	16.5-21.7		24.0-26.0 ft	0.0-6.25		10.0-12.0		16.0-18.0		22.0-24.0 f	
		Sample Depth	6.5-7.5	ft	11.0-12.0	ft	19.0-20.0	ft	9.0-9.75	ft	10.0-11.0	ft	21.0-21.7	ft	25.0-26.0 ft	6.0-6.25	ft	11.0-12.0	ft	17.0-18.0	ft	23.0-24.0 f	it
Toxicity Characteristic Leacing Proce	dure ⁽⁴⁾																						
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		0.035	U	0.035	U	0.035	U		
1,2-Dichloroethane	mg/L	0.5	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U		0.026	U	0.026	U	0.026	U		
1,4-Dichlorobenzene	mg/L	7.5	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U		0.0046	U	0.0046	U	0.047	J		
2,4,5-Trichlorophenol	mg/L	400	0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U		0.0041	U	0.0041	U	0.0041	U		
2,4,6-Trichlorophenol	mg/L	2	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U		0.0026	U	0.0026	U	0.0026	U		
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U		0.0028	U	0.0028	U	0.0028	U		
2-Butanone	mg/L	200	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U		0.029	U	0.029	U	0.029	U		
Benzene	mg/L	0.5	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U		0.033	U	0.033	U	0.033	U		
Carbon Tetrachloride	mg/L	0.5	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U		0.037	U	0.037	U	0.037	U		
Chlorobenzene	mg/L	100	0.028	U	0.028	U	0.029	J	0.028	U	0.028	U	0.028	U		0.028	U	0.028	U	0.028	U		
Chloroform	mg/L	6	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U		0.031	U	0.031	U	0.031	U		
Cresols	mg/L	200	0.0089	U	0.0089	U	1.6		0.0089	U	0.0089	U	0.86			0.26		5.6		0.44			
Hexachlorobenzene	mg/L	0.13	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U		0.0049	U	0.0049	U	0.0049	U		
Hexachlorobutadiene	mg/L	0.5	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U		0.0033	U	0.0033	U	0.0033	U		
Hexachloroethane	mg/L	3	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U		0.0036	U	0.0036	U	0.0036	U		
Nitrobenzene	mg/L	2	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U		0.0056	U	0.0056	U	0.0056	U		
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U		0.005	U	0.005	U	0.005	U		
Pyridine	mg/L	5	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U		0.011	U	0.011	U	0.011	U		
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U		0.023	U	0.023	U	0.023	U		
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		0.035	U	0.035	U	0.035	U		
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U		0.038	U	0.038	U	0.038	U		
Arsenic	mg/L	5	0.16	В	0.15	В	0.18	В	0.15	В	0.24	В	0.15	В		0.18	В	0.17	В	0.15	В		
Barium	mg/L	100	0.24	В	0.018	В	0.065	В	0.35	В	0.034	В	0.15	В		0.19	BJ	0.088	В	0.15	В		i
Cadmium	mg/L	1	0.0012	U	0.0012	U	0.0024	В	0.0012	U	0.0012	U	0.0012	U		0.0012	U	0.0012	U	0.0012	U		
Chromium	mg/L	5	14.6		0.019	В	0.16	В	4.8		0.031	В	0.038	В		43.5	J	0.15	В	0.13	В		
Lead	mg/L	5	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U		0.013	U	0.034	В	0.023	В		
Mercury	mg/L	0.2	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U		0.000064	В	0.000055	U	0.000055	U		
Selenium	mg/L	1	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U		0.033	В	0.015	U	0.015	U		
Silver	mg/L	5	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0033	В	0.0025	U		0.0025	U	0.0025	U	0.0025	U		
RCRA Characteristics and Indicators																							
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>12.51</td><td></td><td>7.53</td><td></td><td>4.12</td><td></td><td>12.81</td><td></td><td>8.26</td><td></td><td>4.34</td><td></td><td></td><td>12.45</td><td></td><td>7.55</td><td></td><td>5.64</td><td></td><td></td><td></td></ph<12.5<>	12.51		7.53		4.12		12.81		8.26		4.34			12.45		7.55		5.64			
Cyanide	mg/Kg	23000	0.43	В	0.48	U	0.11	U	3.4	J	0.39	BJ	0.13	BJ		1.8	J	2	В	0.32	BJ		
Total Sulfide (Reactivity)	mg/Kg		16.7	U	80.8	В	27.9	В	20.2	В	1110		29.4	В		18.6	U	767		41.4			
Ignitability	None		No		No		No		No				No			No		No		No			
Oxidation Reduction Potential	mV		312		381		419		288		200		435		422								
Percent Solids	%		73.6		19.8		85.9		79.2		64.8		81.7		79	66.1		20.9		77.2		78.8	

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

KEARNY, NEW JERSEY		ı	BW-0	4	BW-04	I	BW-04		BW-04	L	BW-16	1	BW-16	1	BW-16	1	BW-16		BW-1'	, I	BW-1	7	BW-17	,
Constituent			05/08/(05/08/08		05/08/08	!	05/09/08		05/05/08		05/05/08	.	05/05/08		05/05/08	.	07/23/0		07/24/(07/24/08	
of	Units	Criterion ⁽¹⁾	Fill	<i>,</i>	Mat)	Sand	,	Clay	0	Fill	'	Fill	'	03/03/08 Mat	'	Sand	'	Fill	•	07/24/0 Mat	,,	07/24/06 Mat	3
Interest			Primar	• • • 7	Primary		Primary		Primary	:7	Primary	,	Duplicat	,	Primary		Primary		Primar	.,	Primar	• • • 7	Duplicat	to
		Sample Depth	0.0-6.33		6.33-8.0 1	4	14.0-20.0	ft	30.0-32.0	,	0.0-11.5		0.0-11.5		11.5-12.5	ft	13.5-19.5	ft	0.0-7.25	_	10.0-13.	•	10.0-13.0	
		Sample Depth	6.0-6.33		7.0-8.0 f		18.0-19.0		31.0-32.0		10.0-11.0		10.0-11.0		11.5-12.5		19.0-20.0		7.0.0-7.23		12.0-13.		12.0-13.0	
Volatile Organics	100	ватри Вериг	0.0-0.50	, It	7.0-0.0 1		10.0-17.0	11	31.0-32.0	11	10.0-11.0	10	10.0-11.0	10	11.5-12.5	16	17.0-20.0	11	7.0.0-7.2	3 I C	12.0-13.	O I C	12.0-13.0	-
1,1,1-Trichloroethane	mg/Kg	4200	0.081	U	0.0019	U	2.3	U	0.0014	ΙII	0.001	U	0.0011	U	0.0035	IJ	0.0011	IJ	0.00049	IJ	0.058	U	0.00077	IJ
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.09	U	0.0021	U	2.6	U	0.0015	IJ	0.0011	U	0.0011	U	0.0039	U	0.0012	IJ	0.00072	U	0.064	U	0.0011	IJ
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	6	0.098	U	0.0022	U	2.8	U	0.0016	U	0.0011	U	0.0013	U	0.0042	U	0.0012	U	0.00083	U	0.061	U	0.0011	U
1,1,2-Trichloroethane	mg/Kg		0.085	U	0.0019	U	2.5	U	0.0014	U	0.0012	U	0.0012	Ü	0.0036	U	0.0012	U	0.0011	U	0.07	U	0.0017	U
1,1-Dichloroethane	mg/Kg	24	0.078	U	0.0018	U	2.2	U	0.0013	U	0.00096	U	0.0011	U	0.0033	U	0.0011	U	0.00058	U	0.055	U	0.00091	U
1,1-Dichloroethene	mg/Kg	150	0.093	U	0.0021	U	2.7	U	0.0016	U	0.0012	U	0.0013	U	0.004	U	0.0013	U	0.00085	U	0.067	U	0.0013	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.082	J	0.0019	U	270		0.0014	U	0.001	U	0.0036	J	0.0035	U	0.0011	U	0.00088	U	0.059	U	0.0014	U
1,2-Dibromoethane	mg/Kg	0.04	0.083	U	0.0019	U	2.4	U	0.0014	U	0.001	U	0.0012	U	0.0035	U	0.0011	U	0.00087	U	0.059	U	0.0014	U
1,2-Dichlorobenzene	mg/Kg	59000	0.088	U	0.002	U	120		0.0015	U	0.0011	U	0.018		0.0037	U	0.013		0.0008	U	0.37		0.033	
1,2-Dichloroethane	mg/Kg	3	0.087	U	0.002	U	2.5	U	0.0015	U	0.0011	U	0.0012	U	0.0037	U	0.0012	U	0.00062	U	0.062	U	0.00097	U
1,2-Dichloropropane	mg/Kg	5	0.088	U	0.002	U	2.6	U	0.0015	U	0.0011	U	0.0012	U	0.0038	U	0.0012	U	0.00054	U	0.063	U	0.00086	U
1,3-Dichlorobenzene	mg/Kg	59000	0.084	U	0.0019	U	39		0.0014	U	0.001	U	0.0052	J	0.0036	U	0.018		0.00066	U	0.27	J	0.025	
1,4-Dichlorobenzene	mg/Kg	13	0.55		0.002	U	43		0.0015	U	0.0011	J	0.013		0.0038	U	0.033		0.0011	J	0.49		0.046	
2-Butanone	mg/Kg	44000	0.077	U	0.0018	U	2.2	U	0.0013	U	0.00096	U	0.0011	U	0.0033	U	0.0011	U	0.00088	U	0.055	U	0.0014	U
2-Hexanone	mg/Kg		0.063	U	0.0014	U	1.8	U	0.0011	U	0.00078	U	0.00089	U	0.0027	U	0.00087	U	0.00069	U	0.045	U	0.0011	U
4-Methyl-2-pentanone	mg/Kg		0.069	U	0.0016	U	2	U	0.0012	U	0.00086	U	0.00097	U	0.003	U	0.00095	U	0.00065	U	0.068	U	0.001	U
Acetone	mg/Kg		0.095	U	0.0091	U	2.7	U	0.009	J	0.0049	U	0.006	J	0.017	U	0.0077	J	0.054		0.068	U	0.0079	U
Benzene	mg/Kg	5	0.083	U	0.0035	J	2.4	U	0.0014	U	0.001	U	0.0012	U	0.0035	U	0.0011	U	0.00068	U	0.059	U	0.0011	U
Bromodichloromethane	mg/Kg	3	0.077	U	0.0018	U	2.2	U	0.0013	U	0.00096	U	0.0011	U	0.0033	U	0.0011	U	0.00056	U	0.055	U	0.00088	U
Bromoform	mg/Kg	280	0.081	U	0.0019	U	2.3	U	0.0014	U	0.001	U	0.0011	U	0.0035	U	0.0011	U	0.00044	U	0.058	U	0.0007	U
Bromomethane	mg/Kg	59	0.1	U	0.0023	U	2.9	U	0.0017	U	0.0012	U	0.0014	U	0.0043	U	0.0014	U	0.00074	U	0.072	U	0.0012	U
Carbon disulfide	mg/Kg	110000	0.098	U	0.0022	U	2.8	U	0.0016	U	0.0012	U	0.0014	U	0.0042	U	0.0013	U	0.00051	U	0.07	U	0.00081	U
Carbon tetrachloride	mg/Kg	2	0.071	U	0.0016	U	2.1	U	0.0012	U	0.00088	U	0.001	U	0.003	U	0.00098	U	0.00045	U	0.051	U	0.0007	U
Chlorobenzene	mg/Kg	7400	1.7		0.18		4.8	J	0.0015	U	0.021	.	0.03		0.019		0.023		0.014	+	0.13	J	0.015	
Chloroethane	mg/Kg	1100	0.11	U	0.0026	U	3.3	U	0.0019	U	0.0014	U	0.0016	U	0.0049	U	0.0016	U	0.0016	U	0.082	U	0.0024	U
Chloroform	mg/Kg	2	0.084	U	0.0019	U	2.4	U	0.0014	U	0.001	U	0.0012	U	0.0036	U	0.0012	U	0.00059	U	0.06	U	0.00092	U
Chloromethane	mg/Kg	12	0.088	U	0.002	U	2.6	U	0.0015	U	0.0011	U	0.0012	U	0.0038	U	0.0012	U	0.00085	U	0.063	U	0.0013	U
cis-1,2-Dichloroethene	mg/Kg	560	0.086	U	0.002	U	2.5	U	0.0014	U	0.0011	U	0.0012	U	0.0037	U	0.0012	U	0.00071	U	0.061	U	0.0011	U
cis-1,3-Dichloropropene	mg/Kg	7	0.071	U	0.0016	U	2.1	U	0.0012	U	0.00088	U	0.001	U	0.0031	U	0.00099	U	0.00068	U	0.051	U	0.0011	U
Cyclohexane	mg/Kg		0.079	U	0.0018	U	2.3	U	0.0013	U	0.00098	U	0.0011	U	0.0034	U	0.0011	U	0.00037	U	0.057	U	0.00059	U
Dibromochloromethane	mg/Kg		0.074	U	0.0017	U	2.1	U	0.0012	U	0.00091	U	0.001	U	0.0032	U	0.001	U	0.00071	U	0.053	U	0.0011	U
Dibromochloropropane Diaklara diffuoromathora	mg/Kg	320000	0.067	U	0.0015	U	1.9	U	0.0011	U	0.00083	U	0.00094	U	0.0029	U	0.00092	U	0.00075	U	0.048	U	0.0012	U
Dichlorodifluoromethane Ethylbenzene	mg/Kg	230000 110000	0.1	U	0.0023 0.0022	U	2.9	U	0.0017 0.0016	U	0.0013 0.0012	U	0.0014	U	0.0043	U	0.0014 0.0013	II.	0.00067 0.00064	U	0.073	U	0.001	U
·	mg/Kg mg/Kg	1	0.094	U	0.0022	U	2.7	U	0.0016	II	0.0012	U	0.0013	II.	0.004	U	0.0013	II.	0.00064	U	0.067	U	0.001	U
Isopropylbenzene Methyl acetate	mg/Kg		0.083	U	0.002	U	2.3	U	0.0014	U	0.0011	U	0.0012	II	0.0036	U	0.0012	II	0.0008	U	0.061	U	0.0011	U
Methylcyclohexane	mg/Kg		0.084	U	0.0019	U	2.6	U	0.0014	U	0.001	U	0.0012	U	0.0038	U	0.0012	II	0.0009	U	0.064	U	0.0014	U
Methylene chloride	mg/Kg	97	0.069	U	0.002	U	1.8	U	0.0013	ī	0.00011	JB	0.0013	ī	0.0038	JB	0.0012	JB	0.00073	I	0.004	U	0.0011	U
Methyltert-butylether	mg/Kg	320	0.001	U	0.0014	U	2.1	U	0.0010	U	0.00092	U	0.0012	IJ	0.0034	IJ	0.0011	II D	0.0013	U	0.044	U	0.0011	U
Styrene	mg/Kg	260	0.074	U	0.0017	U	2.6	U	0.0012	U	0.00091	U	0.001	U	0.0031	U	0.001	II	0.00073	U	0.053	U	0.00012	U
Tetrachloroethene	mg/Kg	5	0.007	U	0.0024	U	3	U	0.0013	U	0.0011	U	0.0012	U	0.0036	U	0.0012	II	0.00068	U	0.003	U	0.0004	U
Toluene	mg/Kg	91000	0.063	U	0.0024	U	1.8	U	0.0017	U	0.0013	U	0.0013	U	0.0044	U	0.00014	II	0.00073	U	0.074	U	0.0011	U
trans-1,2-Dichloroethene	mg/Kg	720	0.003	U	0.0014	U	2.7	U	0.0011	U	0.00078	U	0.0003	U	0.0027	U	0.00037	II	0.00073	U	0.045	U	0.00012	U
trans-1,3-Dichloropropene	mg/Kg	720	0.069	U	0.0021	U	2.7	U	0.0013	U	0.00011	U	0.00013	U	0.004	U	0.00096	II	0.0006	U	0.000	U	0.00094	U
Trichloroethene	mg/Kg	20	0.089	U	0.002	U	2.6	U	0.0012	U	0.0011	U	0.00036	U	0.0038	U	0.00030	II	0.0006	U	0.064	U	0.00074	U
Trichlorofluoromethane	mg/Kg	340000	0.13	U	0.003	U	3.7	U	0.0022	U	0.0011	U	0.0013	U	0.0055	U	0.0012	U	0.00092	U	0.092	U	0.001	U
Vinyl chloride	mg/Kg	2	0.089	U	0.002	U	2.6	U	0.0015	U	0.0010	U	0.0013	U	0.0038	U	0.0010	U	0.00047	U	0.063	U	0.00074	U
Xylene (total)	mg/Kg	170000	0.28	U	0.0064	U	8.1	U	0.0047	Ü	0.0035	U	0.004	U	0.012	U	0.0039	II	0.0022	U	0.2	U	0.0035	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	BW-04 05/08/08 Fill Primary	3	BW-04 05/08/08 Mat Primary		BW-04 05/08/08 Sand Primary		BW-04 05/09/08 Clay Primary	8	BW-16 05/05/05 Fill Primary	8 y	BW-16 05/05/05 Fill Duplicat	8 te	BW-16 05/05/08 Mat Primary	BW-16 05/05/08 Sand Primary		BW-17 07/23/08 Fill Primary		BW-17 07/24/0 Mat Primar	98 y	BW-17 07/24/08 Mat Duplicat	8 te
		Sample Depth	0.0-6.33		6.33-8.0 f		14.0-20.0		30.0-32.0		0.0-11.5		0.0-11.5		11.5-12.5 ft	13.5-19.5		0.0-7.25		10.0-13.0		10.0-13.0	
	VOC	Sample Depth	6.0-6.33	ft	7.0-8.0 ft	t l	18.0-19.0	ft	31.0-32.0	ft	10.0-11.0	ft	10.0-11.0	ft	11.5-12.5 ft	19.0-20.0	ft	7.0.0-7.25	ft	12.0-13.0) ft	12.0-13.0	ft
Semivolatile Organics	T .										T												4
1,1'-Biphenyl	mg/Kg	34000	0.2	J	0.036	U	0.18	J	0.024	U	0.022	U	0.023	U		0.021	U	0.021	U	0.044	U	0.033	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.032	U	0.039	U	0.025	U	0.027	U	0.024	U	0.025	U		0.023	U	0.022	U	0.047	U	0.036	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.044	U	0.054	U	0.034	U	0.037	U	0.033	U	0.034	U		0.032	U	0.031	U	0.065	U	0.049	U
2,4,6-Trichlorophenol	mg/Kg	74	0.043	U	0.053	U	0.034	U	0.036	U	0.032	U	0.033	U		0.031	U	0.03	U	0.064	U	0.048	U
2,4-Dichlorophenol	mg/Kg	2100	0.016	U	0.019	U	0.012	U	0.013	U	0.012	U	0.012	U		0.012	U	0.011	U	0.024	U	0.018	U
2,4-Dimethylphenol	mg/Kg	14000	0.023	U	0.028	U	0.018	U	0.019	U	0.017	U	0.018	U		0.017	U	0.016	U	0.034	U	0.026	U
2,4-Dinitrophenol	mg/Kg	1400	0.63	U	0.77	U	0.49	U	0.53	U	0.48	U	0.49	U		0.46	U	0.44	U	0.94	U	0.7	U
2,4-Dinitrotoluene	mg/Kg	3	0.028	U	0.034	U	0.022	U	0.023	U	0.021	U	0.021	U		0.02	U	0.019	U	0.041	U	0.031	U
2,6-Dinitrotoluene	mg/Kg	3	0.034	U	0.042	U	0.027	U	0.029	U	0.026	U	0.026	U		0.025	U	0.024	U	0.051	U	0.038	U
2-Chloronaphthalene	mg/Kg		0.031	U	0.038	U	0.024	U	0.026	U	0.023	U	0.024	U		 0.022	U	0.022	U	0.046	U	0.034	U
2-Chlorophenol	mg/Kg	2200	0.027	U	0.033	U	0.021	U	0.022	U	0.02	U	0.021	U		 0.02	U	0.019	U	0.04	U	0.03	U
2-Methylnaphthalene	mg/Kg	2400	1.2		0.036	U	1.2		0.025	U	0.022	U	0.023	U		 0.021	U	0.021	U	0.044	U	0.033	U
2-Methylphenol	mg/Kg	3400	0.033	U	0.041	U	0.03	J	0.028	U	0.029	J	0.026	U		0.024	U	0.023	U	0.05	U	0.037	U
2-Nitroaniline	mg/Kg	23000	0.032	U	0.039	U	0.025	U	0.027	U	0.024	U	0.025	U		 0.023	U	0.022	U	0.048	U	0.036	U
2-Nitrophenol	mg/Kg		0.042	U	0.052	U	0.033	U	0.035	U	0.032	U	0.033	U		0.031	U	0.03	U	0.063	U	0.047	U
3,3'-Dichlorobenzidine	mg/Kg	4	0.12	U	0.15	U	0.094	U	0.1	U	0.09	U	0.092	U		0.087	U	0.084	U	0.18	U	0.13	U
3-Nitroaniline	mg/Kg		0.046	U	0.056	U	0.036	U	0.038	U	0.035	U	0.035	U		0.033	U	0.032	U	0.068	U	0.051	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.38	U	0.46	U	0.29	U	0.31	U	0.28	U	0.29	U		0.27	U	0.26	U	0.56	U	0.42	U
4-Bromophenylphenyl ether	mg/Kg		0.024	U	0.029	U	0.019	U	0.02	U	0.018	U	0.018	U		0.017	U	0.017	U	0.036	U	0.027	U
4-Chloro-3-methylphenol	mg/Kg		0.032	U	0.04	U	0.025	U	0.027	U	0.025	U	0.025	U		0.024	U	0.023	U	0.048	U	0.036	U
4-Chloroaniline	mg/Kg		0.026	U	0.032	U	0.021	U	0.022	U	0.035	U	0.035	U		0.033	U	0.032	U	0.068	U	0.051	U
4-Chlorophenyl phenyl ether	mg/Kg		0.046	U	0.056	U	0.036	U	0.038	U	0.02	U	0.02	U		0.019	U	0.019	U	0.039	U	0.029	U
4-Methylphenol	mg/Kg	340	0.033	U	0.041	U	0.12	J	0.028	U	0.11	J	0.026	U		0.024	U	0.023	U	0.05	U	0.037	U
4-Nitroaniline	mg/Kg		0.022	U	0.027	U	0.018	U	0.019	U	0.017	U	0.017	U		0.016	U	0.016	U	0.033	U	0.025	U
4-Nitrophenol	mg/Kg		0.041	U	0.051	U	0.033	U	0.035	U	0.031	U	0.032	U		0.03	U	0.029	U	0.062	U	0.046	U
Acenaphthene	mg/Kg	37000	0.44	J	0.034	U	0.21	J	0.023	U	0.021	U	0.024	J		0.02	U	0.019	U	0.041	U	0.031	U
Acenaphthylene	mg/Kg	300000	0.078	J	0.038	U	0.024	U	0.026	U	0.023	U	0.03	J		0.023	U	0.022	U	0.046	U	0.035	U
Acetophenone	mg/Kg	5	0.032	U	0.04	U	0.025	U	0.027	U	0.024	U	0.025	U		0.024	U	0.023	U	0.048	U	0.036	U
Anthracene	mg/Kg	30000	0.66		0.037	U	0.083	J	0.025	U	0.041	J	0.073	J		0.022	U	0.021	U	0.053	J	0.039	J
Atrazine	mg/Kg	2400	0.037	U	0.045	U	0.029	U	0.031	U	0.028	U	0.028	U		0.027	U	0.026	U	0.055	U	0.041	U
Benzaldehyde	mg/Kg	68000	0.056	U	0.069	U	0.044	U	0.047	U	0.043	U	0.044	U		0.041	U	0.04	U	0.084	U	0.063	U
Benzo(a)anthracene	mg/Kg	2	0.89		0.026	U	0.017	U	0.018	U	0.18	J	0.32	J		0.015	U	0.015	U	0.11	J	0.024	U
Benzo(a)pyrene	mg/Kg	0.2	0.76	\sqcup	0.02	U	0.013	U	0.014	U	0.2	J	0.3	J		0.082	J	0.012	U	0.11	J	0.12	J
Benzo(b)fluoranthene	mg/Kg	2	1.5	$\downarrow \downarrow \downarrow$	0.025	U	0.016	U	0.017	U	0.37	J	0.61	\downarrow		 0.015	U	0.014	U	0.29	J	0.24	J
Benzo(ghi)perylene	mg/Kg	30000	0.66		0.022	U	0.014	U	0.015	U	0.19	J	0.3	J		 0.013	U	0.013	U	0.058	J	0.09	J
Benzo(k)fluoranthene	mg/Kg	23	0.017	U	0.021	U	0.013	U	0.014	U	0.013	U	0.013	U		0.012	U	0.012	U	0.025	U	0.019	U
Bis(2-chloroethoxy)methane	mg/Kg		0.025	U	0.03	U	0.019	U	0.021	U	0.019	U	0.019	U		 0.018	U	0.017	U	0.037	U	0.028	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.012	U	0.015	U	0.0094	U	0.01	U	0.0091	U	0.0092	U		 0.0087	U	0.0084	U	0.018	U	0.013	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.16	J	0.05	U	0.032	U	0.034	U	0.099	J	0.13	J		 0.03	U	0.11	J	0.061	U	0.099	J
Butyl benzyl phthalate	mg/Kg	14000	0.043	U	0.052	U	0.033	U	0.036	U	0.1	J	0.057	J		 0.031	U	0.03	U	0.064	U	0.048	U
Caprolactam	mg/Kg	340000	0.1	U	0.12	U	0.079	U	0.084	U	0.076	U	0.078	U		 0.073	U	0.071	U	0.15	U	0.11	U
Carbazole	mg/Kg	96	0.46	J	0.027	U	0.036	J	0.018	U	0.016	U	0.044	J		 0.016	U	0.015	U	0.032	U	0.024	U
Chrysene	mg/Kg	230	0.82		0.026	U	0.017	U	0.018	U	0.2	J	0.38	J		 0.015	U	0.015	U	0.16	J	0.024	U
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.18	J	0.042	U	0.027	U	0.028	U	0.026	U	0.054	J		 0.025	U	0.024	U	0.05	U	0.038	U
Dibenzofuran	mg/Kg		0.62	$\downarrow \downarrow \downarrow$	0.036	U	0.25	J	0.025	U	0.022	U	0.023	U		 0.021	U	0.021	U	0.044	U	0.033	U
Diethyl phthalate	mg/Kg	550000	0.048	U	0.058	U	0.037	U	0.04	U	0.036	U	0.037	U		 0.035	U	0.033	U	0.071	U	0.053	U
Dimethyl phthalate	mg/Kg		0.03	U	0.037	U	0.024	U	0.025	U	0.023	U	0.023	U		 0.022	U	0.021	U	0.045	U	0.034	U
Di-n-butyl phthalate	mg/Kg	68000	0.088	U	0.11	U	0.069	U	0.074	U	0.067	U	0.068	U		0.064	U	0.062	U	0.13	U	0.099	U
Di-n-octyl phthalate	mg/Kg	27000	0.037	U	0.046	U	0.029	U	0.031	U	0.028	U	0.029	U		0.027	U	0.026	U	0.055	U	0.041	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	0222022	BW-04 05/08/08 Fill Primary	3	BW-04 05/08/08 Mat Primary		BW-04 05/08/08 Sand Primary		BW-04 05/09/08 Clay Primary		BW-16 05/05/08 Fill Primary	,	BW-16 05/05/08 Fill Duplicate	e	BW-16 05/05/08 Mat Primary	BW-1 05/05/ Sand Prima	08 l ry	BW-17 07/23/03 Fill Primary	8	BW-17 07/24/08 Mat Primary	0° Di	BW-17 7/24/08 Mat uplicate
	VOC	Sample Depth Sample Depth	0.0-6.33		6.33-8.01		14.0-20.0		30.0-32.0		0.0-11.5		0.0-11.5 f		11.5-12.5 ft	13.5-19		0.0-7.25		10.0-13.0 ft		0-13.0 ft
Semivolatile Organics (Continued		Sample Depth	6.0-6.33	ιι	7.0-8.0 f	ı	18.0-19.0	Ιι	31.0-32.0	Ιι	10.0-11.0	Ιι	10.0-11.0	11	11.5-12.5 ft	19.0-20	.U IL	7.0.0-7.25) Il	12.0-13.0 ft	12.	.0-13.0 ft
Fluoranthene	mg/Kg	24000	2.5		0.042	U	0.046	т	0.029	U	0.33	Ιτ	0.59		Г	0.025	U	0.024	U	0.18 J	0.	1.4
	mg/Kg	24000	0.18	ī	0.042	U	0.046	J	0.029	U	0.33	U	0.39	U		0.023	U	0.024	U	0.18 J		
Fluorene Hexachlorobenzene	mg/Kg	1	0.18	U	0.032	U	0.19	J	0.022	U	0.024	U	0.025	U		0.019	U	0.018	U	0.038 C		
Hexachlorobutadiene	mg/Kg	25	0.032	U	0.039	U	0.084	U	0.027	U	0.024	U	0.025	U		0.023	U	0.022	U	0.048 U	_	
Hexachlorocyclopentadiene	mg/Kg	110	0.033	U	0.04	U	0.020	U	0.027	U	0.023	U	0.023	U		0.024	U	0.023	U	0.048 C	_	
Hexachloroethane	mg/Kg	140	0.024	U	0.03	U	0.019	U	0.02	U	0.018	II	0.019	U		0.018	U	0.017	U	0.036 C		
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.024	U	0.023	U	0.019	U	0.02	U	0.018	Ī	0.018	I		0.017	11	0.017	U	0.033 C	0.0	
Isophorone	mg/Kg	2000	0.03	II	0.023	U	0.013	U	0.016	U	0.13	II	0.023	U		0.014	11	0.013	U	0.044 L		
Naphthalene	mg/Kg	17	170		16		13	U	0.023	U	0.022	Ī	0.023	U		0.022	II	0.021	U	0.038 L		
Nitrobenzene	mg/Kg	340	0.013	U	0.016	U	0.01	U	0.022	U	0.048	U	0.02	U		0.019	U	0.018	U	0.038 C		
N-Nitrosodiphenylamine	mg/Kg	390	0.013	U	0.016	U	0.01	U	0.011	U	0.01	U	0.01	U		0.0097	U	0.0093	U	0.02 C	_	
N-Nitrosodipropylamine	mg/Kg	0.3	0.029	U	0.033	U	0.023	U	0.024	U	0.022	U	0.022	U		0.0021	U	0.02	U	0.043 C		
Pentachlorophenol	mg/Kg	10	0.013	U	0.010	U	0.031	U	0.011	U	0.003	U	0.031	U		0.009	U	0.0032	U	0.059 U		
Phenanthrene	mg/Kg	300000	3.3		0.047	U	0.031	I	0.033	U	0.05	I	0.3	I		0.029	U	0.028	U	0.039 U		
Phenol	mg/Kg	210000	0.032	U	0.031	U	0.025	U	0.027	U	0.13	Ī	0.025	U		0.023	U	0.023	U	0.048 L		
Pyrene	mg/Kg	18000	1.9		0.04	U	0.031	Ī	0.027	U	0.27	Ī	0.49			0.024	U	0.023	U	0.17 J		16 J
Polychlorinated Dioxins/Furans	mg/ng	10000	1.7		0.04		0.031		0.027		0.27	1 3	0.47			0.024	10	0.023		0.17	0.	10 3
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.012		0.0049	J	0.066				0.036		0.026			0.0059	IJ	0.012	Т	0.00076 J	Т.	<u> </u>
1,2,3,4,6,7,8-HpCDF	ug/Kg		0.7		0.0099	QJ	2.9				1.2		0.52			0.0013	J	0.0026	BJ	0.0066 B		
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.017		0.01	U	0.09				0.029		0.013			0.0059	U	0.0056	U	0.012 U		
1,2,3,4,7,8-HxCDD	ug/Kg		0.00094	J	0.01	U	0.0078	J			0.00098	OJ	0.00075	J		0.0059	U	0.0056	U	0.012 U		-
1,2,3,4,7,8-HxCDF	ug/Kg		0.23	Q	0.0038	QJ	0.95	0			0.21		0.1			0.00026	J	0.00058	QJ	0.0016 J		
1,2,3,6,7,8-HxCDD	ug/Kg		0.002	J	0.01	Ù	0.027				0.0025	J	0.0012	J		0.0059	U	0.0056	Ü	0.012 L	_	
1,2,3,6,7,8-HxCDF	ug/Kg		0.043		0.00083	J	0.12				0.055	Q	0.032	Q		0.0059	U	0.00022	J	0.0003 Q	J -	
1,2,3,7,8,9-HxCDD	ug/Kg		0.0017	J	0.00048	QJ	0.015				0.0015	QJ	0.0015	J		0.0059	U	0.0056	U	0.012 L	_	
1,2,3,7,8,9-HxCDF	ug/Kg		0.008	U	0.01	U	0.013	U			0.00066	Q	0.00067	QJ		0.0059	U	0.0056	U	0.012 U	_	
1,2,3,7,8-PCDD	ug/Kg		0.0015	QJ	0.01	U	0.014	Q			0.0012	QJ	0.00084	QJ		0.0059	U	0.0056	U	0.00042 Q	J -	
1,2,3,7,8-PCDF	ug/Kg		0.0087	Q	0.00024	QJ	0.012	J			0.011		0.0053	J		0.0059	U	0.0056	U	0.012 U	_	
2,3,4,6,7,8-HxCDF	ug/Kg		0.013		0.01	U	0.039				0.016		0.0075			0.0059	U	0.0056	U	0.00018 Q	J -	
2,3,4,7,8-PCDF	ug/Kg		0.028	Q	0.00051	QJ	0.093				0.018	Q	0.0084	Q		0.0059	U	0.0056	U	0.012 L	-	-
2,3,7,8-TCDD	ug/Kg		0.0022	Q	0.002	U	0.0028	Q			0.0025		0.0013			0.0012	U	0.0011	U	0.0024 L	-	-
2,3,7,8-TCDF	ug/Kg		0.0021	Q	0.002	U	0.0098	Q			0.014	Q	0.0084	Q		0.0012	U	0.0011	U	0.0024 L		-
OCDD	ug/Kg		0.077	В	0.14	В	0.3	В			1.2		1.4			0.0054	QJ	2.1	BJ	0.01 B		
OCDF	ug/Kg		0.84		0.016	J	4.3				1.2	В	0.52	В		0.0039	BJ	0.0055	BJ	0.014 B		
Total HpCDD	ug/Kg		0.028		0.016		0.12				0.093		0.065			0.00033	QJ	0.027		0.002 Q		
Total HpCDF	ug/Kg		0.78		0.011	QJ	3.2				1.3		0.59			0.0013	J	0.0026	BJ	0.0069 QJ		
Total HxCDD	ug/Kg		0.027		0.0067	QJ	0.16	Q			0.028	Q	0.016	QJ		0.0059	U	0.0012	QJ			
Total HxCDF	ug/Kg		0.62	Q	0.01	QJ	2.1	Q			0.68	Q	0.35	Q		0.00034	J	0.0012	QJ		_	
Total PeCDD	ug/Kg		0.031	Q	0.01	U	0.27	Q			0.022	Q	0.012	QJ		0.0059	U	0.0056	U	0.00042 Q	_	
Total PeCDF	ug/Kg		0.39	Q	0.0052	QJ	0.96	Q			0.35	Q	0.13	Q		0.0059	U	0.0056	U	0.0011 JC	_	
Total TCDD	ug/Kg		0.035	Q	0.00077	QJ	0.66	Q			0.033	Q	0.014	Q		0.0012	U	0.0011	U	0.00048 Q	_	
Total TCDF	ug/Kg		0.27	Q	0.0077	Q	0.67	Q			0.24	Q	0.12	Q		0.0012	U	0.0011	U	0.0013 JC	<u> -</u>	
Polychlorinated Dioxins/Furans (ents)	1 20= 1 /		100= 15						1 2 50= 5 1							1	1			
1,2,3,4,6,7,8-HpCDD	0.01		1.20E-04	1	4.90E-05		6.60E-04				3.60E-04	+	2.60E-04			1.200.05	_	1.20E-04	1	7.60E-06	-	
1,2,3,4,6,7,8-HpCDF	0.01		7.00E-03				2.90E-02				1.20E-02	+	5.20E-03			1.30E-05		2.60E-05		6.60E-05		
1,2,3,4,7,8,9-HpCDF	0.01		1.70E-04				9.00E-04	\vdash			2.90E-04	+	1.30E-04						1		-	
1,2,3,4,7,8-HxCDD	0.10		9.40E-05			 	7.80E-04				 2.10E-02	+	7.50E-05			2.60E.05	_		1	 1.60E.04		
1,2,3,4,7,8-HxCDF	0.10		 2 00E 04				 2.70E.02	\vdash			2.10E-02		1.00E-02			2.60E-05			1	1.60E-04		-
1,2,3,6,7,8-HxCDD	0.10		2.00E-04				2.70E-03				2.50E-04	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	1.20E-04								-	

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

REARNY, NEW JERSEY			BW-04		BW-04		BW-04		BW-04		BW-16		BW-16		BW-16	Ī	BW-16		BW-17		BW-17	$\overline{}$	BW-17	,
Constituent			05/08/08		05/08/08		05/08/08		05/09/08		05/05/08	,	05/05/08		05/05/08		05/05/08	1	07/23/08	;	07/24/08	, l	07/24/08	
of	Units	Criterion ⁽¹⁾	Fill		Mat		Sand		Clay		Fill		Fill		Mat		Sand		Fill		Mat		Mat	
Interest			Primary	7	Primary		Primary		Primary		Primary		Duplicate	,	Primary		Primary		Primary		Primary	,	Duplicat	te
		Sample Depth	0.0-6.33 1		6.33-8.0 f	ť	14.0-20.0	ft	30.0-32.0	ft	0.0-11.5 1	ft	0.0-11.5 f		11.5-12.5 ft	:	13.5-19.5		0.0-7.25	ť	10.0-13.0		10.0-13.0	
		Sample Depth	6.0-6.33		7.0-8.0 ft		18.0-19.0		31.0-32.0		10.0-11.0		10.0-11.0	_	11.5-12.5 ft	_	19.0-20.0		7.0.0-7.25		12.0-13.0		12.0-13.0	
Polychlorinated Dioxins/Furans (2,3,	,7,8 Equivale	ents) (Continu																						
1,2,3,6,7,8-HxCDF	0.10		4.30E-03		8.30E-05		1.20E-02												2.20E-05					1
1,2,3,7,8,9-HxCDD	0.10		1.70E-04				1.50E-03						1.50E-04											
1,2,3,7,8,9-HxCDF	0.10																							
1,2,3,7,8-PCDD	1.00																							
1,2,3,7,8-PCDF	0.05						6.00E-04				5.50E-04		2.65E-04											
2,3,4,6,7,8-HxCDF	0.10		1.30E-03				3.90E-03				1.60E-03		7.50E-04											
2,3,4,7,8-PCDF	0.50						4.65E-02																	
2,3,7,8-TCDD	1.00										2.50E-03		1.30E-03											
2,3,7,8-TCDF	0.10																							
OCDD	0.0001		7.70E-06		1.40E-05		3.00E-05				1.20E-04		1.40E-04						2.10E-04		1.00E-06			1
OCDF	0.0001		8.40E-05		1.60E-06		4.30E-04				1.20E-04		5.20E-05				3.90E-07		5.50E-07		1.40E-06			
Total 2,3,7,8-TCDD Equivalents ⁽²⁾	ug/Kg	1	1.34E-02		1.48E-04		9.90E-02				3.88E-02		1.84E-02				3.94E-05		3.79E-04		2.36E-04			T
Polychlorinated Biphenyls (Aroclors																								
Aroclor 1016	mg/Kg	1	0.004	U	0.0049	U	0.0031	U			0.003	U	0.0031	IJ			0.0029	[]	0.0028	U	0.0059	U	0.0044	U
Aroclor 1221	mg/Kg	1	0.0051	U	0.0063	U	0.004	U			0.0039	U	0.0039	U			0.0029	II	0.0026	U	0.0076	U	0.0057	U
Aroclor 1232	mg/Kg	1	0.0046	U	0.0056	U	0.0036	U			0.0035	U	0.0035	U			0.0034	IJ	0.0030	U	0.0068	U	0.0051	U
Aroclor 1242	mg/Kg	1	0.0044	U	0.0054	U	0.0034	U			0.0033	U	0.0034	U			0.0034	U	0.0032	U	0.0065	U	0.0031	U
Aroclor 1248	mg/Kg	1	0.0025	U	0.0034	U	0.002	U			0.0019	II	0.002	U			0.0032	II	0.0031	U	0.0038	U	0.0049	U
Aroclor 1254	mg/Kg	1	0.0023	U	0.0031	U	0.002	U			0.39		0.87				0.0019	II	0.0018	U	0.0057	U	0.0028	U
Aroclor 1260	mg/Kg	1	0.046		0.0047	U	0.003	U			0.0029	ΙI	0.0029	IJ			0.0028	II	0.0027	U	0.0057	U	0.0043	U
Aroclor 1262	mg/Kg	1	0.0059	II	0.0077	U	0.0046	U			0.0044	II	0.0025	U			0.0023	II	0.0027	U	0.0087	U	0.0045	U
Aroclor 1268	mg/Kg	1	0.0034	II	0.0042	U	0.0027	U			0.0026	II	0.0027	U			0.0025	II	0.0024	U	0.0051	U	0.0038	U
Metals	mg/mg	1	0.0051		0.0012	Ü	0.0027				0.0020		0.0027	Ü			0.0025		0.0021		0.0051		0.0056	1
Aluminum	mg/Kg		27300	Т	10800		4540	П	14800		9200	ī	8280	ī	[2770	ī	13300		4020		5540	$\overline{}$
Antimony	mg/Kg	450	1.5	U	0.18	IJ	0.12	U	0.25	В	1.3	<u> </u>	1.2				0.22	В	0.1	U	0.35	BJ	0.17	U
Arsenic	mg/Kg	19	9.8	В	6.5	Ť	1.8	Ť	7.8		6.5		5.5				1.1	В	1.9		1.8	В	1.2	В
Barium	mg/Kg	59000	62.3		26.1	В	10.6	В	94.9		102		88.4				10.8	В	98.7		26.7	В	24.2	В
Beryllium	mg/Kg	140	0.099	U	0.75	В	0.34	В	0.94		0.54		0.52				0.21	В	0.85		0.16	В	0.16	В
Cadmium	mg/Kg	78	2.2		0.48	В	0.15	В	0.064	U	0.11	В	0.19	В			0.055	U	0.15	В	0.11	U	0.085	U
Calcium	mg/Kg		150000		2050	۱	605	В	5660	Ť	1070	~	1050				513	В	1740	Ť	3470	 	1870	T
Chromium ⁽³⁾	mg/Kg	120000	21000	J	88.8	J	17.1	J	24.7	J	104	J	94.3	J			12	J	22.6		17.3	\Box	9.2	+
Chromium (Hexavalent) ⁽³⁾	mg/Kg	20	2510		0.4	U	0.4	U	0.4	U	6.6		5.4				0.4	U	0.4	U	0.4	U	0.4	U
Cobalt	mg/Kg	590	126		8	В	3.8	В	13.5		4.9	В	4.6	В			2.2	В	10.1	Ť	1.4	В	1.4	В
Copper	mg/Kg	45000	23.8		11.5		5.9		29.6		49.1		40.7				4.1		24.6		8.2	\Box	3.7	В
Iron	mg/Kg		72100		22300		8230		29800	J	14400		13600				6800		24500	l	5410	\Box	4790	+
Lead	mg/Kg	800	52.3		10.5		3.4		12.2		113		111				1.9		14		13.7	\Box	6.3	T
Magnesium	mg/Kg		46800		4660		1280		9370		1990		1790				1030		6720		2510	\Box	1590	T
Manganese	mg/Kg	5900	933		209		63.7		662		187		198				42.2		503		151	\Box	105	\top
Mercury	mg/Kg	65	0.18		0.03	В	0.0089	U	0.025	В	0.18		0.12				0.0084	U	0.012	В	0.028	В	0.022	В
Nickel	mg/Kg	23000	597	J	20.3	J	9.1	J	29.1		14.5		14				5.1		23.8		4.6	В	4.3	В
Potassium	mg/Kg		308	В	2210		482	В	2000		496	В	484	В			272	В	2260		216	В	235	В
Selenium	mg/Kg	5700	0.46	U	0.94	В	0.36	U	0.58	В	0.87		0.73				0.34	U	0.32	U	0.69	U	0.52	U
Silver	mg/Kg	5700	0.57	В	0.15	В	0.047	U	0.15	В	0.17	BJ	0.16	В			0.044	U	0.12	В	0.089	U	0.067	U
Sodium	mg/Kg		1340		2640		467	В	503	В	54.7	В	89.8	В			64.6	В	150	В	862	В	510	В
Thallium	mg/Kg	79	8.6		0.64	U	0.4	U	2	Ĺ	0.87	В	1.2				0.38	U	0.69	В	0.77	U	0.58	U
Vanadium	mg/Kg	1100	1390		38.6	Ť	19.1		29.3		39	 	37.2				10.4	Ť	27.4	Ť	9.8	В	10.2	<u>†</u>
I v anaurum			1.7717						∠ 7)		.)7		21.4				10.4				7.0	, ,		

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	BW-04 05/08/03 Fill Primary	8	BW-04 05/08/08 Mat Primary		BW-04 05/08/08 Sand Primary		BW-04 05/09/08 Clay Primary		BW-16 05/05/08 Fill Primary	3	BW-16 05/05/08 Fill Duplicate		BW-16 05/05/08 Mat Primary		BW-16 05/05/08 Sand Primary	3	BW-17 07/23/03 Fill Primary		BW-17 07/24/08 Mat Primary	3	BW-17 07/24/08 Mat Duplicate	
		Sample Depth	0.0-6.33		6.33-8.0 f		14.0-20.0		30.0-32.0		0.0-11.5	ft	0.0-11.5 f		11.5-12.5 f		13.5-19.5		0.0-7.25		10.0-13.0		10.0-13.0	
		Sample Depth	6.0-6.33	ft	7.0-8.0 ft	t	18.0-19.0	ft	31.0-32.0	ft	10.0-11.0	ft	10.0-11.0	ft	11.5-12.5 f	ť	19.0-20.0	ft	7.0.0-7.25	ft	12.0-13.0	ft	12.0-13.0	ft
Toxicity Characteristic Leacing Proce	edure ⁽⁴⁾											_												
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U			0.035	U			0.035	U	0.035	U	0.035	U	0.035	U		
1,2-Dichloroethane	mg/L	0.5	0.026	U	0.026	U	0.026	U			0.026	U			0.026	U	0.026	U	0.026	U	0.026	U		
1,4-Dichlorobenzene	mg/L	7.5	0.059		0.0046	U	0.46				0.0046	U			0.0046	U	0.0046	U	0.0046	U	0.011	J		
2,4,5-Trichlorophenol	mg/L	400	0.0041	U	0.0041	U	0.0041	U			0.0041	U			0.0041	U	0.0041	U	0.0041	U	0.0041	U		
2,4,6-Trichlorophenol	mg/L	2	0.0026	U	0.0026	U	0.0026	U			0.0026	U			0.0026	U	0.0026	U	0.0026	U	0.0026	U		
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U			0.0028	U			0.0028	U	0.0028	U	0.0028	U	0.0028	U		
2-Butanone	mg/L	200	0.029	U	0.029	U	0.029	U			0.029	U			0.029	U	0.029	U	0.029	U	0.029	U		
Benzene	mg/L	0.5	0.033	U	0.033	U	0.033	U			0.033	U			0.033	U	0.033	U	0.033	U	0.033	U		
Carbon Tetrachloride	mg/L	0.5	0.037	U	0.037	U	0.037	U			0.037	U			0.037	U	0.037	U	0.037	U	0.037	U		
Chlorobenzene	mg/L	100	0.12	J	0.26		0.028	U			0.028	U			0.028	U	0.028	U	0.028	U	0.028	U		
Chloroform	mg/L	6	0.031	U	0.031	U	0.031	U			0.031	U			0.031	U	0.031	U	0.031	U	0.031	U		
Cresols	mg/L	200	0.0089	U	0.0089	U	0.0089	U			0.0089	U			0.0089	U	0.0089	U	0.0089	U	0.0089	U		
Hexachlorobenzene	mg/L	0.13	0.0049	U	0.0049	U	0.0049	U			0.0049	U			0.0049	U	0.0049	U	0.0049	U	0.0049	U		
Hexachlorobutadiene	mg/L	0.5	0.0033	U	0.0033	U	0.0033	U			0.0033	U			0.0033	U	0.0033	U	0.0033	U	0.0033	U		
Hexachloroethane	mg/L	3	0.0036	U	0.0036	U	0.0036	U			0.0036	U			0.0036	U	0.0036	U	0.0036	U	0.0036	U		
Nitrobenzene	mg/L	2	0.0056	U	0.0056	U	0.0056	U			0.0056	U			0.0056	U	0.0056	U	0.0056	U	0.0056	U		
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U			0.005	U			0.005	U	0.005	U	0.005	U	0.005	U		
Pyridine	mg/L	5	0.011	U	0.011	U	0.011	U			0.011	U			0.011	U	0.011	U	0.011	U	0.011	U		
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U			0.023	U			0.023	U	0.023	U	0.023	U	0.023	U		
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U			0.035	U			0.035	U	0.035	U	0.035	U	0.035	U		
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U			0.038	U			0.038	U	0.038	U	0.038	U	0.038	U		
Arsenic	mg/L	5	0.22	В	0.14	В	0.16	В			0.18	В			0.17	В	0.19	В	0.14	В	0.16	В		
Barium	mg/L	100	0.091	В	0.028	В	0.092	В			0.64	В			0.12	В	0.18	В	0.73	BJ	0.1	BJ		
Cadmium	mg/L	1	0.0012	U	0.0012	U	0.0012	U			0.0012	U			0.0012	U	0.0012	U	0.0012	U	0.0012	U		
Chromium	mg/L	5	43.7		0.057	В	0.024	В			0.32	В			0.0022	В	0.022	В	0.0011	U	0.0062	В		
Lead	mg/L	5	0.013	U	0.013	U	0.013	U			0.096	В			0.013	U	0.013	U	0.013	U	0.013	U		
Mercury	mg/L	0.2	0.000055	U	0.000055	U	0.000055	U			0.000055	U			0.000055	U	0.000055	U	0.000055	U	0.000055	U		
Selenium	mg/L	1	0.015	U	0.015	U	0.015	U			0.015	U			0.015	U	0.017	В	0.015	U	0.015	U		
Silver	mg/L	5	0.0025	U	0.0025	U	0.0025	U			0.0025	U			0.0025	U	0.0025	U	0.0025	U	0.0025	U		
RCRA Characteristics and Indicators	3			•					•				•									•		
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>11.96</td><td></td><td>8.31</td><td></td><td>6.19</td><td></td><td>8.21</td><td></td><td>6.43</td><td></td><td>6.3</td><td></td><td></td><td></td><td>7.76</td><td></td><td>7.54</td><td></td><td>7.3</td><td></td><td></td><td></td></ph<12.5<>	11.96		8.31		6.19		8.21		6.43		6.3				7.76		7.54		7.3			
Cyanide	mg/Kg	23000	0.75	В	0.19	U	0.12	U			0.12	U	0.61	В			0.11	U	0.24	В	0.23	U	0.17	U
Total Sulfide (Reactivity)	mg/Kg		19.7	U	24.5	U	15.4	U			14.9	U					14.5	U	13.8	U	95.6			
Ignitability	None		No		No		No				No						No		No		No			
Oxidation Reduction Potential	mV										481						431		629		617		599	
Percent Solids	%		62.3		50.2		79.4				82.4						84.6		88.6		41.9		55.2	

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾ Sample Depth	BW-17 07/24/08 Sand Primary 13.0-17.0	8	BW-17 07/24/08 Clay Primary 22.0-24.0		BW-18A 04/29/08 Fill Primary 0.5-7.0 ft		BW-18A 04/29/08 Mat Primary 7.0-10.0	3	BW-182 04/29/03 Sand Primary 10.0-18.0	8	BW-181 07/25/03 Fill Primary 0.0-5.75	8 y	BW-18B 07/28/08 Mat Primary 8.0-13.0		BW-18F 07/28/08 Sand Primary 13.0-17.75	,	BW-18I 07/28/03 Clay Primary 22.0-24.0	,	BW-19 07/28/08 Fill Primary 0.0-7.5 f	8	BW-19 07/29/08 Sand Primary 12.0-16.25	8 y
		Sample Depth	16.0-17.0		23.0-24.0		6.5-7.0 ft		9.0-10.0		16.0-17.0		5.0-5.75		12.0-13.0		17.0-17.75		23.0-24.0		7.0-7.5 f		16.0-16.25	
Volatile Organics		1 1								-				-										
1,1,1-Trichloroethane	mg/Kg	4200	0.76	U	0.00055	U	18	U	7.9	U	2.3	U	0.11	U	0.00067	U	63	U	0.00054	U	0.0005	U	0.057	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.85	U	0.00081	U	20	U	8.8	U	2.5	U	0.12	U	0.00098	U	71	U	0.0008	U	0.00074	U	0.064	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	6	0.8	U	0.00094	U	22	U	9.6	U	2.7	U	0.11	U	0.0011	U	66	U	0.00092	U	0.00085	U	0.06	U
1,1,2-Trichloroethane	mg/Kg		0.93	U	0.0012	U	19	U	8.3	U	2.4	U	0.13	U	0.0015	U	77	U	0.0012	U	0.0011	U	0.07	U
1,1-Dichloroethane	mg/Kg	24	0.73	U	0.00065	U	18	U	7.6	U	2.2	U	0.1	U	0.00079	U	61	U	0.00064	U	0.00059	U	0.055	U
1,1-Dichloroethene	mg/Kg	150	0.88	U	0.00096	U	21	U	9.1	U	2.6	U	0.13	U	0.0012	U	73	U	0.00094	U	0.00087	U	0.066	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.96	J	0.00099	U	1300		55		90		0.11	U	0.0012	U	210	J	0.00098	U	0.0009	U	0.058	U
1,2-Dibromoethane	mg/Kg	0.04	0.78	U	0.00097	U	19	U	8.1	U	2.3	U	0.11	U	0.0012	U	65	U	0.00096	U	0.00088	U	0.059	U
1,2-Dichlorobenzene	mg/Kg	59000	53		0.0009	U	2700		1200		200		0.46	J	0.09		5600		0.0014	J	0.00082	U	0.96	
1,2-Dichloroethane	mg/Kg	3	0.82	U	0.00069	U	20	U	8.5	U	2.4	U	0.12	U	0.00084	U	68	U	0.00068	U	0.00063	U	0.062	U
1,2-Dichloropropane	mg/Kg	5	0.83	U	0.00061	U	20	U	8.6	U	2.5	U	0.12	U	0.00074	U	69	U	0.0006	U	0.00056	U	0.063	U
1,3-Dichlorobenzene	mg/Kg	59000	57		0.00074	U	2800		1000		200	$oxed{\Box}$	1.2		0.071		7300		0.0014	J	0.00067	U	0.84	
1,4-Dichlorobenzene	mg/Kg	13	70		0.00072	U	1600		660		110		2.1		0.16		8400		0.0022	J	0.00065	U	1.2	
2-Butanone	mg/Kg	44000	0.73	U	0.00099	U	18	U	7.6	U	2.2	U	0.1	U	0.0012	U	60	U	0.00098	U	0.0009	U	0.055	U
2-Hexanone	mg/Kg		0.6	U	0.00078	U	14	U	6.2	U	1.8	U	0.085	U	0.00094	U	49	U	0.00076	U	0.00071	U	0.045	U
4-Methyl-2-pentanone	mg/Kg		0.9	U	0.00073	U	16	U	6.8	U	1.9	U	0.13	U	0.00089	U	54	U	0.00072	U	0.00067	U	0.049	U
Acetone	mg/Kg		0.9	U	0.0056	U	22	U	9.3	U	2.6	U	0.13	U	0.0068	U	74	U	0.0055	U	0.0051	U	0.067	U
Benzene	mg/Kg	5	0.78	U	0.00076	U	19	U	8.1	U	2.3	U	0.11	U	0.037		65	U	0.00075	U	0.00069	U	0.059	U
Bromodichloromethane	mg/Kg	3	0.73	U	0.00063	U	18	U	7.6	U	2.2	U	0.1	U	0.00077	U	61	U	0.00062	U	0.00058	U	0.055	U
Bromoform	mg/Kg	280	0.77	U	0.0005	U	18	U	7.9	U	2.3	U	0.11	U	0.0006	U	63	U	0.00049	U	0.00045	U	0.058	U
Bromomethane	mg/Kg	59	0.95	U	0.00083	U	23	U	9.9	U	2.8	U	0.14	U	0.001	U	79	U	0.00082	U	0.00076	U	0.072	U
Carbon disulfide	mg/Kg	110000	0.92	U	0.00058	U	22	U	9.6	U	2.7	U	0.13	U	0.0007	U	76	U	0.00057	U	0.0023	J	0.069	U
Carbon tetrachloride	mg/Kg	2	0.67	U	0.0005	U	16	U	7	U	2	U	0.096	U	0.00061	U	56	U	0.00049	U	0.00046	U	0.051	U
Chlorobenzene	mg/Kg	7400	0.92	J	0.00085	U	68	J	130		4.8	J	1.3		0.078		69	U	0.00084	U	0.00078	U	0.074	J
Chloroethane	mg/Kg	1100	1.1	U	0.0017	U	26	U	11	U	3.2	U	0.15	U	0.0021	U	90	U	0.0017	U	0.0016	U	0.081	U
Chloroform	mg/Kg	2	0.8	U	0.00066	U	19	U	8.2	U	2.3	U	0.11	U	0.0008	U	66	U	0.00065	U	0.0006	U	0.06	U
Chloromethane	mg/Kg	12	0.83	U	0.00096	U	20	U	8.6	U	2.5	U	0.12	U	0.0012	U	69	U	0.00094	U	0.00087	U	0.063	U
cis-1,2-Dichloroethene	mg/Kg	560	0.81	U	0.00079	U	19	U	8.4	U	2.4	U	0.12	U	0.00096	U	67	U	0.00078	U	0.00072	U	0.061	U
cis-1,3-Dichloropropene	mg/Kg	/	0.68	U	0.00076	U	16	U	/	U	2	U	0.096	U	0.00093	U	56	U	0.00075	U	0.0007	U	0.051	
Cyclohexane Dibromochloromethane	mg/Kg		0.75	U	0.00042	U	18	U	7.8	U	2.2	U	0.11	U	0.00051	U	62	U	0.00041	U	0.00038	U	0.056	U
Dibromochloropropane	mg/Kg	 0	0.7	U	0.0008 0.00084	U	17	U	7.2	U	2.1	U	0.099	U	0.00097	U	58	I I	0.00079 0.00083	U	0.00073 0.00077	U	0.052 0.048	U
Dichlorodifluoromethane	mg/Kg mg/Kg	8 230000	0.63	U	0.00084	U	15 23	U	6.6	U	1.9 2.8	U	0.09	U	0.001 0.0067	U	52 79	I I		U		U	0.048	U
Ethylbenzene	mg/Kg	110000	0.96	II	0.00073	U	23	U	9.2	U	2.8	U	0.14	II	0.00088	U	73	II	0.00074 0.00071	U	0.00068 0.00066	U	0.072	U
Isopropylbenzene	mg/Kg		0.89	U	0.00072	U	19	U	8.4	U	2.6	U	0.13	U	0.00088	U	67	II	0.00071	U	0.0006	U	0.067	U
Methyl acetate	mg/Kg		0.81	U	0.00076	U	19	U	8.3	U	2.4	U	0.11	II	0.00093	U	66	II	0.00073	U	0.0007	U	0.061	U
Methylcyclohexane	mg/Kg		0.84	U	0.001	U	20	U	8.7	U	2.4	U	0.11	U	0.0012	U	70	U	0.001	U	0.00092	U	0.063	U
Methylene chloride	mg/Kg	97	0.58	U	0.00082	U	14	U	9.7	I	1.7	U	0.12	U	0.00099	U	48	II	0.0008	U	0.00074	U	0.003	U
Methyltert-butylether	mg/Kg	320	0.38	II	0.00076	U	17	U	7.2	U	2.1	U	0.082	U	0.00092	U	58	II	0.00074	U	0.00003	U	0.043	U
Styrene	mg/Kg	260	0.7	U	0.0006	U	20	U	8.7	U	2.5	U	0.12	II	0.0007	U	69	II	0.00083	U	0.00077	U	0.032	U
Tetrachloroethene	mg/Kg	5	0.98	II	0.00077	U	23	U	10	U	2.9	U	0.12	II	0.00073	U	81	II	0.00039	U	0.00033	U	0.003	U
Toluene	mg/Kg	91000	0.98	11	0.00077	U	14	U	6.2	U	1.8	U	0.085	II	0.00093	U	49	II	0.00073	U	0.0007	U	0.074	U
trans-1,2-Dichloroethene	mg/Kg	720	0.88	II	0.00062	U	21	U	9.1	U	2.6	U	0.083	II	0.0001	U	72	II	0.00066	U	0.00073	U	0.045	U
trans-1,3-Dichloropropene	mg/Kg	720	0.66	U	0.00067	U	16	U	6.8	U	1.9	U	0.093	II	0.00081	U	54	II	0.00066	U	0.00061	U	0.049	U
Trichloroethene	mg/Kg	20	0.84	U	0.00074	U	20	U	8.7	U	2.5	U	0.033	U	0.0009	U	70	U	0.00073	U	0.00067	U	0.063	U
Trichlorofluoromethane	mg/Kg	340000	1.2	U	0.001	U	29	U	13	U	3.6	U	0.17	U	0.0013	U	100	Ü	0.001	U	0.00094	U	0.092	U
Vinyl chloride	mg/Kg	2	0.84	U	0.00053	U	20	U	8.7	U	2.5	U	0.12	U	0.00064	U	69	Ū	0.00052	U	0.00048	U	0.063	U
Xylene (total)	mg/Kg	170000	2.7	U	0.0025	U	64	U	27	U	7.8	Ü	0.38	U	0.0031	U	220	U	0.0025	U	0.0023	U	0.2	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent			BW-17		BW-17	,	BW-18A		BW-18A		BW-18/		BW-18		BW-18E		BW-18		BW-18I		BW-19	,	BW-19	
of	Units	Criterion ⁽¹⁾	07/24/08	5	07/24/08	5	04/29/0	8	04/29/08	,	04/29/08	8	07/25/0	δ	07/28/08	5	07/28/0	8	07/28/08	8	07/28/08	5	07/29/08	5
Interest			Sand		Clay		Fill		Mat		Sand		Fill		Mat		Sand		Clay		Fill		Sand	
		0 1 5 1	Primary		Primary		Primary		Primary		Primary		Primary		Primary	7	Primary	/	Primary		Primary		Primary	,
	NO.	Sample Depth	13.0-17.0		22.0-24.0		0.5-7.01		7.0-10.0 1	_	10.0-18.0		0.0-5.75		8.0-13.0		13.0-17.7		22.0-24.0		0.0-7.5 f		12.0-16.25	
C ! -4 - O !	VOC	Sample Depth	16.0-17.0	It	23.0-24.0	It	6.5-7.0 1	t	9.0-10.0 1	t	16.0-17.0	It	5.0-5.75	It	12.0-13.0	It	17.0-17.7	o It	23.0-24.0	ıt	7.0-7.5 f	t	16.0-16.25) It
Semivolatile Organics	/17	24000	0.022	TI	0.024	TT	0.72	T T	0.46	T	1.6	т т	0.046	TT	0.020	11	0.022	TI	0.024	T T	0.2	T	0.022	111
1,1'-Biphenyl 2,2'-oxybis(1-chloropropane)	mg/Kg	34000	0.022 0.024	U	0.024	U	0.73	U	0.46 0.37	J	0.023	II	0.046	U	0.028	U	0.023 0.025	U	0.024	U	0.2	U	0.023	U
2,4,5-Trichlorophenol	mg/Kg mg/Kg	68000	0.024	U	0.026	U	0.031	U	0.57	II	0.023	U	0.031	U	0.03	U	0.023	U	0.026	U	0.049	U	0.025 0.034	U
2,4,6-Trichlorophenol	mg/Kg	74	0.033	U	0.036	U	0.07	U	0.51	II	0.032	U	0.07	U	0.041	U	0.034	U	0.036	U	0.067	U	0.034	U
2,4-Dichlorophenol	mg/Kg	2100	0.033	I	0.030	U	0.008	ī	0.39	Ī	0.032	Ī	0.008	U	0.04	U	0.033	I	0.030	II	0.003	U	0.033	U
2,4-Dimethylphenol	mg/Kg	14000	0.22	U	0.013	U	0.036	U	0.39	II	0.23	U	0.025	U	0.013	U	0.10	U	0.013	U	0.024	U	0.012	J
2,4-Dinitrophenol	mg/Kg	1400	0.48	U	0.019	U	1	U	7.3	II	0.017	U	1	U	0.021	U	0.49	U	0.019	U	0.033	U	0.032	U
2,4-Dinitrotoluene	mg/Kg	3	0.48	U	0.023	U	0.044	U	0.32	II	0.40	U	0.044	U	0.026	U	0.49	U	0.023	U	0.042	U	0.021	U
2,6-Dinitrotoluene	mg/Kg	3	0.021	U	0.023	U	0.054	U	0.32	IJ	0.025	U	0.054	U	0.020	U	0.027	U	0.023	U	0.052	U	0.027	U
2-Chloronaphthalene	mg/Kg		0.023	U	0.025	U	0.034	U	0.36	II	0.023	II	0.034	U	0.029	U	0.024	U	0.025	II	0.047	U	0.024	U
2-Chlorophenol	mg/Kg	2200	0.023	U	0.023	U	0.049	U	0.30	II O	0.023	11	0.049	U	0.025	U	0.024	U	0.023	11	0.047	U	0.024	U
2-Methylnaphthalene	mg/Kg	2400	0.022	U	0.022	U	0.042	Ţ	0.34	II	0.02	1 J	0.042	J	0.023	U	0.021	U	0.022	II .	0.63	J	0.021	U
2-Methylphenol	mg/Kg	3400	0.025	U	0.024	U	0.053	U	0.39	11	0.033	11	0.073	U	0.028	U	0.025	U	0.024	11	0.051	U	0.025	U
2-Nitroaniline	mg/Kg	23000	0.024	U	0.026	U	0.053	U	0.37	U	0.024	U	0.053	U	0.031	U	0.025	U	0.026	U	0.049	U	0.025	U
2-Nitrophenol	mg/Kg		0.024	U	0.020	U	0.051	U	0.49	11	0.023	U	0.051	U	0.03	U	0.023	U	0.026	U	0.045	U	0.023	U
3.3'-Dichlorobenzidine	mg/Kg	4	0.091	U	0.099	U	0.19	U	1.4	U	0.088	U	0.19	U	0.11	U	0.093	U	0.099	U	0.18	U	0.093	U
3-Nitroaniline	mg/Kg		0.035	U	0.038	U	0.072	U	0.53	U	0.034	U	0.072	U	0.043	U	0.035	U	0.038	U	0.07	U	0.035	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.29	U	0.31	U	0.59	IJ	4.4	U	0.28	U	0.59	Ü	0.35	U	0.29	U	0.31	U	0.57	U	0.29	U
4-Bromophenylphenyl ether	mg/Kg		0.018	U	0.02	U	0.038	U	0.28	U	0.018	U	0.038	Ü	0.022	Ü	0.019	U	0.02	U	0.036	U	0.019	U
4-Chloro-3-methylphenol	mg/Kg		0.025	U	0.027	U	0.051	U	0.38	U	0.024	U	0.051	Ü	0.03	Ü	0.025	U	0.027	U	0.049	U	0.025	U
4-Chloroaniline	mg/Kg		0.035	U	0.038	U	0.073	U	0.53	U	0.034	U	0.073	U	0.043	U	0.036	U	0.038	Ü	0.07	U	0.036	U
4-Chlorophenyl phenyl ether	mg/Kg		0.02	U	0.022	U	0.042	U	0.31	U	0.019	U	0.042	U	0.025	U	0.02	U	0.022	U	0.04	U	0.02	U
4-Methylphenol	mg/Kg	340	0.025	U	0.028	U	0.053	U	0.39	U	0.024	U	0.053	U	0.031	U	0.026	U	0.028	U	0.051	U	0.026	U
4-Nitroaniline	mg/Kg		0.017	U	0.019	U	0.035	U	0.26	U	0.022	J	0.035	U	0.021	U	0.017	U	0.019	U	0.034	U	0.017	U
4-Nitrophenol	mg/Kg		0.031	U	0.034	U	0.066	U	0.48	U	0.03	U	0.066	U	0.039	U	0.032	U	0.034	U	0.063	U	0.032	U
Acenaphthene	mg/Kg	37000	0.021	U	0.023	U	0.62	J	0.32	U	0.068	J	0.23	J	0.026	U	0.021	U	0.023	U	1.1		0.022	U
Acenaphthylene	mg/Kg	300000	0.024	U	0.026	U	0.088	J	0.36	U	0.023	U	0.34	J	0.029	U	0.024	U	0.026	U	0.84		0.024	U
Acetophenone	mg/Kg	5	0.025	U	0.027	U	0.051	U	0.38	U	0.024	U	0.051	U	0.03	U	0.025	U	0.027	U	0.049	U	0.025	U
Anthracene	mg/Kg	30000	0.023	U	0.025	U	1.5		0.43	J	0.078	J	2.6		0.028	U	0.023	U	0.025	U	16		0.033	J
Atrazine	mg/Kg	2400	0.028	U	0.03	U	0.058	U	0.43	U	0.027	U	0.058	U	0.034	U	0.028	U	0.03	U	0.056	U	0.028	U
Benzaldehyde	mg/Kg	68000	0.043	U	0.047	U	0.089	U	0.66	U	0.041	U	0.089	U	0.053	U	0.044	U	0.047	U	0.086	U	0.044	U
Benzo(a)anthracene	mg/Kg	2	0.016	U	0.017	U	4.5		1.2	J	0.17	J	5		0.02	U	0.016	U	0.017	U	12		0.12	J
Benzo(a)pyrene	mg/Kg	0.2	0.012	U	0.014	U	5.1		1.3	J	0.15	J	4.7		0.015	U	0.013	U	0.014	U	15		0.12	J
Benzo(b)fluoranthene	mg/Kg	2	0.016	U	0.017	U	6.4		1.5	J	0.21	J	6.5		0.019	U	0.016	U	0.017	U	21		0.18	J
Benzo(ghi)perylene	mg/Kg	30000	0.014	U	0.015	U	4.7		1	J	0.12	J	2.8		0.017	U	0.014	U	0.015	U	11		0.073	J
Benzo(k)fluoranthene	mg/Kg	23	0.013	U	0.014	U	0.027	U	0.2	U	0.013	U	0.027	U	0.016	U	0.013	U	0.014	U	0.026	U	0.013	U
Bis(2-chloroethoxy)methane	mg/Kg		0.019	U	0.021	U	0.039	U	0.29	U	0.018	U	0.039	U	0.023	U	0.019	U	0.021	U	0.038	U	0.019	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.0091	U	0.0099	U	0.019	U	0.14	U	0.0088	U	0.019	U	0.011	U	0.0093	U	0.0099	U	0.018	U	0.0093	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.031	U	0.034	U	0.13	J	0.47	U	0.11	J	0.065	U	0.038	U	0.13	J	0.034	U	0.062	U	0.061	J
Butyl benzyl phthalate	mg/Kg	14000	0.032	U	0.035	U	0.068	U	0.5	U	0.031	U	0.068	U	0.04	U	0.033	U	0.035	U	0.065	U	0.033	U
Caprolactam	mg/Kg	340000	0.077	U	0.083	U	0.16	U	1.2	U	0.074	U	0.16	U	0.095	U	0.078	U	0.083	U	0.15	U	0.078	U
Carbazole	mg/Kg	96	0.017	U	0.018	U	0.3	J	0.25	U	0.016	U	0.16	J	0.021	J	0.017	U	0.018	U	5.5		0.017	U
Chrysene	mg/Kg	230	0.016	U	0.017	U	4.5		0.92	J	0.17	J	5.1		0.02	U	0.016	U	0.017	U	11		0.096	J
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.026	U	0.028	U	0.95		0.39	U	0.029	J	0.63	J	0.032	U	0.026	U	0.028	U	2.6		0.026	U
Dibenzofuran	mg/Kg		0.022	U	0.024	U	0.49	J	0.34	U	0.053	J	0.15	J	0.028	U	0.023	U	0.024	U	1.1		0.023	U
Diethyl phthalate	mg/Kg	550000	0.036	U	0.039	U	0.084	J	0.55	U	0.035	U	0.075	U	0.045	U	0.037	U	0.039	U	0.072	U	0.037	U
Dimethyl phthalate	mg/Kg		0.023	U	0.025	U	0.048	U	0.35	U	0.022	U	0.048	U	0.028	U	0.023	U	0.025	U	0.046	U	0.023	U
Di-n-butyl phthalate	mg/Kg	68000	0.067	U	0.073	U	0.14	U	1	U	0.065	U	0.14	U	0.083	U	0.069	U	0.073	U	0.13	U	0.069	U
Di-n-octyl phthalate	mg/Kg	27000	0.028	U	0.031	U	0.059	U	0.43	U	0.027	U	0.059	U	0.035	U	0.029	U	0.031	U	0.057	U	0.029	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent			BW-17	7	BW-17		BW-18A		BW-18/	1	BW-18A		BW-18B		BW-18B		BW-18B	3	BW-18B	\neg	BW-19		BW-19	,
Constituent	TT *4	a (1)	07/24/0	8	07/24/08	3	04/29/08		04/29/08	3	04/29/08		07/25/08		07/28/08		07/28/08	;	07/28/08		07/28/08	3	07/29/08	8
of	Units	Criterion ⁽¹⁾	Sand		Clay		Fill		Mat		Sand		Fill		Mat		Sand		Clay		Fill		Sand	,
Interest			Primary	y	Primary		Primary		Primary	,	Primary		Primary		Primary		Primary		Primary		Primary	,	Primary	y
	•	Sample Depth	13.0-17.0	ft	22.0-24.0	ft	0.5-7.0 ft	t	7.0-10.0	ft	10.0-18.0	ft	0.0-5.75 f	ť	8.0-13.0 f	it	13.0-17.75	ft	22.0-24.0 f	t	0.0-7.5 f	ť	12.0-16.25	5 ft
	VOC	Sample Depth	16.0-17.0) ft	23.0-24.0	ft	6.5-7.0 ft	t	9.0-10.0	ft	16.0-17.0	ft	5.0-5.75 f	ť	12.0-13.0	ft	17.0-17.75	ft	23.0-24.0 f	it	7.0-7.5 f	ť	16.0-16.25	5 ft
Semivolatile Organics (Continued)																							
Fluoranthene	mg/Kg	24000	0.026	U	0.028	U	11		2.4	J	0.45		10		0.032	U	0.027	U	0.028	U	23		0.24	J
Fluorene	mg/Kg	24000	0.02	U	0.021	U	0.73	J	0.3	U	0.058	J	0.47	J	0.024	U	0.02	U	0.021	U	2.1		0.02	U
Hexachlorobenzene	mg/Kg	1	0.024	U	0.026	U	0.051	U	0.37	U	0.023	U	0.051	U	0.03	U	0.025	U	0.026	U	0.049	U	0.025	U
Hexachlorobutadiene	mg/Kg	25	0.025	U	0.027	U	0.052	U	0.38	U	0.024	U	0.052	U	0.031	U	0.025	U	0.027	U	0.05	U	0.025	U
Hexachlorocyclopentadiene	mg/Kg	110	0.019	U	0.02	U	0.039	U	0.28	U	0.018	U	0.039	U	0.023	U	0.019	U	0.02	U	0.037	U	0.019	U
Hexachloroethane	mg/Kg	140	0.018	U	0.02	U	0.038	U	0.28	U	0.017	U	0.038	U	0.022	U	0.018	U	0.02	U	0.036	U	0.019	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.014	U	0.016	U	3.8		0.89	J	0.11	J	2.4		0.018	U	0.015	U	0.016	U	9.1	\Box	0.076	J
Isophorone	mg/Kg	2000	0.023	U	0.025	U	0.047	U	0.34	U	0.022	U	0.047	U	0.028	U	0.023	U	0.025	U	0.045	U	0.023	U
Naphthalene	mg/Kg	17	0.035	J	0.021	U	1		0.3	U	0.058	J	1.3		0.076	J	0.22	J	0.021	U	2		0.02	U
Nitrobenzene	mg/Kg	340	0.01	U	0.011	U	0.021	U	0.15	U	0.0097	U	0.021	U	0.012	U	0.01	U	0.011	U	0.02	U	0.01	U
N-Nitrosodiphenylamine	mg/Kg	390	0.022	U	0.024	U	0.046	U	0.34	U	0.021	U	0.046	U	0.027	U	0.022	U	0.024	U	0.044	U	0.022	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.0099	U	0.011	U	0.021	U	0.15	U	0.0096	U	0.021	U	0.012	U	0.01	U	0.011	U	0.02	U	0.01	U
Pentachlorophenol	mg/Kg	10	0.03	U	0.033	U	0.063	U	0.46	U	0.029	Ų	0.063	U	0.037	U	0.031	U	0.033	U	0.06	U	0.031	U
Phenanthrene	mg/Kg	300000	0.019	U	0.021	U	4.6		1.3	J	0.31	J	6.2		0.05	J	0.02	U	0.021	U	12		0.086	<u> </u>
Phenol	mg/Kg	210000	0.024	U	0.027	U	0.051	U	0.37	U	0.024	U	0.051	U	0.03	U	0.025	U	0.027	U	0.049	U	0.025	U
Pyrene	mg/Kg	18000	0.025	U	0.027	U	6.7		1.5	J	0.31	J	8.2		0.031	U	0.025	U	0.027	U	16		0.16	
Polychlorinated Dioxins/Furans	/**	1		Lot		ı	2.2.5		0.0=1		0.054		1 0.4				0.0000						0.00021	ابا
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.00055	QJ			0.36	_	0.071		0.054	_	0.4		0.0075	U	0.00032	J			0.04	J	0.00024	J
1,2,3,4,6,7,8-HpCDF	ug/Kg		0.034	В			0.76	В	0.09	В	0.062	В	2	В	0.0034	BJ	0.28	В		\longrightarrow	0.36	OI	0.00094	QBJ
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.00095	J			0.025	J	0.0029	QJ	0.0022	J	0.049	J	0.0075	U	0.0099	ΟĪ		\dashv	0.0085	QJ	0.0062	U
1,2,3,4,7,8-HxCDD	ug/Kg		0.0061	U			0.0055	J	0.00077	QJ	0.00052	QJ	0.0037	QJ	0.0075	U	0.00015	QJ		\longrightarrow	0.061	U	0.0062	U
1,2,3,4,7,8-HxCDF	ug/Kg		0.0098	OI			0.2	Q	0.023	J	0.017	Q	0.49	Q	0.0011	IJ	0.084	Q		\dashv	0.085	OI	0.00025	QJ U
1,2,3,6,7,8-HxCDD	ug/Kg		0.00018	QJ QJ			0.018	J OI	0.0029	J	0.0026	QJ	0.013	J	0.0075	U	0.00043	QJ		\dashv	0.0018	QJ QBJ	0.0062	
1,2,3,6,7,8-HxCDF	ug/Kg		0.0025 0.0061	U			0.051	QJ	0.0052	J	0.0037 0.0023	J	0.11 0.012	Q QJ	0.0075 0.0075	T.T	0.018 0.00034	Q		\rightarrow	0.02	QBJ		QJ U
1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	ug/Kg ug/Kg		0.0001	J			0.015	U	0.003	U	0.0023	U	0.012	Ω	0.0075	U	0.00034	QJ		\rightarrow	0.0014	BJ	0.0062 0.0062	U
1,2,3,7,8-PCDD	ug/Kg		0.0061	U			0.0051	Ţ	0.023	U	0.006	QJ	0.0057	QJ	0.0075	IJ	0.00016	τ		\rightarrow	0.061	U	0.0062	U
1,2,3,7,8-PCDF	ug/Kg		0.00031	QJ			0.0031	J	0.00038	QJ	0.00034	QJ	0.0037	Τ	0.0075	II	0.00024	QJ		\dashv	0.0058	QJ	0.0062	U
2,3,4,6,7,8-HxCDF	ug/Kg		0.00031	QJ				QBJ	0.00097	BJ	0.0003	BJ	0.019	J	0.0075	U	0.0021	Ţ		\rightarrow	0.0059	QJ	0.0062	U
2,3,4,0,7,8-HXCDF 2,3,4,7,8-PCDF	ug/Kg		0.0000	QJ	 		0.021	I GD3	0.0013	QJ	0.0011	I	0.033	QJ	0.0075	U	0.0043	Q		\rightarrow	0.0039	I	0.0062	U
2,3,7,8-TCDD	ug/Kg		0.011	U			0.010	QJ	0.0013	U	0.0013	U	0.049	U	0.0075	U	0.0071	U		\rightarrow	0.0012	U	0.0002	U
2,3,7,8-TCDF	ug/Kg		0.0027	QJ			0.0018	QJ	0.00087	QJ		QJ	0.013	QJ	0.0015	U	0.00012	QJ		\rightarrow	0.0012	QJ	0.0012	U
OCDD	ug/Kg		0.00027	BJ			3.2	В	0.0017	В	0.53	В	3.6	В	0.0075	BJ	0.00041	В		\rightarrow	0.44	В	0.0012	BJ
OCDF	ug/Kg		0.071	В			0.73	В	0.16	В	0.082	В	3.0	В	0.0040	BJ	0.51	В		\rightarrow	0.66	В	0.0022	QBJ
Total HpCDD	ug/Kg		0.0014	QJ			0.97		0.19		0.14		0.79		0.035	I	0.00074	QJ		\rightarrow	0.086	BJ	0.00024	I
Total HpCDF	ug/Kg		0.038	В			0.9	QB	0.11	QB	0.078	В	2.2	В		QBJ	0.32	В		\dashv	0.41	Q	0.00024	QBJ
Total HxCDD	ug/Kg		0.0016	QJ			0.22	Q	0.042	QJ	0.03	Q		JQ	0.0075	U	0.00044	JQ		\rightarrow	0.026	QBJ		U
Total HxCDF	ug/Kg		0.029	Q				QB	0.06	QJB	0.05	Q	1.3	Q	0.0018	QJ	0.24	Q		\rightarrow	0.26	QB		QJ
Total PeCDD	ug/Kg		0.0061	Ü			0.044	QJ	0.0035	QJ		QJ	0.069	QJ	0.0075	Ü	0.0042	JQ		\neg	0.014	QJ	0.0062	U
Total PeCDF	ug/Kg		0.014	JQ			0.3	Q	0.025	QJ		QJ	0.94	Q	0.0075	U	0.11	Q		\dashv	0.14	JQB		U
Total TCDD	ug/Kg		0.00074	QJ			0.019	QJ	0.0032	QJ		QJ	0.053	Q	0.0015	U	0.0048	Q		\rightarrow	0.022	QJ	0.0012	U
Total TCDF	ug/Kg		0.0083	Q			0.19	Q	0.013	QJ	0.0095	Q	0.88	Q	0.0075	U	0.072	Q		\dashv	0.12	Q	0.0012	U
Polychlorinated Dioxins/Furans (2									2.322	- (-														
1,2,3,4,6,7,8-HpCDD	0.01						3.60E-03		7.10E-04		5.40E-04		4.00E-03				3.20E-06		1		4.00E-04		2.40E-06	\top
1,2,3,4,6,7,8-HpCDF	0.01		3.40E-04	1 1			7.60E-03		9.00E-04		6.20E-04		2.00E-02		3.40E-05		2.80E-03			\dashv	3.60E-03			1
1,2,3,4,7,8,9-HpCDF	0.01		9.50E-06	1 1			2.50E-04				2.20E-05		4.90E-04				9.90E-05			\dashv				1
1,2,3,4,7,8-HxCDD	0.10						5.50E-04													\dashv		\Box		\top
1,2,3,4,7,8-HxCDF	0.10		9.80E-04	1 1					2.30E-03						1.10E-04					\dashv	8.50E-03			1
1,2,3,6,7,8-HxCDD	0.10			1 1			1.80E-03		2.90E-04				1.30E-03							\dashv				1 7

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

			BW-17		BW-17		BW-18A		BW-18A		BW-18A		BW-18B		BW-18B	1	BW-18B	1	BW-18B	1	BW-19		BW-19	
Constituent		40	07/24/08	:	07/24/08		04/29/08		04/29/08		04/29/08		07/25/08		07/28/08		07/28/08		07/28/08		07/28/08		07/29/08	
of	Units	Criterion ⁽¹⁾	Sand		Clay		Fill		Mat		Sand	'	Fill		Mat		Sand	'	Clay		Fill	,	Sand	
Interest			Primary		Primary		Primary		Primary		Primary	,	Primary		Primary		Primary		Primary		Primary	7	Primary	
	ļ.	Sample Depth	13.0-17.0		22.0-24.0	ft	0.5-7.0 ft		7.0-10.0 f	't	10.0-18.0		0.0-5.75 f	Ή	8.0-13.0 1		13.0-17.75		22.0-24.0	ft	0.0-7.5 1		12.0-16.25	
		Sample Depth	16.0-17.0		23.0-24.0		6.5-7.0 ft		9.0-10.0 f		16.0-17.0		5.0-5.75 f		12.0-13.0		17.0-17.75		23.0-24.0		7.0-7.5 1		16.0-16.25	
Polychlorinated Dioxins/Furans (2,3,					20.0 2		0.0 7.0 10		7.0 10.0 1		10.0 17.0		2.0 2.7.2 1	•	1210 1010	10	1710 17170	10	20.0 2		7.10 7.10 2		1010 10120	710
1,2,3,6,7,8-HxCDF	0.10			П				П	5.20E-04		3.70E-04	П								П				\top
1,2,3,7,8,9-HxCDD	0.10						1.50E-03		3.00E-04		2.30E-04	1 1					3.40E-05							1
1,2,3,7,8,9-HxCDF	0.10		1.70E-05																		1.70E-04			\top
1,2,3,7,8-PCDD	1.00						5.10E-03										2.40E-04							
1,2,3,7,8-PCDF	0.05						5.50E-04						9.50E-04											
2,3,4,6,7,8-HxCDF	0.10								1.50E-04		1.10E-04		3.30E-03				4.30E-04							1
2,3,4,7,8-PCDF	0.50						8.00E-03				7.50E-04										5.00E-03			
2,3,7,8-TCDD	1.00																							
2,3,7,8-TCDF	0.10																							
OCDD	0.0001		6.70E-07				3.20E-04		7.10E-05		5.30E-05		3.60E-04		4.60E-07		3.80E-06				4.40E-05		1.40E-07	1
OCDF	0.0001		7.10E-06				7.30E-05		1.60E-05		8.20E-06		3.00E-04		1.10E-06		5.10E-05				6.60E-05			
Total 2,3,7,8-TCDD Equivalents ⁽²⁾	ug/Kg	1	1.35E-03				2.93E-02		5.26E-03		2.70E-03		3.07E-02		1.46E-04		3.66E-03				1.78E-02		2.54E-06	
Polychlorinated Biphenyls (Aroclors)											-												
Aroclor 1016	mg/Kg	1	0.003	U			0.0032	U	0.012	U	0.003	U	0.0032	U	0.0037	U	0.0031	U			0.003	U	0.0031	U
Aroclor 1221	mg/Kg	1	0.0039	U			0.0041	U	0.015	U	0.0038	U	0.004	U	0.0047	U	0.004	U			0.0039	U	0.004	U
Aroclor 1232	mg/Kg	1	0.0035	U			0.0036	U	0.013	U	0.0034	U	0.0036	U	0.0043	U	0.0036	U			0.0035	U	0.0036	U
Aroclor 1242	mg/Kg	1	0.0033	U			0.0035	U	0.013	U	0.0032	U	0.0035	U	0.0041	U	0.0034	U			0.0033	U	0.0034	U
Aroclor 1248	mg/Kg	1	0.0019	U			0.002	U	0.0074	U	0.0019	U	0.002	U	0.0024	U	0.002	U			0.0019	U	0.002	U
Aroclor 1254	mg/Kg	1	0.0029	U			0.003	U	0.011	U	0.0028	U	0.2		0.0035	U	0.003	U			0.0029	U	0.003	U
Aroclor 1260	mg/Kg	1	0.0029	U			0.003	U	0.011	U	0.0028	U	0.11		0.0035	U	0.003	U			0.0029	U	0.003	U
Aroclor 1262	mg/Kg	1	0.0045	U			0.0047	U	0.017	U	0.0043	U	0.0046	U	0.0054	U	0.0046	U			0.0045	U	0.0046	U
Aroclor 1268	mg/Kg	1	0.0026	U			0.0027	U	0.01	U	0.0025	U	0.0027	U	0.0032	U	0.0027	U			0.0026	U	0.0027	U
Metals																								
Aluminum	mg/Kg		4020		13600		4520	J	1600	J	2980	J	6740		2920	J	4870	J	10100	J	2680	J	3310	J
Antimony	mg/Kg	450	0.11	U	0.12	U	19.5		4.8		0.11	U	1.9		0.14	U	0.11	U	0.22	BJ	1.1	BJ	0.11	U
Arsenic	mg/Kg	19	1.8		8.2		54.9		11.5		1.2		14.7		0.72	В	2.1		5.1		10.5		3.1	Ш.
Barium	mg/Kg	59000	15.5	В	85.7		119		46.3	В	15.6	В	134		22.9	В	28.5		71.5		64		15.7	В
Beryllium	mg/Kg	140	0.31	В	0.84		0.51	В	0.14	U	0.25	В	0.49	В	0.21	В	0.44	В	0.79		0.49		0.34	В
Cadmium	mg/Kg	78	0.13	В	0.52	В	0.061	U	0.22	U	0.056	U	1.3		0.071	U	0.058	U	0.062	U	0.057	U	0.059	U
Calcium	mg/Kg		550	В	6220		3810		19900		558	В	11800		2160		621	В	6020		1550		534	В
Chromium ⁽³⁾	mg/Kg	120000	8.7		21.8		168	J	28.7	J	8.1	J	378		18.5		12.3		17.6		107		8.9	
Chromium (Hexavalent) ⁽³⁾	mg/Kg	20	0.4	U	0.4	U	13.4		0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Cobalt	mg/Kg	590	4.3	В	12.9		7.9	\vdash	1.2	В	2.5	В	16.9	Ш	1.1	В	3.7	В	10.3	\sqcup	4.9	В	3.3	В
Copper	mg/Kg	45000	5.9		26.7		59.1		11.9		5.7	-	195		2.5	В	6.7		20.4		57.4		6.3	+
Iron	mg/Kg		9490	\vdash	31600		37300	J	13300	J	8180	J	35100	J	4000	ID	11800		24300	-	18700	-	11300	+-
Lead	mg/Kg	800	3.1	\vdash	13.3		3730	\vdash	346	<u> </u>	3.6	+	213	Н	1540	JB	3.8	J	12.1	J	88.6	J	2.8	+
Magnesium	mg/Kg	5000	1370	\vdash	8190		1710		3360		1110	+	5080		1540	\vdash	1570		6790	$\vdash \vdash \vdash$	740		1370	+-
Manganese	mg/Kg	5900	66.8	TT	629	D	107		229		37.5	TT	526	J	114	D	58.5	ŢΤ	541	\vdash	132	+	61.3	T T
Mercury Nickel	mg/Kg	65 23000	0.0087	U	0.02 27.8	В	0.87		0.36	D	0.0085	U	0.74 65.4	\vdash	0.014	В	0.0089	U	NA 22	T	0.29 14.7	T	0.0089 7.3	U
Potassium	mg/Kg mg/Kg		7.3 356	В	1840	-	21.5 581	В	4.6	B B	325	В	515	В	3 237	B B	8.4 396	В	22 1400	J	286	J B	343	В
Selenium	mg/Kg mg/Kg	5700	0.35	U	0.38	U	3.7	Б	2.5	D	0.34	U	0.86	D	0.43	U	0.36	U	0.38	U	0.98	Б	0.36	U
Silver	mg/Kg	5700	0.35	U	0.38	В	0.34	В	0.17	U	0.044	U	0.86	\vdash	0.43	U	0.36	U	0.38	В	0.98	В	0.36	U
Sodium	mg/Kg		193	В	282	В	153	В	1540	В	58.6	В	292	В	919	U	155	В	444	В	210	В	218	В
Thallium	mg/Kg	 79	0.39	U	0.43	U	133	ם	1.5	U	0.38	U	0.67	В	0.48	U	0.4	U	0.43	U	0.39	U	0.4	U
	mg/Kg	1100	11.7		26.7		44.5	\vdash	10.3		12	1	127	L 10	7.3	В	18		22.2		34.2	+ -	12.2	+
Vanadium	mø/k o	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			/n /		44 1		1013	В	1/		1//		/ 3		I X		///		14 /		1//	

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	BW-17 07/24/03 Sand Primary	8	BW-17 07/24/08 Clay Primary	BW-18A 04/29/08 Fill Primary	•	BW-18 <i>A</i> 04/29/08 Mat Primary	8	BW-18A 04/29/08 Sand Primary	3	BW-18B 07/25/08 Fill Primary		BW-18B 07/28/08 Mat Primary		BW-18B 07/28/08 Sand Primary	,	BW-18B 07/28/08 Clay Primary	07 Pr	W-19 //28/08 Fill imary		BW-19 07/29/08 Sand Primary	8 y
		Sample Depth	13.0-17.0		22.0-24.0 ft			7.0-10.0		10.0-18.0	_	0.0-5.75 f	_	8.0-13.0 f		13.0-17.75		22.0-24.0 ft)-7.5 ft	_	12.0-16.25	
		Sample Depth	16.0-17.0	ft	23.0-24.0 ft	6.5-7.0 f	<u>t </u>	9.0-10.0	ft	16.0-17.0	ft	5.0-5.75 f	t	12.0-13.0	ft	17.0-17.75	ft	23.0-24.0 ft	7.0)-7.5 ft	;	16.0-16.25	, ft
Toxicity Characteristic Leacing Proce	1	-		1 1					1		1 1						1				1		
1,1-Dichloroethene	mg/L	0.7	0.035	U		0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		0.0		U	0.035	U
1,2-Dichloroethane	mg/L	0.5	0.026	U		0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U		0.0		U	0.026	U
1,4-Dichlorobenzene	mg/L	7.5	0.81			2.7		4.3		2.2		0.0046	U	0.022	J	27			0.0		J	0.0046	U
2,4,5-Trichlorophenol	mg/L	400	0.0041	U		0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U		0.00		U	0.0041	U
2,4,6-Trichlorophenol	mg/L	2	0.0026	U		0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U		0.00		U	0.0026	U
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U		0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U		0.00		U	0.0028	U
2-Butanone	mg/L	200	0.029	U		0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U		0.0		U	0.029	U
Benzene	mg/L	0.5	0.033	U		0.071	J	0.072	J	0.033	U	0.033	U	0.033	U	0.033	U		0.0		U	0.033	U
Carbon Tetrachloride	mg/L	0.5	0.037	U		0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U		0.0	37	U	0.037	U
Chlorobenzene	mg/L	100	0.028	U		3.4		5.3		0.17	J	0.028	U	0.028	U	0.2			0.0	28	U	0.028	U
Chloroform	mg/L	6	0.031	U		0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U		0.0	31	U	0.031	U
Cresols	mg/L	200	0.0089	U		0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U		0.00	89	U	0.0089	U
Hexachlorobenzene	mg/L	0.13	0.0049	U		0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U		0.00	49	U	0.0049	U
Hexachlorobutadiene	mg/L	0.5	0.0033	U		0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U		0.00	33	U	0.0033	U
Hexachloroethane	mg/L	3	0.0036	U		0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U		0.00	36	U	0.0036	U
Nitrobenzene	mg/L	2	0.0056	U		0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U		0.00	56	U	0.0056	U
Pentachlorophenol	mg/L	100	0.005	U		0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U		0.0	05	U	0.005	U
Pyridine	mg/L	5	0.011	U		0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U		0.0	11	U	0.011	U
Tetrachloroethene	mg/L	0.7	0.023	U		0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U		0.0	23	U	0.023	U
Trichloroethene	mg/L	0.5	0.035	U		0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		0.0	35	U	0.035	U
Vinyl chloride	mg/L	0.2	0.038	U		0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U		0.0	38	U	0.038	U
Arsenic	mg/L	5	0.18	В		0.025	В	0.0072	В	0.0028	В	0.15	В	0.14	В	0.2	В		0	2	В	0.19	В
Barium	mg/L	100	0.22	BJ		1.3	BJ	0.15	BJ	0.29	В	0.79	BJ	0.089	BJ	0.29	BJ		0.2	:3	BJ	0.25	BJ
Cadmium	mg/L	1	0.0012	U		0.0054	В	0.00023	U	0.00023	U	0.0061	В	0.0012	U	0.0012	U		0.00	12	U	0.0012	U
Chromium	mg/L	5	0.015	В		0.013	В	0.003	В	0.0041	В	0.027	В	0.0025	В	0.0041	В		0.00		В	0.003	В
Lead	mg/L	5	0.013	U		16.1		0.021	В	0.0043	В	0.11	В	0.013	U	0.013	U		0.0		U	0.013	U
Mercury	mg/L	0.2	0.000055	U		0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U		0.000		В	0.000055	U
Selenium	mg/L	1	0.015	U		0.0092	В	0.0092	В	0.0081	В	0.015	U	0.015	U	0.015	U		0.0		U	0.015	U
Silver	mg/L	5	0.0025	U		0.00088	В	0.00081	В	0.00059	U	0.0025	U	0.0025	U	0.0025	U		0.00		U	0.0025	U
RCRA Characteristics and Indicators	υ																						
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>7.25</td><td></td><td></td><td>7.44</td><td></td><td>7.21</td><td>Т</td><td>6.5</td><td></td><td>8.53</td><td></td><td>7.43</td><td></td><td>6.54</td><td>Т</td><td></td><td>7.8</td><td>33</td><td></td><td>5.23</td><td></td></ph<12.5<>	7.25			7.44		7.21	Т	6.5		8.53		7.43		6.54	Т		7.8	33		5.23	
Cyanide	mg/Kg	23000	0.12	U		0.12	U	0.45	U	0.11	U	0.56	В	0.14	U	0.12	U		0.4		В	0.7	J
Total Sulfide (Reactivity)	mg/Kg		58.5	1 1		217		224		38.1		366		18.5	U	15.3	U		1:		U	15.3	U
Ignitability	None		No			No		No		No		No		No		No			N			No	\Box
Oxidation Reduction Potential	mV		599	1 1	605	300		314		328		436		609		584		583	55			492	\Box
Percent Solids	%		82	1 1	75.3	77.5		21.4		84		78.6		66.4		80.2	1	75.3	81			80.1	\Box

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

KEARNY, NEW JERSEY			BW-19	I	BW-19		BW-20		BW-20)	BW-20		BW-20	I	BW-21		BW-21		BW-21	
Constituent			07/29/08		07/29/08		07/24/08		07/25/08		07/25/08		07/25/08		07/29/08	2	07/29/08		07/29/08	
of	Units	Criterion ⁽¹⁾	Sand	'	Clay	,	67/24/00 Fill	,	Mat	O	Sand	,	Clay	'	Fill	,	Mat	'	Sand	'
Interest			Duplicate	Δ .	Primary	7	Primary	,	Primary	17	Primary	7	Primary	,	Primary	,	Primary		Primary	
		Sample Depth	12.0-16.25		22.0-24.0		0.0-4.0 f		6.0-10.0		10.0-15.25		24.0-26.0		0.0-6.0 f		8.0-10.5 f	<u>`</u>	10.5-16.0	
	VOC	Sample Depth	16.0-16.25		23.0-24.0		2.0-3.0 f		8.0-9.0 f		15.0-15.25		25.0-26.0		5.0-6.0 f		10.0-10.5		15.0-16.0	
Volatile Organics	, 66	витри Вериг	10.0 10.22	10	25.0 24.0	10	2.0 2.0 1		0.0 3.0 1		10.0 10.20	710	20.0 20.0	10	2.0 0.0 1		10.0 10.2	10	10.0 10.0	10
1,1,1-Trichloroethane	mg/Kg	4200	0.06	U	0.00061	U	16	U	0.2	U	23	U	0.056	U	0.00051	U	0.00063	U	0.00052	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.067	U	0.0009	Ü	18	U	0.23	U	26	U	0.063	U	0.00075	U	0.00093	U	0.00077	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	6	0.063	U	0.001	Ü	17	U	0.21	U	24	Ü	0.059	Ū	0.00087	U	0.0011	U	0.00089	U
1,1,2-Trichloroethane	mg/Kg		0.073	U	0.0013	U	19	U	0.25	U	28	Ü	0.068	Ü	0.0011	U	0.0014	U	0.0011	U
1,1-Dichloroethane	mg/Kg	24	0.058	U	0.00072	U	15	U	0.2	U	22	U	0.054	U	0.0006	U	0.00075	U	0.00062	U
1,1-Dichloroethene	mg/Kg	150	0.069	U	0.0011	U	18	U	0.24	U	27	U	0.065	U	0.00089	U	0.0011	U	0.00091	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.061	U	0.0011	U	16	U	0.21	U	58	J	0.057	U	0.00092	U	0.0011	U	0.00094	U
1,2-Dibromoethane	mg/Kg	0.04	0.062	U	0.0011	U	16	U	0.21	U	24	U	0.057	U	0.0009	U	0.0011	U	0.00092	U
1,2-Dichlorobenzene	mg/Kg	59000	0.76		0.001	U	17	U	0.5	J	2600		0.51		0.00083	U	0.001	U	0.00085	U
1,2-Dichloroethane	mg/Kg	3	0.065	U	0.00077	U	17	U	0.22	U	25	U	0.06	U	0.00064	U	0.0008	U	0.00066	U
1,2-Dichloropropane	mg/Kg	5	0.066	U	0.00068	U	17	U	0.22	U	25	U	0.061	U	0.00057	U	0.0007	U	0.00058	U
1,3-Dichlorobenzene	mg/Kg	59000	0.63		0.00083	U	16	U	0.53	J	2900		0.58		0.00068	U	0.00085	U	0.0007	U
1,4-Dichlorobenzene	mg/Kg	13	0.98		0.0008	U	17	U	0.69	J	3400		0.66		0.00066	U	0.00083	U	0.00068	U
2-Butanone	mg/Kg	44000	0.058	U	0.0011	U	15	U	0.2	U	22	U	0.054	U	0.00092	U	0.0011	U	0.00094	U
2-Hexanone	mg/Kg		0.047	U	0.00087	U	12	U	0.16	U	18	U	0.044	U	0.00072	U	0.0009	U	0.00074	U
4-Methyl-2-pentanone	mg/Kg		0.051	U	0.00082	U	19	U	0.24	U	27	U	0.066	U	0.00068	U	0.00085	U	0.0007	U
Acetone	mg/Kg		0.071	U	0.0063	U	19	U	24		27	U	0.066	U	0.0052	U	0.0065	U	0.0054	U
Benzene	mg/Kg	5	0.061	U	0.00085	U	120		1.2		24	U	0.057	U	0.0007	U	0.00088	U	0.00072	U
Bromodichloromethane	mg/Kg	3	0.058	U	0.00071	U	15	U	0.2	U	22	U	0.054	U	0.00059	U	0.00073	U	0.0006	U
Bromoform	mg/Kg	280	0.06	U	0.00056	U	16	U	0.2	U	23	U	0.056	U	0.00046	U	0.00057	U	0.00047	U
Bromomethane	mg/Kg	59	0.075	U	0.00093	U	20	U	0.25	U	29	U	0.07	U	0.00077	U	0.00096	U	0.00079	U
Carbon disulfide	mg/Kg	110000	0.073	U	0.00064	U	19	U	0.25	U	28	U	0.068	U	0.00053	U	0.00066	U	0.00055	U
Carbon tetrachloride	mg/Kg	2	0.053	U	0.00056	U	14	U	0.18	U	21	U	0.049	U	0.00047	U	0.00058	U	0.00048	U
Chlorobenzene	mg/Kg	7400	0.066	U	0.00095	U	17	U	0.22	U	32	J	0.061	U	0.00079	U	0.00098	U	0.00081	U
Chloroethane	mg/Kg	1100	0.085	U	0.002	U	22	U	0.29	U	33	U	0.079	U	0.0016	U	0.002	U	0.0017	U
Chloroform	mg/Kg	2	0.063	U	0.00074	U	17	U	0.21	U	24	U	0.058	U	0.00061	U	0.00076	U	0.00063	U
Chloromethane	mg/Kg	12	0.066	U	0.0011	U	17	U	0.22	U	25	U	0.061	U	0.00089	U	0.0011	U	0.00091	U
cis-1,2-Dichloroethene	mg/Kg	560	0.064	U	0.00089	U	17	U	0.22	U	25	U	0.06	U	0.00073	U	0.00091	U	0.00075	U
cis-1,3-Dichloropropene	mg/Kg	7	0.053	U	0.00085	U	14	U	0.18	U	21	U	0.05	U	0.00071	U	0.00088	U	0.00073	U
Cyclohexane	mg/Kg		0.059	U	0.00047	U	16	U	0.2	U	23	U	0.055	U	0.00039	U	0.00048	U	0.0004	U
Dibromochloromethane	mg/Kg		0.055	U	0.00089	U	14	U	0.19	U	21	U	0.051	U	0.00074	U	0.00092	U	0.00076	U
Dibromochloropropane	mg/Kg	8	0.05	U	0.00094	U	13	U	0.17	U	19	U	0.046	U	0.00078	U	0.00097	U	0.0008	U
Dichlorodifluoromethane	mg/Kg	230000	0.076	U	0.00084	U	20	U	0.26	U	29	U	0.07	U	0.00069	U	0.00086	U	0.00071	U
Ethylbenzene	mg/Kg	110000	0.07	U	0.00081	U	18	U	0.24	U	27	U	0.065	U	0.00067	U	0.00083	U	0.00069	U
Isopropylbenzene	mg/Kg		0.063	U	0.00085	U	17	U	0.22	U	25	U	0.059	U	0.00071	U	0.00088	U	0.00073	U
Methyl acetate	mg/Kg		0.063	U	0.0011	U	17	U	0.21	U	24	U	0.059	U	0.00094	U	0.0012	U	0.00096	U
Methylcyclohexane	mg/Kg		0.066	U	0.00091	U	17	U	0.23	U	26	U	0.062	U	0.00076	U	0.00094	U	0.00078	U
Methylene chloride	mg/Kg	97	0.047	J	0.00085	U	12	U	0.15	U	18	U	0.042	U	0.0007	U	0.00087	U	0.0023	J
Methyltert-butylether	mg/Kg	320	0.055	U	0.00094	U	14	U	0.19	U	21	U	0.051	U	0.00078	U	0.00097	U	0.0008	U
Styrene	mg/Kg	260	0.066	U	0.00067	U	17	U	0.22	U	26	U	0.061	U	0.00055	U	0.00069	U	0.00057	U
Tetrachloroethene	mg/Kg	5	0.077	U	0.00086	U	20	U	0.26	U	30	U	0.072	U	0.00071	U	0.00088	U	0.00073	U
Toluene	mg/Kg	91000	0.047	U	0.00092	U	75	J	0.84	J	18	U	0.044	U	0.00076	U	0.00095	U	0.00078	U
trans-1,2-Dichloroethene	mg/Kg	720	0.069	U	0.00075	U	18	U	0.23	U	27	U	0.064	U	0.00062	U	0.00077	U	0.00064	U
trans-1,3-Dichloropropene	mg/Kg	7	0.052	U	0.00075	U	14	U	0.18	U	20	U	0.048	U	0.00062	U	0.00078	U	0.00064	U
Trichloroethene	mg/Kg	20	0.066	U	0.00083	U	17	U	0.23	U	26	U	0.062	U	0.00069	U	0.00085	U	0.0007	U
Trichlorofluoromethane	mg/Kg	340000	0.096	U	0.0012	U	25	U	0.33	U	37	U	0.089	U	0.00096	U	0.0012	U	0.00098	U
Vinyl chloride	mg/Kg	2	0.066	U	0.00059	U	17	U	0.22	U	26	U	0.062	U	0.00049	U	0.00061	U	0.0005	U
Xylene (total)	mg/Kg	170000	0.21	U	0.0028	U	96	J	1.3	J	81	U	0.19	U	0.0023	U	0.0029	U	0.0024	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Vol. Semple Popt 16-16-16-28 230-34-0 2-0-3-0 15-18-18-18 25-0-20 15-18-18-18 25-0-20 15-18-18-18 25-0-20 15-18-18-18 25-0-20 15-18-18-18 25-0-20 15-18-18-18 25-0-20 25-0	Constituent of Interest	Units	Criterion ⁽¹⁾	BW-19 07/29/0 Sand Duplicat	8	BW-19 07/29/03 Clay Primary	8	BW-20 07/24/08 Fill Primary		BW-20 07/25/08 Mat Primary	3	BW-20 07/25/08 Sand Primary	8	BW-20 07/25/08 Clay Primary		BW-21 07/29/08 Fill Primary		BW-21 07/29/08 Mat Primary		BW-21 07/29/08 Sand Primary	8
Semiconditic Organics																				10.5-16.0	
11-41-pitenty		VOC	Sample Depth	16.0-16.2	5 ft	23.0-24.0	ft	2.0-3.0 f	t	8.0-9.0 f	<u>'t</u>	15.0-15.25	5 ft	25.0-26.0	ft	5.0-6.0	ft	10.0-10.5	ft	15.0-16.0	ft
22-co-shirt chlemoprograms mpKe	9		1		1 1		1 1		1		-				1		1 - 1				4
24.5-Inchlorophenel			1								, ·						J			0.023	U
24.0-Printendement											_				_		_		_	0.025	U
24-Dishtophenol mg/Kg 2100 0.012 U 0.013 U 0.577 U 1.2 U 0.29 J 0.013 U 0.077 U 0.016 U 24-Dishtophenol mg/Kg 4400 0.48 U 0.51 U 0.51 U 22 U 29 U 0.013 U 0.022 U 0.024 U 0.025 U	•		 								_		_		_		_		_	0.035	U
24-Dimorphone mg/Kg 44000 0.046 J 0.019 U 28 9.3 J 2.2 0.018 U 0.092 J 0.036 J 24-Dimorphone mg/Kg 3 0.021 U 0.022 U 0.099 U 2.1 U 0.047 U 0.051 U 0.047 U 0.028 U 24-Dimorphone mg/Kg 3 0.021 U 0.022 U 0.099 U 2.1 U 0.021 U 0.022 U 0.047 U 0.028 U 1.2 U 2.7 U 0.026 U 0.028 U 0.025 U 0.									_		_		_		_		_		_	0.034	U
24-Dimitrophenol mg/Kg	*				_				U		_		J		_		Ţ		-	0.012	U
24-Introtheres	2 1		 				_		TT				TT		_		J		·	0.018	U
26-Jinteroplander	•								_		_		_		_		_		_	0.022	U
2-Chisrophenial meKs											_		_		_		_		_	0.022	U
2-Chiorophenol mg/Kg 2200 0.021 U 0.022 U 0.096 U 2.1 U 0.02 U 0.040 U 0.027 U 0.042 U 2-Methyhphalhalnee mg/Kg 3400 0.025 U 0.023 U 0.024 U 3700 S S S S 0.024 U 0.05 J 0.038 J 2-Methyhphalhalnee mg/Kg 3400 0.025 U 0.033 U 0.034 U 0.034 U 0.035 U 0.033 U 0.034 U 0.036 U 0.035 U 0			1								_		_		_		_		_	0.027	U
22-Methylphenol					_		_				_		_		_		_		_	0.024	U
2-Methylphenol mg/Kg 3400 0.026 U 0.027 U 21 S.1 J 0.025 U 0.027 U 0.11 J 0.034 U 2-Nitromline mg/Kg 2-3000 0.025 U 0.026 U 1.1 U 2.5 U 0.024 U 0.026 U 0.025 U 0.025 U 2-Nitromline mg/Kg 0.033 U 0.034 U 1.5 U 3.3 U 0.032 U 0.034 U 0.036 U 0.013 U 0.014 U 0.026 U 0.027 U 0.026 U 0.027 U 0.026 U 0.027 U 0.026 U 0.027 U 0.026 U 0	<u> </u>				_				U						_		I		_	0.021	U
2-Nitrophanol mg/Kg 23000 0.025 U 0.026 U 1.1 U 2.5 U 0.026 U 0.026 U 0.035 U 0.032 U 2-Nitrophanol mg/Kg 0.033 U 0.093 U 1.5 U 3.3 U 0.032 U 0.097 U 0.033 U 0.033 U 0.033 U 0.033 U 0.033 U 0.033 U 0.035 U 0.035 U 0.097 U 4.3 U 9.3 U 0.09 U 0.096 U 0.096 U 0.021 U 0.021 U 0.022 U 0.097 U 4.3 U 9.3 U 0.09 U 0.096 U 0.096 U 0.021 U 0.012 U 0.021 U 0.021 U 0.021 U 0.021 U 0.021 U 0.022 U 0.026 U	7 1						_				1		II		_		Ī		ı i	0.026	U
2-Nitrophenel mg/Kg 0.033 U 0.034 U 1.5 U 3.3 U 0.032 U 0.034 U 0.073 U 0.043 U 0.033 U 0.033 U 0.034 U 0.007 U 0.0	* *				_				IJ		_				_		IJ			0.025	U
33-Dichorobenzidine mg/Kg 4 0.092 U 0.097 U 4.3 U 9.3 U 0.099 U 0.096 U 0.21 U 0.12 U			1								_		_		_		_		_	0.033	II
3-Nironaline			 						_		_		_		_				_	0.094	U
46-Dimitro-2-methylphenol mg/Kg 68 0.29 U 0.3 U 0.3 U 0.3 U 0.38 U 0.019 U 0.026 U 0.027 U 0.026 U 0.027 U 0.026 U 0.027 U 0.026 U 0.027 U 0.027 U 0.028 U 0.027 U 0.026 U 0.027 U 0.028 U 0.028 U 0.027 U 0.028			1								_				_		_		_	0.036	U
4-Bromophenylphenyl ether mg/kg 0,018 U 0,019 U 0,86 U 1,9 U 0,018 U 0,019 U 0,041 U 0,024 U 4-Chloro-3-methylphenol mg/kg 0,025 U 0,025 U 0,025 U 0,026 U 1,056 U 0,033 U 0,047 U 0,026 U 0,056 U 0,033 U 0,047 U 0,041 U 0,026 U 0,056 U 0,033 U 0,047 U 0,041 U 0,026 U 0,056 U 0,033 U 0,047 U 0,041 U 0,04											_				_		_		_	0.3	U
4Chloro-3-methylphenol mg/kg 0.025 U 0.026 U 1.2 U 2.5 U 0.024 U 0.036 U 0.033 U 4-Chlorophenyl phenyl ether mg/kg 0.02 U 0.021 U 0.95 U 2 U 0.021 U 0.024 U 0.027 U 0.027 U 0.024 U 0.027 U 0.045 U 0.027 U 0.045 U 0.027 U 0.044 U 0.027 U 0.045 U 0.027 U 0.044 U 0.027 U 0.044 U 0.021 U 0.024 U 0.041 U 0.031 U 0.022 U 0.011 0.018 U 0.072 U 0.018 U 0.017 U 0.018 U 0.021 U 0.021 U 0.022 U 0.011 0.023 U 0.021 U			1		\rightarrow				_		_		_		_		_		_	0.019	U
4-Chlorophenyl phenyl ether mg/Kg 0.035 U 0.037 U 1.6 U 3.6 U 0.034 U 0.037 U 0.046 U 4-Chlorophenyl phenyl ether mg/Kg 0.02 U 0.021 U 0.95 U 2 U 0.021 U 0.021 U 0.021 U 0.025 U 0.027 U 0.031 U 0.032 U 0.031 U 0.032 U 0.032 U 0.031 U 0.022 U 0.021 U 0.022 U 0.042 U 0.022 U 0.021 U	1 1 1		1		_						_				_		_		_	0.026	U
## Achthracene mg/Kg 30000 0.024 U 0.025 U 0.025 U 0.025 U 0.027 U 0.033 U 0.033 U 0.027 U 0.044 Methylphenol mg/Kg 0.017 U 0.018 U 0.028 U 0.027 U 0.018 U 0.029 U 0.027 U 0.018 U 0.0304 U 0.018 U 0.026 U 0.027 U 0.018 U 0.029 U 0.027 U 0.018 U 0.039 U 0.023 U 0.034 U 0.031 U 0.031 U 0.033 U 0.026 U 0.027 U 0.031 U 0.034 U 0.031 U 0.033 U 0.027 U 0.042 U 0.031 U 0.033 U 0.027 U 0.042 U 0.025 U 0.025 U 0.025 U 0.026 U 0.025 U 0.026 U 0.025 U 0.026 U 0.025 U 0.027 U 0.025 U 0.027 U 0.021 U 0.025 U 0.025 U 0.026	ž 1						_				_		_		_		U		U	0.036	U
Amethylphenol mg/Kg 340 0.026 U 0.027 U 54 222 J 0.025 U 0.027 U 0.18 J 0.034 U Anitroanline mg/Kg 0.017 U 0.018 U 0.034 U 1.5 U 3.2 U 0.031 U 0.033 U 0.072 U 0.034 U Acenaphthene mg/Kg 37000 0.021 U 0.022 U 240 44 0.94 0.022 U 0.21 J 0.028 U Acenaphthene mg/Kg 37000 0.021 U 0.025 U 360 170 0.65 0.025 U 0.021 U 0.025 U 360 Acenaphthene mg/Kg 37000 0.021 U 0.025 U 360 170 0.65 0.025 U 0.021 J 0.033 U 0.072 U 0.031 U 0.025 U 360 Acenaphthene mg/Kg 30000 0.024 U 0.025 U 360 U 1.2 U 2.5 U 0.024 U 0.026 U 0.031 U 0.033 U 0.033 U 0.033 U 0.034 U 0.034 U 0.036 U 0.036 U 0.025 U 0.024 U 0.026 U 0.027 U 0.035 U 0.063 U 0.037 U 0.037 U 0.038 U 0.037 U 0.038									_		_		_		_		-			0.021	U
## Anitroamiline	1 1 1		340		U						J		_		U		J		U	0.026	U
A-Nitrophenol mg/Kg 0.032 U 0.034 U 1.5 U 3.2 U 0.031 U 0.033 U 0.072 U 0.042 U Acenaphthene mg/Kg 300000 0.021 U 0.022 U 2.40 44 0.94 0.025 U 0.021 J 0.028 U Acenaphthylene mg/Kg 300000 0.024 U 0.025 U 0.026 U 1.70 0.65 0.025 U 0.025 U 0.031 U Acetophenone mg/Kg 5 0.025 U 0.026 U 1.2 U 2.5 U 0.024 U 0.026 U 0.033 U 0.034 U 0	<u> </u>		1		U		U		U		U		U	0.018	U		U		U	0.018	U
Acenaphthylene	ophenol	mg/Kg		0.032	U	0.034	U	1.5	U	3.2	U	0.031	U	0.033	U	0.072	U	0.042	U	0.033	U
Acetophenone Mg/Kg 5 0.025 U 0.026 U 1.2 U 2.5 U 0.024 U 0.026 U 0.063 J 0.033 U Anthracene Mg/Kg 30000 0.063 J 0.024 U 390 120 0.64 0.024 U 1.4 0.08 J 0.037 U 1.4 0.08 J 0.024 U 0.046 U 0.028 U 0.03 U 1.3 U 2.9 U 0.027 U 0.03 U 0.063 U 0.037 U 0.046 U 0.028 U 0.03 U 0.046 U 2.9 U 0.027 U 0.03 U 0.046 U 0.097 U 0.037 U 0.046 U 0.057 U 0.046 U 0.046 U 0.046 U 0.057 U 0.057 U 0.046 U 0.057 U 0.057	phthene	mg/Kg	37000	0.021	U	0.022	U	240		44		0.94		0.022	U	0.21	J	0.028	U	0.022	U
Anthracene mg/Kg 30000 0.063 J 0.024 U 390 120 0.64 0.024 U 1.4 0.08 J	phthylene	mg/Kg	300000	0.024	U	0.025	U	360		170		0.65		0.025	U	0.97		0.031	U	0.024	U
Atrazine	phenone	mg/Kg	5	0.025	U	0.026	U	1.2	U	2.5	U	0.024	U	0.026	U	0.063	J	0.033	U	0.025	U
Atrazine mg/Kg 2400 0.028 U 0.03 U 1.3 U 2.9 U 0.027 U 0.03 U 0.037 U Benzaldehyde mg/Kg 68000 0.043 U 0.046 U 2 U 4.4 U 0.042 U 0.046 U 0.097 U 0.057 U Benzo(a)anthracene mg/Kg 2 0.11 J 0.017 U 400 110 0.67 0.017 U 7.6 0.17 J Benzo(a)pyrene mg/Kg 0.2 0.08 J 0.013 U 330 90 0.53 0.013 U 7.6 0.17 J Benzo(b)fluoranthene mg/Kg 2 0.12 J 0.015 U 180 49 0.33 J 0.015 U 6.4 0.059 J Benzo(b)fluoranthene mg/Kg 30000 0.037 J 0.015 U	icene	mg/Kg	30000	0.063	J	0.024	U	390		120		0.64		0.024	U	1.4		0.08	J	0.024	U
Benzo(a)anthracene mg/Kg 2 0.11 J 0.017 U 400 110 0.67 0.017 U 7.2 0.17 J	ne		2400	0.028	U	0.03	U	1.3	U	2.9	U	0.027	U	0.03	U	0.063	U	0.037	U	0.029	U
Benzo(a)pyrene mg/Kg 0.2 0.08 J 0.013 U 330 90 0.53 0.013 U 7.6 0.17 J	dehyde	mg/Kg	68000	0.043	U	0.046	U	2	U	4.4	U	0.042	U	0.046	U	0.097	U	0.057	U	0.044	U
Benzo(b)fluoranthene mg/Kg 2 0.12 J 0.017 U 470 140 0.72 0.016 U 12 0.19 J	(a)anthracene	mg/Kg		0.11	J	0.017	U			110		0.67		0.017	U	7.2		0.17	J	0.017	U
Benzo(ghi)perylene mg/Kg 30000 0.037 J 0.015 U 180 49 0.33 J 0.015 U 6.4 0.059 J	\ /1 J	mg/Kg	0.2	0.08	J		U	330		90					U	7.6			J	0.013	U
Benzo(k)fluoranthene mg/Kg 23 0.013 U 0.014 U 0.61 U 1.3 U 0.013 U 0.014 U 0.029 U 0.017 U					J										_				J	0.016	U
Bis(2-chloroethoxy)methane					_ · -								_		_					0.014	U
Bis(2-chloroethyl)ether mg/Kg 2 0.0092 U 0.0097 U 0.43 U 0.93 U 0.009 U 0.0097 U 0.021 U 0.012 U 0.012 U 0.012 U 0.012 U 0.012 U 0.012 U 0.013 U 0.014 U 0.014 U 0.015 U 0			23																_	0.013	U
Bis(2-ethylhexyl)phthalate											_				_					0.02	U
Butyl benzyl phthalate mg/Kg 14000 0.033 U 0.035 U 1.5 U 3.3 U 0.032 U 0.034 U 0.074 U 0.043 U Caprolactam mg/Kg 340000 0.078 U 0.082 U 3.6 U 7.8 U 0.075 U 0.081 U 0.1 U Carbazole mg/Kg 96 0.02 J 0.018 U 190 58 0.31 J 0.018 U 0.047 J Chrysene mg/Kg 230 0.08 J 0.017 U 320 97 0.5 0.017 U 7 0.19 J Dibenzo(a,h)anthracene mg/Kg 0.2 0.026 U 0.027 U 52 13 J 0.084 J 0.027 U 1.3 0.034 U Dibenzofuran mg/Kg 550000 0.037 U 0.038					U				_						_				U	0.0094	U
Caprolactam mg/Kg 340000 0.078 U 0.082 U 3.6 U 7.8 U 0.075 U 0.081 U 0.17 U 0.1 U Carbazole mg/Kg 96 0.02 J 0.018 U 190 58 0.31 J 0.018 U 0.047 J Chrysene mg/Kg 230 0.08 J 0.017 U 320 97 0.5 0.017 U 7 0.19 J Dibenzo(a,h)anthracene mg/Kg 0.2 0.026 U 0.027 U 52 13 J 0.084 J 0.034 U Dibenzofuran mg/Kg 0.023 U 0.024 U 350 93 0.9 0.024 U 0.048 U Diethyl phthalate mg/Kg 550000 0.037 U 0.038 U 1.7 U 3.7 U 0.036 U <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td>0.032</td> <td>U</td>											_								J	0.032	U
Carbazole mg/Kg 96 0.02 J 0.018 U 190 58 0.31 J 0.018 U 0.047 J Chrysene mg/Kg 230 0.08 J 0.017 U 320 97 0.5 0.017 U 7 0.19 J Dibenzo(a,h)anthracene mg/Kg 0.2 0.026 U 0.027 U 52 13 J 0.084 J 0.027 U 1.3 0.034 U Dibenzofuran mg/Kg 0.023 U 0.024 U 350 93 0.9 0.024 U 0.03 U Diethyl phthalate mg/Kg 550000 0.037 U 0.038 U 1.7 U 3.7 U 0.036 U 0.082 U 0.048 U Dimethyl phthalate mg/Kg 0.023 U 0.024 U 1.1 U 2.3 U 0	* *										_		_		_		_			0.034	U
Chrysene mg/Kg 230 0.08 J 0.017 U 320 97 0.5 0.017 U 7 0.19 J Dibenzo(a,h)anthracene mg/Kg 0.2 0.026 U 0.027 U 52 13 J 0.084 J 0.027 U 1.3 0.034 U Dibenzofuran mg/Kg 0.023 U 0.024 U 350 93 0.9 0.024 U 0.43 J 0.03 U Diethyl phthalate mg/Kg 550000 0.037 U 0.038 U 1.7 U 3.7 U 0.038 U 0.048 U Dimethyl phthalate mg/Kg 0.023 U 0.024 U 1.1 U 2.3 U 0.024 U 0.03 U									U		U		_		_		U		_	0.079	U
Dibenzo(a,h)anthracene mg/Kg 0.2 0.026 U 0.027 U 52 13 J 0.084 J 0.027 U 1.3 0.034 U Dibenzofuran mg/Kg 0.023 U 0.024 U 350 93 0.9 0.024 U 0.43 J 0.03 U Diethyl phthalate mg/Kg 550000 0.037 U 0.038 U 1.7 U 3.7 U 0.036 U 0.082 U 0.048 U Dimethyl phthalate mg/Kg 0.023 U 0.024 U 1.1 U 2.3 U 0.024 U 0.03 U													J				J		J	0.017	U
Dibenzofuran mg/Kg 0.023 U 0.024 U 350 93 0.9 0.024 U 0.43 J 0.03 U											1				_	/	\square		J	0.017	U
Diethyl phthalate mg/Kg 550000 0.037 U 0.038 U 1.7 U 3.7 U 0.036 U 0.038 U 0.048 U Dimethyl phthalate mg/Kg 0.023 U 0.024 U 1.1 U 2.3 U 0.023 U 0.052 U 0.03 U			1								Į J		J		_		Ļ		_	0.027	U
Dimethyl phthalate mg/Kg 0.023 U 0.024 U 1.1 U 2.3 U 0.023 U 0.024 U 0.052 U 0.03 U											1		+				J		_	0.023	U
	*		1								_		_		_		_		_	0.037	U
	ž !				\rightarrow		_		_		_		_		_		_		_	0.024	U
					_						_									0.069 0.029	U

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	BW-19 07/29/08		BW-19 07/29/08		BW-20 07/24/08		BW-20 07/25/08	}	BW-20 07/25/08		BW-20 07/25/08		BW-21 07/29/08		BW-21 07/29/08	3	BW-21 07/29/08	
Interest			Sand		Clay		Fill		Mat		Sand		Clay		Fill		Mat		Sand	
		0 1 5 1	Duplicat		Primary		Primary		Primary	•	Primary		Primary	0.	Primary		Primary	·	Primary	
	WOC	Sample Depth Sample Depth	12.0-16.25		22.0-24.0		0.0-4.0 f		6.0-10.0		10.0-15.25		24.0-26.0		0.0-6.0 f		8.0-10.5		10.5-16.0	
Semivolatile Organics (Continued)	VOC	Sample Depth	16.0-16.25) IL	23.0-24.0	11	2.0-3.0 f	ι	8.0-9.0 f	l .	15.0-15.25	1ι	25.0-26.0	1t	5.0-6.0 f	ı L	10.0-10.5	Ιι	15.0-16.0	11
Fluoranthene	mg/Kg	24000	0.27	ΙτΙ	0.028	U	1300	Т	310		1.9	Т	0.028	U	11	Т	0.28	т	0.027	U
Fluorene	mg/Kg	24000	0.27	U	0.028	U	570		150		1.9		0.028	U	0.38	J	0.28	U	0.027	U
Hexachlorobenzene	mg/Kg	1	0.025	U	0.021	U	1.1	U	2.5	U	0.024	U	0.021	U	0.38	U	0.020	U	0.025	U
Hexachlorobutadiene	mg/Kg	25	0.025	U	0.026	U	1.1	U	2.5	U	0.024	U	0.026	U	0.055	U	0.032	U	0.025	U
Hexachlorocyclopentadiene	mg/Kg	110	0.023	U	0.020	U	0.88	U	1.9	U	0.024	U	0.020	U	0.030	U	0.033	U	0.020	U
Hexachloroethane	mg/Kg	140	0.019	U	0.02	U	0.86	U	1.9	U	0.018	U	0.019	U	0.042	U	0.023	U	0.019	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.018	ī	0.015	U	150		47		0.018	J	0.015	U	4.9		0.053	I	0.015	U
Isophorone	mg/Kg	2000	0.037	U	0.013	U	1 1	U	2.3	U	0.022	U	0.013	U	0.051	U	0.033	U	0.013	U
Naphthalene	mg/Kg	17	0.023	U	0.021	U	1600		360		13		0.024	U	1.4		0.057	J	0.023	U
Nitrobenzene	mg/Kg	340	0.01	U	0.011	U	0.48	U	1	U	0.0099	U	0.011	U	0.023	U	0.013	U	0.01	U
N-Nitrosodiphenylamine	mg/Kg	390	0.022	U	0.023	U	1	U	2.2	U	0.022	U	0.023	U	0.025	U	0.029	U	0.023	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.01	U	0.011	U	0.47	U	1	U	0.0098	U	0.01	U	0.022	U	0.013	U	0.01	U
Pentachlorophenol	mg/Kg	10	0.03	U	0.032	U	1.4	U	3.1	U	0.03	U	0.032	U	0.068	U	0.04	U	0.031	U
Phenanthrene	mg/Kg	300000	0.23	J	0.021	U	1900	Ŭ	460	Ŭ	2.8		0.021	U	3.7		0.26	J	0.02	U
Phenol	mg/Kg	210000	0.025	U	0.026	U	32		13	J	1.2		0.026	U	0.055	U	0.032	U	0.025	U
Pyrene	mg/Kg	18000	0.18	J	0.026	U	760		220	Ť	1.1		0.026	U	8.4	Ŭ	0.22	J	0.026	U
Polychlorinated Dioxins/Furans	1.1.8/118	10000	0.10		0.020	Ü	700		220		1.1		0.020	Ü	0.1		0.22	,	0.020	Ü
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.0062	U		T	0.7	П	0.13	Т	0.048	J		П	0.015	J	0.00053	QJ	0.00025	QJ
1,2,3,4,6,7,8-HpCDF	ug/Kg		0.00019	QBJ			0.37		0.72	В	17	В			0.33	В	0.0049	BJ	0.0022	BJ
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.0062	U			0.036	J	0.022	J	0.42				0.018	J	0.00055	J	0.0063	U
1,2,3,4,7,8-HxCDD	ug/Kg		0.0062	U			0.019	J	0.004	J	0.0038	QJ			0.0048	J	0.00016	QJ	0.0063	U
1,2,3,4,7,8-HxCDF	ug/Kg		0.0062	U			0.094	J	0.15		4.3	0			0.15	Q	0.0022	J	0.00072	QJ
1,2,3,6,7,8-HxCDD	ug/Kg		0.0062	U			0.032	QJ	0.0066	J	0.017	Ĵ			0.0058	J	0.00023	J	0.0063	Ù
1,2,3,6,7,8-HxCDF	ug/Kg		0.0062	U			0.028	BJ	0.038	QJ	0.84	Q			0.022	J	0.00043	QJ	0.00015	QJ
1,2,3,7,8,9-HxCDD	ug/Kg		0.0062	U			0.034	BJ	0.0085	J	0.0051	J			0.0081	QJ	0.00031	QJ	0.0063	Ù
1,2,3,7,8,9-HxCDF	ug/Kg		0.0062	U			0.019	QBJ	0.1	U	0.0017	J			0.0083	J	0.00035	QJ	0.0063	U
1,2,3,7,8-PCDD	ug/Kg		0.0062	U			0.018	QJ	0.0025	J	0.0042	QJ			0.0054	J	0.00039	QJ	0.0063	U
1,2,3,7,8-PCDF	ug/Kg		0.0062	U			0.02	QJ	0.0064	QJ	0.05	QJ			0.0069	J	0.00015	QJ	0.0063	U
2,3,4,6,7,8-HxCDF	ug/Kg		0.0062	U			0.023	J	0.016	J	0.17				0.0095	J	0.00027	QJ	0.000091	QJ
2,3,4,7,8-PCDF	ug/Kg		0.0062	U			0.024	J	0.019	J	0.32				0.016	J	0.00029	QJ	0.0063	U
2,3,7,8-TCDD	ug/Kg		0.0012	U			0.073	U	0.0021	U	0.0016	J			0.014	U	0.0016	U	0.0013	U
2,3,7,8-TCDF	ug/Kg		0.0012	U			0.017	QJ	0.0096	QJ	0.0054	QJ			0.013	QJ	0.0002	QJ	0.0013	U
OCDD	ug/Kg		0.00081	QBJ			6.2	В	0.74	В	0.2	В			0.076	BJ	0.0036	BJ	0.0014	BJ
OCDF	ug/Kg		0.00086	QBJ			0.53	BJ	1.2	В	45	В			0.67	В	0.013	BJ	0.0055	BJ
Total HpCDD	ug/Kg		0.0062	U			1.3	В	0.44		0.098	J			0.024	J	0.00075	QJ	0.00049	JQ
Total HpCDF	ug/Kg		0.00019	QBJ			0.73		0.87	В	18	В			0.38	В	0.0058	JВ	0.0024	QJB
Total HxCDD	ug/Kg		0.0062	U			0.19	JQB	0.086	JQ	0.084	QJ			0.028	QJ	0.0007	QJ	0.00025	J
Total HxCDF	ug/Kg		0.0062	U			0.48	JQB	0.53	Q	9.7	Q			0.28	Q	0.0047	QJ	0.0014	JQ
Total PeCDD	ug/Kg		0.0062	U			0.027	QJ	0.021	QJ	0.044	QJ			0.02	QJ	0.00039	QJ	0.0063	U
Total PeCDF	ug/Kg		0.0062	U			0.22	QJB	0.25	JQ	3.7	Q			0.12	QJ	0.0018	QJ	0.0063	U
Total TCDD	ug/Kg		0.0012	U			0.015	QJ	0.0093	JQ	0.035	Q			0.016	JQ	0.00043	QJ	0.0013	U
Total TCDF	ug/Kg		0.0062	U			0.063	QJ	150	Q	1.7	Q			0.1	Q	0.00057	QJ	0.0013	U
Polychlorinated Dioxins/Furans (2,	3,7,8 Equival	ents)																		
1,2,3,4,6,7,8-HpCDD	0.01						7.00E-03		1.30E-03		4.80E-04				1.50E-04					<u> </u>
1,2,3,4,6,7,8-HpCDF	0.01						3.70E-03		7.20E-03		1.70E-01				3.30E-03		4.90E-05		2.20E-05	<u> </u>
1,2,3,4,7,8,9-HpCDF	0.01						3.60E-04		2.20E-04		4.20E-03			igsquare	1.80E-04		5.50E-06			<u> </u>
1,2,3,4,7,8-HxCDD	0.10						1.90E-03		4.00E-04						4.80E-04					$oldsymbol{ol}}}}}}}}}}}}}}}}}$
1,2,3,4,7,8-HxCDF	0.10						9.40E-03		1.50E-02								2.20E-04			<u> </u>
1,2,3,6,7,8-HxCDD	0.10								6.60E-04		1.70E-03				5.80E-04		2.30E-05			

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

KEARNY, NEW JERSEY	1		DIT 10	I	DIT 10		D111 40		D. D		D. D		D. T. T. A. O.				D111 44		D111 44	—
Constituent			BW-19		BW-19		BW-20		BW-20		BW-20		BW-20		BW-21		BW-21		BW-21	
of	Units	Criterion ⁽¹⁾	07/29/08	3	07/29/08	3	07/24/08	3	07/25/08	3	07/25/08	3	07/25/08		07/29/08		07/29/08	3	07/29/08	' I
Interest			Sand		Clay		Fill		Mat		Sand		Clay		Fill		Mat		Sand	
		G 1 D 1	Duplicate		Primary		Primary		Primary	0.	Primary		Primary	0.	Primary		Primary		Primary	
	VOC	Sample Depth	12.0-16.25		22.0-24.0		0.0-4.0 ft		6.0-10.0		10.0-15.25		24.0-26.0		0.0-6.0 ft		8.0-10.5		10.5-16.0	
Deliveble sing 4 od Diening/Europe (2.2.7		Sample Depth	16.0-16.25	ıı	23.0-24.0	1ι	2.0-3.0 ft	l	8.0-9.0 f	l	15.0-15.25	1ι	25.0-26.0	11	5.0-6.0 f	<u>լ</u>	10.0-10.5	11	15.0-16.0	11
Polychlorinated Dioxins/Furans (2,3,7, 1,2,3,6,7,8-HxCDF	0.10			Т		т —	2.80E-03	_		_	1	Т		г	2.20E-03			П		
1,2,3,0,7,8-HXCDF 1,2,3,7,8,9-HxCDD	0.10						3.40E-03	<u> </u>	8.50E-04		5.10E-04									++
1,2,3,7,8,9-HxCDF	0.10						5.40E-03		8.30E-04		1.70E-04				8.30E-04					+
1,2,3,7,8-PCDD	1.00			1		1		<u> </u>	2.50E-03	 	1.70E-04				5.40E-03					+ - 1
1,2,3,7,8-PCDF	0.05								2.30E-03						3.45E-04					${}$
2,3,4,6,7,8-HxCDF	0.03						2.30E-03		1.60E-03		1.70E-02				9.50E-04					+
2,3,4,7,8-PCDF	0.10						1.20E-02		9.50E-03		1.60E-01				8.00E-03					${\dagger}$
2,3,7,8-TCDD	1.00			1		1	1.20E-02	 	7.50E 05	 	1.60E-03									†
2,3,7,8-TCDF	0.10			1				<u> </u>		<u> </u>										†
OCDD	0.0001			1		1	6.20E-04	 	7.40E-05	 	2.00E-05				7.60E-06		3.60E-07		1.40E-07	†
OCDF	0.0001						5.30E-05		1.20E-04		4.50E-03				6.70E-05		1.30E-06		5.50E-07	П
Total 2,3,7,8-TCDD Equivalents ⁽²⁾	ug/Kg	1					4.35E-02		3.94E-02		3.60E-01				2.25E-02		2.99E-04		2.27E-05	П
Polychlorinated Biphenyls (Aroclors)						_														
Aroclor 1016	mg/Kg	1 1	0.0031	U		Т	0.0036	U	0.01	U	0.003	U		Г	0.0034	U	0.004	U	0.0031	U
Aroclor 1221	mg/Kg	1	0.0031	U	<u></u>		0.0036	U	0.013	U	0.003	U			0.0034	U	0.004	U	0.0031	U
Aroclor 1221 Aroclor 1232	mg/Kg	1	0.004	U			0.0040	U	0.013	U	0.0034	U			0.0044	U	0.0032	U	0.004	U
Aroclor 1232 Aroclor 1242	mg/Kg	1	0.0034	U		1	0.0039	U	0.012	U	0.0034	U			0.004	U	0.0044	U	0.0034	U
Aroclor 1248	mg/Kg	1	0.0034	U			0.0033	U	0.0066	U	0.0033	U			0.0038	U	0.0026	U	0.0034	U
Aroclor 1254	mg/Kg	1	0.002	U			0.0023	U	0.0099	U	0.0019	U			0.0033	U	0.0020	U	0.002	U
Aroclor 1260	mg/Kg	1	0.003	U			0.0034	U	0.0099	U	0.0028	U			0.0033	U	0.0038	U	0.003	U
Aroclor 1262	mg/Kg	1	0.0046	U			0.0053	U	0.015	U	0.0044	Ü			0.0051	U	0.0059	U	0.0046	U
Aroclor 1268	mg/Kg	1	0.0027	U			0.0031	U	0.0089	U	0.0026	U			0.003	U	0.0035	U	0.0027	U
Metals	1 5 5																			
Aluminum	mg/Kg		3080	J	11100	J	1740		3710		3140		12600		3080	J	1640	J	4150	J
Antimony	mg/Kg	450	0.11	U	0.19	BJ	0.53	BJ	2.3	В	0.11	U	0.12	U	0.13	U	0.15	U	0.12	U
Arsenic	mg/Kg	19	2.4		5.9		17		24		1.4		7.7		5.8		0.37	U	2	
Barium	mg/Kg	59000	17.3	В	74.3		42.9		40.3	В	12.2	В	73.4		39.3		12.6	В	17.4	В
Beryllium	mg/Kg	140	0.29	В	0.87		0.2	В	0.13	U	0.32	В	0.84		0.49	В	0.13	В	0.4	В
Cadmium	mg/Kg	78	0.059	U	0.061	U	1.5		1.3	В	0.12	В	0.51	В	0.065	U	0.076	U	0.059	U
Calcium	mg/Kg		513	В	5830		1740		4090		584	В	5220		1690		2150		658	
Chromium ⁽³⁾	mg/Kg	120000	8.7		19.4		2650		1040		10.4		21.2		1570		33.9		13.3	Ш
Chromium (Hexavalent) ⁽³⁾	mg/Kg	20	0.4	U	0.4	U	6.4		0.4	U	0.4	U	0.4	U	99.1		0.4	U	0.4	U
Cobalt	mg/Kg	590	3.2	В	12		4.9	В	8.6	В	3.3	В	12.4		3.9	В	0.26	В	3.2	В
Copper	mg/Kg	45000	5.7		22.3	-	93.3		69.1	ļ.,	5.1	ļ.,	25.3		46.2		2.3	В	6.5	Щ
Iron	mg/Kg		10700		28000	-	44200		44100	J	9710	J	30900	J	10700	_	1570		10700	
Lead	mg/Kg	800	3.7	J	13.3	J	102	B	209		2.8		12.2		69.1	J	2.6	J	3.2	\vdash
Magnesium	mg/Kg		1230		7210		606	В	2480	ļ .	1180		7610		949		1940		1360	+-+
Manganese	mg/Kg	5900	56.6	T.T.	599	Ъ	364		267	J	74.9	J	548	J	119		51.7	T T	56.7	T.
Mercury	mg/Kg	65	0.0089	U	0.013	В	1.3	-	15.1	├	0.0085	U	0.022	В	0.39	T	0.012	U	0.009	U
Nickel Potossium	mg/Kg	23000	6.6	J	24.6	J	24.2	D	39	D	7.5	D	26.8		11.5	J D	1.3	BJ	6.9	I J
Potassium Salanium	mg/Kg	 5700	315	В	1450	T T	136	В	334	B	315	В	1650	ŢŢ	231	В	179	B U	394	B U
Selenium Silver	mg/Kg	5700 5700	0.36	U	0.37	U	2.7 0.36	D	1.6	B	0.35	U	0.37	U B	0.92	D	0.47	U	0.36 0.047	U
Silver Sodium	mg/Kg mg/Kg	1	263	В	0.18 523	B	2300	В	0.62 2370	В	0.045 505	В	0.18 581	В	0.12 202	B B	0.06 2190	U	583	В
Thallium	mg/Kg mg/Kg	 79	0.4	U	0.42	U	2300	\vdash	1.3	U	0.39	U	0.64	В	0.44	U	0.52	U	0.41	I I
Vanadium	mg/Kg	1100	12.2		24.4		42	\vdash	1.3		12.6		26.5	10	55.3	U	3.6	В	15.5	\vdash
Zinc	mg/Kg	11000	16.2	T	63.5	J	170		283	 	20.6		64.6		31.1	ī	3.4	I	18.6	+
LIIIV	mg/ N g	110000	10.2	J	03.3	l J	1/0	I	203	I	20.0	1	04.0	I	31.1	J	3.4	J	10.0	_ ј

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	BW-19 07/29/08 Sand Duplicate)	BW-19 07/29/08 Clay Primary		BW-20 07/24/08 Fill Primary		BW-20 07/25/08 Mat Primary		BW-20 07/25/08 Sand Primary		BW-20 07/25/08 Clay Primary	BW-2 07/29/ Fill Prima)8 'y	BW-21 07/29/08 Mat Primary		BW-21 07/29/08 Sand Primary	3
		Sample Depth	12.0-16.25		22.0-24.0		0.0-4.0 ft		6.0-10.0		10.0-15.25		24.0-26.0 ft			8.0-10.5		10.5-16.0	
		Sample Depth	16.0-16.25	ft	23.0-24.0	ft	2.0-3.0 ft	;	8.0-9.0 ft	t	15.0-15.25	ft	25.0-26.0 ft	5.0-6.0	ft	10.0-10.5	ft	15.0-16.0	ft
Toxicity Characteristic Leacing Proced	1															•			
1,1-Dichloroethene	mg/L	0.7					0.035	U	0.035	U	0.035	U		0.0087	U	0.0087	U	0.0087	U
1,2-Dichloroethane	mg/L	0.5					0.026	U	0.026	U	0.026	U		0.0064	U	0.0064	U	0.0064	U
1,4-Dichlorobenzene	mg/L	7.5					0.062		0.0046	U	25			0.0046	U	0.0046	U	0.0046	U
2,4,5-Trichlorophenol	mg/L	400					0.0041	U	0.0041	U	0.0041	U		0.0041	U	0.0041	U	0.0041	U
2,4,6-Trichlorophenol	mg/L	2					0.0026	U	0.0026	U	0.0026	U		0.0026	U	0.0026	U	0.0026	U
2,4-Dinitrotoluene	mg/L	0.13					0.0028	U	0.0028	U	0.0028	U		0.0028	U	0.0028	U	0.0028	U
2-Butanone	mg/L	200					0.029	U	0.12	J	0.029	U		0.0073	U	0.0073	U	0.0073	U
Benzene	mg/L	0.5					0.36		0.033	U	0.046	J		0.0081	U	0.0081	U	0.0081	U
Carbon Tetrachloride	mg/L	0.5					0.037	U	0.037	U	0.037	U		0.0091	U	0.0091	U	0.0091	U
Chlorobenzene	mg/L	100					0.028	U	0.028	U	0.83			0.0071	U	0.0071	U	0.0071	U
Chloroform	mg/L	6					0.031	U	0.031	U	0.031	U		0.0078	U	0.0078	U	0.0078	U
Cresols	mg/L	200					1.8		0.0089	U	0.45			0.0089	U	0.0089	U	0.0089	U
Hexachlorobenzene	mg/L	0.13					0.0049	U	0.0049	U	0.0049	U		0.0049	U	0.0049	U	0.0049	U
Hexachlorobutadiene	mg/L	0.5					0.0033	U	0.0033	U	0.0033	U		0.0033	U	0.0033	U	0.0033	U
Hexachloroethane	mg/L	3					0.0036	U	0.0036	U	0.0036	U		0.0036	U	0.0036	U	0.0036	U
Nitrobenzene	mg/L	2	-				0.0056	U	0.0056	U	0.0056	U		0.0056	U	0.0056	U	0.0056	U
Pentachlorophenol	mg/L	100					0.005	U	0.005	U	0.005	U		0.005	U	0.005	U	0.005	U
Pyridine	mg/L	5	-				0.011	U	0.011	U	0.011	U		0.011	U	0.011	U	0.011	U
Tetrachloroethene	mg/L	0.7					0.023	U	0.023	U	0.023	U		0.0057	U	0.0057	U	0.0057	U
Trichloroethene	mg/L	0.5					0.035	U	0.035	U	0.035	U		0.0088	U	0.0088	U	0.0088	U
Vinyl chloride	mg/L	0.2	-				0.038	U	0.038	U	0.038	U		0.0094	U	0.0094	U	0.0094	U
Arsenic	mg/L	5					0.16	В	0.17	В	0.13	В		0.18	В	0.16	В	0.2	В
Barium	mg/L	100					0.16	BJ	0.038	BJ	0.14	BJ		0.21	BJ	0.055	BJ	0.2	BJ
Cadmium	mg/L	1					0.0012	U	0.0012	U	0.0012	U		0.0012	U	0.0012	U	0.0012	U
Chromium	mg/L	5					0.58		0.0062	В	0.017	В		0.52		0.0052	В	0.0055	В
Lead	mg/L	5					0.013	U	0.013	U	0.013	U		0.032	В	0.013	U	0.013	U
Mercury	mg/L	0.2					0.000055	U	0.000055	U	0.000055	U		0.000055	U	0.000055	U	0.000055	U
Selenium	mg/L	1					0.015	U	0.015	U	0.015	U		0.015	U	0.015	U	0.015	U
Silver	mg/L	5					0.0025	U	0.0025	U	0.0025	U		0.0025	U	0.0025	U	0.0025	U
RCRA Characteristics and Indicators						•				•				•		•			
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td></td><td></td><td></td><td></td><td>8.39</td><td></td><td>5.49</td><td></td><td>8.16</td><td></td><td></td><td>7.77</td><td></td><td>7.42</td><td></td><td>8.2</td><td></td></ph<12.5<>					8.39		5.49		8.16			7.77		7.42		8.2	
Cyanide	mg/Kg	23000	0.21	BJ			13.4		10.6		0.13	В		0.95	J	0.27	BJ	0.23	BJ
Total Sulfide (Reactivity)	mg/Kg						210		51.1	U	14.7	U		77.6		19.9	U	15.5	U
Ignitability	None						No		No		No			No		No		No	
Oxidation Reduction Potential	mV		464		485		592		455		442		444	456		470		469	
Percent Solids	%		80.1		76.9		68.4		24		83.2		77.3	72.2		61.6		79.1	

TABLE 4-4

ANALYTICAL RESULTS
BARRIER WALL ALIGNMENT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs appendix1.pdf) unless noted otherwise.
- 2. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.
- 3. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance/rs/chrome criteria.pdf). Criterion for residential exposure to trivalent chromium was used for total chromium.
- 4. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 available at electronic CFR website (ecfr.gpoaccess.gov).

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- E Inorganic results. Serial dilution was outside quality control limits for this analyte.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%.
- Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
- S Organic results. Ion suppression.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

21 of 21

TABLE 4-5
ANALYTICAL RESULTS
GEOTECHNICAL BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent			GT-1		GT-2		GT-3		GT-4		GT-5	
of	Units	Criterion ⁽¹⁾	05/14/08		05/12/0		05/08/08		05/13/0		05/13/0	
Interest	Cincs	Criterion	25-26 ft	t	19-20 f	t	22-24 ft	ţ	29-30 f	t	26-27 f	
			Primary	7	Primar	y	Primary	7	Primar	y	Primar	y
Volatile Organics										, ,		
1,1,1-Trichloroethane	mg/Kg	4200	0.007	U	0.014	U	0.014	U	0.013	U	0.013	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.01	U	0.015	U	0.015	U	0.015	U	0.015	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.015	U	0.017	U	0.016	U	0.016	U	0.016	U
1,1,2-Trichloroethane	mg/Kg	6	0.012	U	0.015	U	0.014	U	0.014	U	0.014	U
1,1-Dichloroethane	mg/Kg	24	0.0083	U	0.013	U	0.013	U	0.013	U	0.013	U
1,1-Dichloroethene	mg/Kg	150	0.012	U	0.016	U	0.016	U	0.015	U	0.015	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.013	U	0.014	U	0.03	J	0.013	U	0.013	U
1,2-Dibromoethane	mg/Kg	0.04	0.012	U	0.014	U	0.014	U	0.014	U	0.014	U
1,2-Dichlorobenzene	mg/Kg	59000	0.012	U	0.015	U	0.015	U	0.014	U	0.014	U
1,2-Dichloroethane	mg/Kg	3	0.0089	U	0.015	U	0.015	U	0.014	U	0.014	U
1,2-Dichloropropane	mg/Kg	5	0.0078	U	0.015	U	0.015	U	0.014	U	0.014	U
1,3-Dichlorobenzene	mg/Kg	59000	0.0095	U	0.014	U	0.014	U	0.014	U	0.014	U
1,4-Dichlorobenzene	mg/Kg	13	0.0092	U	0.015	U	0.015	U	0.014	U	0.014	U
2-Butanone	mg/Kg	44000	0.013	U	0.037	J	0.19		0.013	U	0.013	U
2-Hexanone	mg/Kg		0.01	U	0.011	U	0.011	U	0.01	U	0.01	U
4-Methyl-2-pentanone	mg/Kg		0.0094	U	0.012	U	0.012	U	0.011	U	0.011	U
Acetone	mg/Kg		0.072	U	0.45		1.8		0.08	J	0.075	J
Benzene	mg/Kg	5	0.0097	U	0.014	U	0.014	U	0.014	U	0.014	U
Bromodichloromethane	mg/Kg	3	0.0081	U	0.013	U	0.013	U	0.013	U	0.013	U
Bromoform	mg/Kg	280	0.0064	U	0.014	U	0.014	U	0.013	U	0.013	U
Bromomethane	mg/Kg	59	0.011	U	0.017	U	0.017	U	0.017	U	0.016	U
Carbon disulfide	mg/Kg	110000	0.0074	U	0.017	U	0.016	U	0.016	U	0.016	U
Carbon tetrachloride	mg/Kg	2	0.0064	U	0.012	U	0.012	U	0.012	U	0.012	U
Chlorobenzene	mg/Kg	7400	0.011	U	0.015	U	0.015	U	0.014	U	0.014	U
Chloroethane	mg/Kg	1100	0.022	U	0.02	U	0.019	U	0.019	U	0.019	U
Chloroform	mg/Kg	2	0.0084	U	0.014	U	0.014	U	0.014	U	0.014	U
Chloromethane	mg/Kg	12	0.012	U	0.015	U	0.015	U	0.014	U	0.014	U
cis-1,2-Dichloroethene	mg/Kg	560	0.01	U	0.015	U	0.014	U	0.014	U	0.014	U
cis-1,3-Dichloropropene	mg/Kg	7	0.0098	U	0.012	U	0.012	U	0.012	U	0.012	U
Cyclohexane	mg/Kg		0.0054	U	0.014	U	0.013	U	0.013	U	0.013	U
Dibromochloromethane	mg/Kg	8	0.01	U	0.013	U	0.012	U	0.012	U	0.012	U
Dibromochloropropane	mg/Kg		0.011	U	0.011	U	0.011	U	0.011	U	0.011	U
Dichlorodifluoromethane	mg/Kg	230000	0.0096	U	0.017	U	0.017	U	0.017	U	0.017	U
Ethylbenzene	mg/Kg	110000	0.0093	U	0.016	U	0.016	U	0.015	U	0.015	U
Isopropylbenzene	mg/Kg		0.0098	U	0.015	U	0.014	U	0.014	U	0.014	U
Methyl Acetate	mg/Kg		0.013	U	0.014	U	0.014	U	0.014	U	0.014	U
Methylcyclohexane	mg/Kg		0.01	U	0.015	U	0.015	U	0.015	U	0.015	U
Methylene chloride	mg/Kg	97	0.0097	U	0.026	J	0.01	U	0.014	JΒ	0.01	JВ
Methyltert-butylether	mg/Kg	320	0.011	U	0.013	U	0.012	U	0.012	U	0.012	U
Styrene	mg/Kg	260	0.0077	U	0.015	U	0.015	U	0.015	U	0.015	U
Tetrachloroethene	mg/Kg	5	0.0098	U	0.018	U	0.017	U	0.017	U	0.017	U
Toluene	mg/Kg	91000	0.011	U	0.011	U	0.011	U	0.01	U	0.01	U
trans-1,2-Dichloroethene	mg/Kg	720	0.0086	U	0.016	U	0.016	U	0.015	U	0.015	U
Trans-1,3-Dichloropropene	mg/Kg	7	0.0086	U	0.012	U	0.012	U	0.011	U	0.011	U
Trichloroethene	mg/Kg	20	0.0095	U	0.015	U	0.015	U	0.015	U	0.015	U
Trichlorofluoromethane	mg/Kg	340000	0.013	U	0.022	U	0.022	U	0.021	U	0.021	U
Vinyl chloride	mg/Kg	2	0.0068	U	0.015	U	0.015	U	0.015	U	0.015	U
Xylene (total)	mg/Kg	170000	0.032	U	0.048	U	0.047	U	0.046	U	0.046	U

TABLE 4-5
ANALYTICAL RESULTS
GEOTECHNICAL BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

G			GT-1	Ī	GT-2		GT-3		GT-4		GT-5	
Constituent	TT 14	~ · · (1)	05/14/0	8	05/12/0	8	05/08/08	3	05/13/0	8	05/13/0	8
of	Units	Criterion ⁽¹⁾	25-26 f	t	19-20 f	t l	22-24 ft	t	29-30 f	t	26-27 f	ť
Interest			Primary	v	Primar		Primary		Primary		Primar	
Semivolatile Organics				,		<i>,</i>				,		
1,1'-Biphenyl	mg/Kg	34000	0.032	U	0.032	U	0.032	U	0.032	J	0.032	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.032	U	0.24	U	0.25	U	0.27	U	0.27	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.032	U	0.33	U	0.35	U	0.38	U	0.37	U
2,4,6-Trichlorophenol	mg/Kg	74	0.032	U	0.32	U	0.34	U	0.37	U	0.36	U
2,4-Dichlorophenol	mg/Kg	2100	0.032	U	0.12	U	0.13	U	0.14	U	0.13	U
2,4-Dimethylphenol	mg/Kg	14000	0.032	U	0.17	U	3	J	1.3	J	0.19	U
2,4-Dinitrophenol	mg/Kg	1400	0.032	U	4.7	U	5	U	5.4	U	5.3	U
2,4-Dinitrotoluene	mg/Kg	3	0.032	U	0.21	U	0.22	U	0.23	U	0.23	U
2,6-Dinitrotoluene	mg/Kg	3	0.032	U	0.26	U	0.27	U	0.29	U	0.29	U
2-Chloronaphthalene	mg/Kg		0.032	U	0.23	U	0.24	U	0.26	U	0.26	U
2-Chlorophenol	mg/Kg	2200	0.032	U	0.2	U	0.21	U	0.23	U	0.22	U
2-Methylnaphthalene	mg/Kg	2400	0.032	U	0.22	U	1.1	J	17		0.25	U
2-Methylphenol	mg/Kg	3400	0.032	U	0.52	J	3	J	0.84	J	0.28	U
2-Nitroaniline	mg/Kg	23000	0.032	U	0.24	U	0.25	U	0.27	U	0.27	U
2-Nitrophenol	mg/Kg		0.032	U	0.32	U	0.33	U	0.36	U	0.35	U
3,3-Dichlorobenzidine	mg/Kg	4	0.032	U	0.9	U	0.95	U	1	U	1	U
3-Nitroaniline	mg/Kg		0.032	U	0.34	U	0.36	U	0.39	U	0.38	U
4,6-Dinitro-o-cresol	mg/Kg	68	0.032	U	2.8	U	3	U	3.2	U	3.1	U
4-Bromophenylphenyl ether	mg/Kg		0.032	U	0.18	U	0.19	U	0.2	U	0.2	U
4-Chloro-3-methylphenol	mg/Kg		0.032	U	0.24	U	0.26	U	0.28	U	0.27	U
4-Chloroaniline	mg/Kg		0.032	U	0.2	U	0.21	U	0.22	U	0.22	U
4-Chlorophenyl phenyl ether	mg/Kg		0.032	U	0.35	U	0.36	U	0.39	U	0.38	U
4-Methylphenol	mg/Kg	340	0.032	U	3.8	J	14		3.4	J	0.28	U
4-Nitroaniline	mg/Kg		0.032	U	0.17	U	0.18	U	0.19	U	0.19	U
4-Nitrophenol	mg/Kg		0.032	U	0.31	U	0.33	U	0.35	U	0.35	U
Acenaphthene	mg/Kg	37000	0.032	U	0.21	U	0.22	U	2.2	J	0.23	U
Acenaphthylene	mg/Kg	300000	0.032	U	0.23	U	0.24	U	0.39	J	0.26	U
Acetophenone	mg/Kg	5	0.032	U	0.24	U	0.26	U	0.28	U	0.27	U
Anthracene	mg/Kg	30000	0.032	U	0.23	U	0.24	U	1.6	J	0.25	U
Atrazine	mg/Kg	2400	0.032	U	0.28	U	0.29	U	0.31	U	0.31	U
Benzaldehyde	mg/Kg	68000	0.032	U	0.43	U	0.45	U	0.48	U	0.47	U
Benzo(a)anthracene	mg/Kg	2	0.032	U	0.16	U	0.17	U	0.6	J	0.48	J
Benzo(a)pyrene	mg/Kg	0.2	0.032	U	0.12	U	0.13	U	0.5	J	0.41	J
Benzo(b)fluoranthene	mg/Kg	2	0.032	U	0.15	U	0.16	U	0.72	J	0.58	J
Benzo(ghi)perylene	mg/Kg	30000	0.032	U	0.14	U	0.14	U	0.44	J	0.31	J
Benzo(k)fluoranthene	mg/Kg	23	0.032	U	0.13	U	0.13	U	0.15	U	0.14	U
Bis(2-chloroethoxy)methane	mg/Kg		0.032	U	0.19	U	0.2	U	0.21	U	0.21	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.032	U	0.09	U	0.095	U	0.1	U	0.1	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.032	U	0.31	U	0.32	U	0.6	J	0.57	J
Butyl benzyl phthalate	mg/Kg	14000	0.032	U	0.32	U	0.34	U	0.36	U	0.36	U
Caprolactam	mg/Kg	340000	0.032	U	0.76	U	0.8	U	0.86	U	0.84	U
Carbazole	mg/Kg	96	0.032	U	0.16	U	0.17	U	0.37	J	0.18	U
Chrysene	mg/Kg	230	0.032	U	0.16	U	0.17	U	0.69	J	0.41	J
Dibenzo(a,h)anthracene	mg/Kg		0.032	U	0.26	U	0.27	U	0.29	U	0.28	U
Dibenzofuran	mg/Kg		0.032	U	0.22	U	0.27	J	3.6	J	0.25	U
Diethyl phthalate	mg/Kg	550000	0.032	U	0.36	U	0.38	U	0.41	U	0.4	U
Dimethyl phthalate	mg/Kg		0.032	U	0.23	U	0.24	U	0.26	U	0.25	U
Di-n-butyl phthalate	mg/Kg		0.032	U	0.67	U	0.7	U	0.75	U	0.74	U
Di-n-octyl phthalate	mg/Kg		0.032	U	0.28	U	0.29	U	0.32	U	0.31	U
Fluoranthene	mg/Kg		0.032	U	0.26	U	0.27	U	1.3	J	0.54	J

TABLE 4-5
ANALYTICAL RESULTS
GEOTECHNICAL BORINGS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest Semivolatile Organics (Continued)	Units	Criterion ⁽¹⁾	GT-1 05/14/08 25-26 ft Primary	t	GT-2 05/12/08 19-20 ft Primary	t	GT-3 05/08/08 22-24 ft Primary	t	GT-4 05/13/08 29-30 ft Primary	;	GT-5 05/13/0 26-27 f Primar	ft
Fluorene	mg/Kg	24000	0.21	U	0.19	U	0.2	U	2.5	J	0.22	U
Hexachlorobenzene	mg/Kg	1	0.21	U	0.17	U	0.25	U	3.6	J	0.27	U
Hexachlorobutadiene	mg/Kg	25	0.26	U	0.25	U	0.26	U	0.28	U	0.27	U
Hexachlorocyclopentadiene	mg/Kg	110	0.20	U	0.18	U	0.19	U	0.21	U	0.2	U
Hexachloroethane	mg/Kg	140	0.19	U	0.18	U	0.19	U	0.21	U	0.2	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.15	U	0.14	U	0.15	U	0.39	J	0.34	J
Isophorone	mg/Kg	2000	0.13	U	0.14	U	0.13	U	0.25	U	0.25	U
Naphthalene	mg/Kg	17	39	Ŭ	0.19	U	3.8	J	47		0.22	U
Nitrobenzene	mg/Kg	340	0.11	U	0.1	U	0.1	U	0.11	U	0.11	U
N-Nitrosodiphenylamine	mg/Kg	390	0.23	U	0.22	U	0.23	U	0.25	U	0.24	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.23	U	0.098	U	0.23	U	0.11	U	0.11	U
Pentachlorophenol	mg/Kg	10	0.32	U	0.3	U	0.31	U	0.34	U	0.33	U
Phenanthrene	mg/Kg	300000	0.2	U	0.19	U	0.2	U	3.7	J	0.25	J
Phenol	mg/Kg	210000	0.26	U	16	Ť	10		2.3	J	0.27	U
Pyrene	mg/Kg	18000	0.26	U	0.25	U	0.26	U	0.75	J	0.37	J
Metals	mg/rtg	10000	0.20	U	0.23	U	0.20	U	0.75	1,5	0.57	1,
Aluminum	mg/Kg		11100	J	9770	П	11000	П	13000	П	12600	丅
Antimony	mg/Kg	450	0.12	U	0.11	U	0.12	U	0.13	U	0.12	U
Arsenic	mg/Kg	19	5.7	Ť	2.3	Ť	3.3	Ŭ	8.1	Ŭ	8.1	Ť
Barium	mg/Kg	59000	44.3	П	32.9		30.1		92.3		75.4	+
Beryllium	mg/Kg	140	0.77	П	0.68		0.95		0.87		0.89	\top
Cadmium	mg/Kg	78	0.66	П	0.41	В	0.81		0.7		0.73	\top
Calcium	mg/Kg		6700	Ħ	1930		2500		5050		5630	1
Chromium ⁽²⁾	mg/Kg	120000	18.5	J	21.7	J	19.7	J	22.3	J	21.1	J
Chromium (Hexavalent) ⁽²⁾	mg/Kg	20	NA		0.4	U	0.4	U	0.4	U	0.4	U
Cobalt	mg/Kg	590	11.8	П	7.3		12.9		12.5		12.7	\top
Copper	mg/Kg	45000	23.5	П	10.1		16.2		28.1		25.4	\top
Iron	mg/Kg		24500	Ħ	16200		35700		30100		31400	1
Lead	mg/Kg	800	12.8		8.2		11		12.8		14	
Magnesium	mg/Kg		7740		3700		6150		8220		7670	1
Manganese	mg/Kg	5900	635	J	293		948		565		609	
Mercury	mg/Kg	65	0.021	В	0.0089	В	0.016	В	0.031	В	0.024	В
Nickel	mg/Kg		25	J	17.9	J	30.2	J	27.2	J	27.3	J
Potassium	mg/Kg		1450		982		1170		1890		1830	
Selenium	mg/Kg		0.38	В	0.39	В	0.55	В	0.55	В	0.55	В
Silver	mg/Kg	5700	0.2	BJ	0.1	В	0.23	В	0.12	В	0.16	В
Sodium	mg/Kg		796	П	796		2170		558	В	692	T
Thallium	mg/Kg	79	0.43	В	0.78	В	0.59	В	0.44	U	0.65	В
Vanadium	mg/Kg		21.9	П	19	П	20.1		27.8		25.7	丅
Zinc	mg/Kg		62.7	J	53	П	77.9		65.7	П	67.5	T
Indicator Parameters												
Percent Solids	%		76.8		82.5		78.9		73		74.5	T

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf)
- 2. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance).
 - Criterion for residential exposure to trivalent chromium was used for total chromium.
- 3. Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:
 - B Organic results. Analyte detected in associated method blank
 - B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
 - J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
 - J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
 - U Not detected at the detection limit indicated.
 - -- Not analyzed or criteria unavailable.

TABLE 4-6
ANALYTICAL RESULTS
PIPE RUN TRENCH SPOIL
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	TSWC-0 05/07/08 Primary	3	TSWC-03 10/21/08 Resample	;	TSWC-0- 05/07/08 Primary	3	TSWC-0 05/07/08 Primary	8
Interest		Sample Depth	1.0-3.0 f		0.0-3.0 ft		1.0-3.0 f		1.0-3.0 f	
		Sample Depth	2.0-3.0 f				2.0-3.0 f		2.0-3.0 f	
Volatile Organics				•						
1,1,1-Trichloroethane	mg/Kg	4200	0.066	U			0.0012	U	0.0012	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.073	U			0.0014	U	0.0014	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.079	U			0.0015	U	0.0015	U
1,1,2-Trichloroethane	mg/Kg	6	0.069	U			0.0013	U	0.0013	U
1,1-Dichloroethane	mg/Kg	24	0.063	U			0.0012	U	0.0012	U
1,1-Dichloroethene	mg/Kg	150	0.076	U			0.0014	U	0.0014	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.067	U			0.0012	U	0.0012	U
1,2-Dibromoethane	mg/Kg	0.04	0.067	U			0.0012	U	0.0012	U
1,2-Dichlorobenzene	mg/Kg	59000	4.2				0.0013	U	0.0013	U
1,2-Dichloroethane	mg/Kg	3	0.07	U			0.0013	U	0.0013	U
1,2-Dichloropropane	mg/Kg	5	0.072	U			0.0013	U	0.0013	U
1,3-Dichlorobenzene	mg/Kg	59000	1.1				0.0013	U	0.0013	U
1,4-Dichlorobenzene	mg/Kg	13	2.5				0.0013	U	0.0013	U
2-Butanone	mg/Kg	44000	0.063	U			0.0012	U	0.0012	U
2-Hexanone	mg/Kg		0.051	U			0.00094	U	0.00094	U
4-Methyl-2-pentanone	mg/Kg		0.056	U			0.001	U	0.001	U
Acetone	mg/Kg		0.077	U			0.006	U	0.006	U
Benzene	mg/Kg	5	0.067	U			0.0012	U	0.0012	U
Bromodichloromethane	mg/Kg	3	0.063	U			0.0012	U	0.0012	U
Bromoform	mg/Kg	280	0.066	U			0.0012	U	0.0012	U
Bromomethane	mg/Kg	59	0.082	U			0.0015	U	0.0015	U
Carbon disulfide	mg/Kg	110000	0.079	U			0.0015	U	0.0015	U
Carbon tetrachloride	mg/Kg	2	0.058	U			0.0011	U	0.0011	U
Chlorobenzene	mg/Kg	7400	0.43				0.0013	U	0.0013	U
Chloroethane	mg/Kg	1100	0.093	U			0.0017	U	0.0017	U
Chloroform	mg/Kg	2	0.068	U			0.0013	U	0.0013	U
Chloromethane	mg/Kg	12	0.072	U			0.0013	U	0.0013	U
cis-1,2-Dichloroethene	mg/Kg	560	0.07	U			0.0013	U	0.0013	U
cis-1,3-Dichloropropene	mg/Kg	7	0.058	U			0.0011	U	0.0011	U
Cyclohexane	mg/Kg		0.064	U			0.0012	U	0.0012	U
Dibromochloromethane	mg/Kg	8	0.06	U			0.0011	U	0.0011	U
Dibromochloropropane	mg/Kg		0.054	U			0.001	U	0.001	U
Dichlorodifluoromethane	mg/Kg	230000	0.082	U			0.0015	U	0.0015	U
Ethylbenzene	mg/Kg	110000	0.076	U			0.0014	U	0.0014	U
Isopropylbenzene	mg/Kg		0.069	U			0.0013	U	0.0013	U
Methyl acetate	mg/Kg		0.068	U			0.0013	U	0.0013	U
Methylcyclohexane	mg/Kg		0.072	U			0.0013	U	0.0013	U
Methylene chloride	mg/Kg	97	0.049	U			0.00091	U	0.0013	J
Methyltert-butylether	mg/Kg	320	0.06	U			0.0011	U	0.0011	U
Styrene	mg/Kg	260	0.072	U			0.0013	U	0.0013	U
Tetrachloroethene	mg/Kg	5	0.084	U			0.0015	U	0.0016	U
Toluene	mg/Kg	91000	0.051	U			0.00094	U	0.00095	U
trans-1,2-Dichloroethene	mg/Kg	720	0.075	U			0.0014	U	0.0014	U
trans-1,3-Dichloropropene	mg/Kg	7	0.056	U			0.001	U	0.001	U
Trichloroethene	mg/Kg	20	0.072	U			0.0013	U	0.0013	U
Trichlorofluoromethane	mg/Kg	340000	0.1	U			0.0019	U	0.0019	U
Vinyl chloride	mg/Kg	2	0.072	U			0.0013	U	0.0013	U
Xylene (total)	mg/Kg	170000	0.3	J			0.0042	U	0.0042	U

TABLE 4-6
ANALYTICAL RESULTS
PIPE RUN TRENCH SPOIL
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

G		1	TCWC	12	TCWC 02	2	TCWC	4	TCWC)5
Constituent	T I • 4	a (1)	TSWC-0		TSWC-03		TSWC-0		TSWC-0	
of	Units	Criterion ⁽¹⁾	05/07/0		10/21/08		05/07/08		05/07/0	
Interest		N 1 . D 41.	Primar		Resampl		Primary		Primary	
		Sample Depth	1.0-3.0		0.0-3.0 f	į .	1.0-3.0 1		1.0-3.0 ± 2.0-3.0 ±	
Samiralatila Ouganias	VOC S	Sample Depth	2.0-3.0	π			2.0-3.0 1	τ	2.0-3.0	Ιτ
Semivolatile Organics 1,1'-Biphenyl	mg/Vg	34000	1	1			0.067	т	0.067	T
2,2'-oxybis(1-chloropropane)	mg/Kg mg/Kg	34000	0.029	U			0.067 0.023	U	0.067 0.024	J U
2,4,5-Trichlorophenol	mg/Kg	68000	0.029	U			0.023	U	0.024	U
2,4,6-Trichlorophenol	mg/Kg	74	0.039	U			0.032	U	0.033	U
2,4-Dichlorophenol	mg/Kg	2100	0.039	U			0.031	U	0.033	U
2,4-Diemorophenol	mg/Kg	14000	0.014	U			0.012	U	0.012	J
2,4-Dinitrophenol	mg/Kg	14000	0.021	U			0.46	U	0.091	U
2,4-Dinitrotoluene	mg/Kg	3	0.025	U			0.40	U	0.48	U
2,6-Dinitrotoluene	mg/Kg	3	0.023	U			0.025	U	0.021	U
2-Chloronaphthalene	mg/Kg		0.031	U			0.023	U	0.023	U
2-Chlorophenol	mg/Kg	2200	0.024	U			0.023	U	0.023	U
2-Methylnaphthalene	mg/Kg	2400	9.2				0.02	J	0.02	J
2-Methylphenol	mg/Kg	3400	0.04	J			0.024	U	0.025	U
2-Nitroaniline	mg/Kg	23000	0.04	U			0.024	U	0.023	U
2-Nitrophenol	mg/Kg		0.029	U			0.023	U	0.024	U
3,3'-Dichlorobenzidine	mg/Kg	4	0.038	U			0.031	U	0.032	U
3-Nitroaniline	mg/Kg		0.11	U			0.033	U	0.035	U
4,6-Dinitro-o-cresol	mg/Kg	68	0.34	U			0.033	U	0.033	U
4-Bromophenylphenyl ether	mg/Kg		0.021	U			0.28	U	0.28	U
4-Chloroaniline	mg/Kg		0.021	U			0.017	U	0.018	U
4-Chlorophenyl phenyl ether	mg/Kg		0.024	U			0.034	U	0.033	U
4-Chloro-3-methylphenol	mg/Kg		0.024	U			0.019	U	0.025	U
4-Methylphenol	mg/Kg	340	0.027	J			0.024	U	0.16	J
4-Nitroaniline	mg/Kg		0.02	U			0.016	U	0.017	U
4-Nitrophenol	mg/Kg		0.037	U			0.03	U	0.031	U
Acenaphthene	mg/Kg	37000	1.8	+ -			0.28	J	0.45	+
Acenaphthylene	mg/Kg	300000	0.11	J			0.032	J	0.1	J
Acetophenone	mg/Kg	5	0.029	U			0.024	U	0.025	U
Anthracene	mg/Kg	30000	0.25	J			0.56	Ü	0.42	+
Atrazine	mg/Kg	2400	0.033	U			0.027	U	0.028	U
Benzaldehyde	mg/Kg	68000	0.051	U			0.041	U	0.043	U
Benzo(a)anthracene	mg/Kg	2	0.72				1.6		0.43	
Benzo(a)pyrene	mg/Kg	0.2	0.6				1.6		0.2	J
Benzo(b)fluoranthene	mg/Kg	2	1				2.9		0.45	
Benzo(ghi)perylene	mg/Kg	30000	0.52				1.3		0.17	J
Benzo(k)fluoranthene	mg/Kg	23	0.015	U			0.012	U	0.013	U
Bis(2-chloroethoxy)methane	mg/Kg		0.022	U			0.018	U	0.019	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.011	U			0.0088	U	0.0091	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.037	U			0.03	U	0.031	U
Butyl benzyl phthalate	mg/Kg	14000	0.038	U			0.031	U	0.032	U
Caprolactam	mg/Kg	340000	0.09	U			0.074	U	0.076	U
Carbazole	mg/Kg	96	0.15	J			0.18	J	0.033	J
Chrysene	mg/Kg	230	0.93				1.8		0.31	J
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.11	J			0.42		0.041	J
Dibenzofuran	mg/Kg		1.6				0.18	J	0.15	J
Diethyl phthalate	mg/Kg	550000	0.043	U			0.035	U	0.036	U
Dimethyl phthalate	mg/Kg		0.027	U			0.022	U	0.023	U
Di-n-butyl phthalate	mg/Kg	68000	0.079	U			0.065	U	0.067	U
Di-n-octyl phthalate	mg/Kg	27000	0.033	U			0.027	U	0.028	U
Fluoranthene	mg/Kg	24000	0.68				2.8		1.3	

TABLE 4-6
ANALYTICAL RESULTS
PIPE RUN TRENCH SPOIL
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

REARNI, NEW JERSEI	I	1	TOWN O	<u> </u>	EGWG 03		TOWN O	4 1	TONIO O	
Constituent	TT *4	a (1)	TSWC-0		TSWC-03		TSWC-0		TSWC-0	
of	Units	Criterion ⁽¹⁾	05/07/0		10/21/08		05/07/08		05/07/08	
Interest		Communica Domath	Primary		Resampl		Primary		Primary	
		Sample Depth	1.0-3.0 1		0.0-3.0 f	t	1.0-3.0 f 2.0-3.0 f		1.0-3.0 f	
Semivolatile Organics (Continued)	VOC S	Sample Depth	2.0-3.0 1	.ւ լ			2.0-3.01	ւ լ	2.0-3.0 f	. L
Fluorene	mg/Kg	24000	0.92				0.24	J	0.093	J
Hexachlorobenzene	mg/Kg	1	0.92	U			0.24	U	0.093	U
Hexachlorobutadiene	mg/Kg	25	0.029	U			0.023	U	0.024	U
Hexachlorocyclopentadiene	mg/Kg	110	0.029	U			0.024	U	0.023	U
Hexachloroethane	mg/Kg	140	0.022	U			0.017	U	0.019	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.4	J			1.1		0.14	J
Isophorone	mg/Kg	2000	0.027	U			0.022	U	0.022	U
Naphthalene	mg/Kg	17	14				0.34	J	0.57	Ť
Nitrobenzene	mg/Kg	340	0.012	U			0.0097	U	0.01	U
N-Nitrosodiphenylamine	mg/Kg	390	0.026	U			0.021	U	0.022	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.012	U			0.0095	U	0.0099	U
Pentachlorophenol	mg/Kg	10	0.036	U			0.029	U	0.03	U
Phenanthrene	mg/Kg	300000	0.92				2		0.85	
Phenol	mg/Kg	210000	0.029	U			0.024	U	0.024	U
Pyrene	mg/Kg	18000	1.1				2.6		0.99	
Polychlorinated Dioxins/Furans		•								
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.0048	J	0.22		0.0026	QJ	0.29	
1,2,3,4,6,7,8-HpCDF	ug/Kg		0.052		4.7	Е	0.013		110	
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.0017	QJ	0.14		0.00054	QJ	3.2	
1,2,3,4,7,8-HxCDD	ug/Kg		0.0072	U	0.011		0.0059	U	0.022	J
1,2,3,4,7,8-HxCDF	ug/Kg		0.017	Q	1.4	J	0.0055	J	27	Q
1,2,3,6,7,8-HxCDD	ug/Kg		0.0072	U	0.035		0.00041	J	0.11	
1,2,3,6,7,8-HxCDF	ug/Kg		0.0023	J	0.22		0.0011	J	4.8	Q
1,2,3,7,8,9-HxCDD	ug/Kg		0.0072	U	0.0082		0.0059	U	0.029	J
1,2,3,7,8,9-HxCDF	ug/Kg		0.0072	U	0.0027	J	0.0059	U	0.061	U
1,2,3,7,8-PeCDD	ug/Kg		0.0072	U	0.013		0.0059	U	0.019	QJ
1,2,3,7,8-PeCDF	ug/Kg		0.00054	QJ	0.027		0.00053	J	0.24	Q
2,3,4,6,7,8-HxCDF	ug/Kg		0.00046	QJ	0.075		0.00052	QJ	1	
2,3,4,7,8-PeCDF	ug/Kg		0.0016	QJ	0.14		0.00075	QJ	2.3	Q
2,3,7,8-TCDD	ug/Kg		0.0014	U	0.0	U	0.0012	U	0.0076	QJ
2,3,7,8-TCDF	ug/Kg		0.001	QJ	0.0084		0.00093	QJ	0.61	Q
OCDD	ug/Kg		0.046	В	3.1	В	0.15	В	0.97	В
OCDF	ug/Kg		0.1		8.1	Е	0.015		250	В
Total HpCDD	ug/Kg		0.0089	QJ	0.44		0.0054	QJ	0.63	-
Total HpCDF	ug/Kg		0.062	Q	5.7	В	0.017	Q	130	<u> </u>
Total HxCDD	ug/Kg		0.0019	J	0.24	Ļ	0.0032	QJ	0.55	_
Total HxCDF	ug/Kg		0.041	Q	2.8	J	0.019	QJ	63	Q
Total PeCDD	ug/Kg		0.0028	QJS	0.29	Q	0.0032	QJ	0.32	Q
Total PeCDF	ug/Kg		0.021	QJS	1.1		0.032	QJ	23	Q
Total TCDD	ug/Kg		0.0019	QJ	0.15	Q	0.0018	QJ	0.31	Q
Total TCDF	ug/Kg		0.012	Q	0.43		0.038	SQ	9.8	Q
Polychlorinated Dioxins/Furans (Dio	, 	1	0.000010						0.00	
1,2,3,4,6,7,8-HpCDD	0.01		0.000048		0.0022		0.00012		0.0029	₩
1,2,3,4,6,7,8-HpCDF	0.01		0.00052	\vdash	0.047	\vdash	0.00013	\vdash	1.1	₩
1,2,3,4,7,8,9-HpCDF	0.01			\vdash	0.0014			$\vdash \vdash \vdash$	0.032	₩
1,2,3,4,7,8-HxCDD	0.10			$\vdash\vdash\vdash$	0.0011	\vdash	0.00055	$\vdash \vdash \vdash$	0.0022	₩
1,2,3,4,7,8-HxCDF	0.10			\vdash	0.14	\vdash	0.00055	\vdash	0.011	+
1,2,3,6,7,8-HxCDD	0.10		0.00022	\vdash	0.0035	\vdash	0.000041	$\vdash \vdash \vdash$	0.011	+
1,2,3,6,7,8-HxCDF	0.10		0.00023	\vdash	0.022	\vdash	0.00011	\vdash	0.0020	+-
1,2,3,7,8,9-HxCDD	0.10			ш	0.00082	Щ.			0.0029	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$

TABLE 4-6
ANALYTICAL RESULTS
PIPE RUN TRENCH SPOIL
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	Criterion ⁽¹⁾ 05/07/08 Primary		TSWC-03 10/21/08 Resampl	3	TSWC-0- 05/07/08 Primary	3	TSWC-0 05/07/08 Primary	8
	5	Sample Depth	1.0-3.0 f	t	0.0-3.0 f	t	1.0-3.0 f	t	1.0-3.0 f	ft
	VOC S	Sample Depth	2.0-3.0 f	t			2.0-3.0 f	t	2.0-3.0 f	ft
Polychlorinated Dioxins/Furans (Dio	xin Equiv	alents) (Cont	inued)							
1,2,3,7,8,9-HxCDF	0.10				0.00027					
1,2,3,7,8-PCDD	1.00				0.013					
1,2,3,7,8-PCDF	0.05				0.00135		0.0000265			
2,3,4,6,7,8-HxCDF	0.10				0.0075				0.1	
2,3,4,7,8-PCDF	0.50				0.07					
2,3,7,8-TCDD	1.00									
2,3,7,8-TCDF	0.10				0.00084					
OCDD	0.0001		0.0000046		0.00031		0.000015		0.000097	
OCDF	0.0001		0.00001		0.00081		0.0000015		0.025	
Total 2,3,7,8-TCDD Equivalents ⁽²⁾	ug/Kg	1	8.1E-04		3.1E-01		8.7E-04		1.3E+00	ш
Polychlorinated Biphenyls (Aroclors)		8.1E-04							
Aroclor 1016	mg/Kg	1	0.0035	U			0.0029	U	0.003	U
Aroclor 1221	mg/Kg	1	0.0045	U			0.0037	U	0.0039	U
Aroclor 1232	mg/Kg	1	0.0041	U			0.0034	U	0.13	
Aroclor 1242	mg/Kg	1	0.0039	U			0.0032	U	0.0033	U
Aroclor 1248	mg/Kg	1	0.0022	U			0.0019	U	0.0019	U
Aroclor 1254	mg/Kg	1	0.0034	U			0.0028	U	0.0029	U
Aroclor 1260	mg/Kg	1	0.011	J			0.0049	J	0.03	PG
Aroclor 1262	mg/Kg	1	0.0052	U			0.0043	U	0.0044	U
Aroclor 1268	mg/Kg	1	0.0031	U			0.0025	U	0.0026	U
Metals										•
Aluminum	mg/Kg		23500				5290		24900	
Antimony	mg/Kg	450	0.26	U			0.76	В	0.56	U
Arsenic	mg/Kg	19	1.3	В			6.8		1.4	U
Barium	mg/Kg	59000	3100				163		21.9	В
Beryllium	mg/Kg	140	0.089	U			0.62		0.075	U
Cadmium	mg/Kg	78	2				0.32	В	2.3	
Calcium	mg/Kg		74200				15200		98800	
Chromium ⁽³⁾	mg/Kg	120000	3640				867		9110	
Chromium (Hexavalent) ⁽³⁾	mg/Kg	20	800				59.7		1020	
Cobalt	mg/Kg	590	149				4.5	В	135	П
Copper	mg/Kg	45000	11.3				46.2		16.6	
Iron	mg/Kg		80800				9810		87100	
Lead	mg/Kg	800	15.7				949		53.7	
Magnesium	mg/Kg		80100				1750		50900	
Manganese	mg/Kg	5900	714				136		750	
Mercury	mg/Kg	65	0.037	В			0.48		0.39	
Nickel	mg/Kg	23000	545	_			14		458	
Potassium	mg/Kg		158	В			675		60.8	U
Selenium	mg/Kg	5700	0.83	U			1		0.7	U
Silver	mg/Kg	5700	0.66	BJ			0.27	BJ	0.59	BJ
Sodium	mg/Kg		1740				233	В	901	В
Thallium	mg/Kg	79	1.9	В			0.65	В	4.1	Ť
Vanadium	mg/Kg	1100	1620	_			18	_	1340	П
Zinc	mg/Kg	110000	300				72.1		271	М

TABLE 4-6
ANALYTICAL RESULTS
PIPE RUN TRENCH SPOIL
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	TSWC-0. 05/07/08 Primary	3	TSWC-03 10/21/08 Resample	e	TSWC-0- 05/07/08 Primary	3	TSWC-0 05/07/08 Primary	8
		Sample Depth	1.0-3.0 f		0.0-3.0 ft	t	1.0-3.0 f		1.0-3.0 f	
		Sample Depth	2.0-3.0 f	t			2.0-3.0 f	ť	2.0-3.0 f	it
Toxicity Characteristic Leaching Pro	cedure ⁽⁴⁾									
1,1-Dichloroethene	mg/L	0.7	0.035	U			0.035	U	0.035	U
1,2-Dichloroethane	mg/L	0.5	0.026	U			0.026	U	0.026	U
1,4-Dichlorobenzene	mg/L	7.5	0.034	J			0.0046	U	0.0046	U
2,4,5-Trichlorophenol	mg/L	400	0.0041	U			0.0041	U	0.0041	U
2,4,6-Trichlorophenol	mg/L	2	0.0026	U			0.0026	U	0.0026	U
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U			0.0028	U	0.0028	U
2-Butanone	mg/L	200	0.029	U			0.029	U	0.029	U
Benzene	mg/L	0.5	0.033 U				0.033	U	0.033	U
Carbon Tetrachloride	mg/L	0.5	0.037 U				0.037	U	0.037	U
Chlorobenzene	mg/L	100	0.028 U				0.028	U	0.028	U
Chloroform	mg/L	6	0.031 U				0.031	U	0.031	U
Cresols	mg/L	200	0.0089	U			0.0089	U	0.0089	U
Hexachlorobenzene	mg/L	0.13	0.0049	U			0.0049	U	0.0049	U
Hexachlorobutadiene	mg/L	0.5	0.0033	U			0.0033	U	0.0033	U
Hexachloroethane	mg/L	3	0.0036	U			0.0036	U	0.0036	U
Nitrobenzene	mg/L	2	0.0056	U			0.0056	U	0.0056	U
Pentachlorophenol	mg/L	100	0.005	U			0.005	U	0.005	U
Pyridine	mg/L	5	0.011	U			0.011	U	0.011	U
Tetrachloroethene	mg/L	0.7	0.023	U			0.023	U	0.023	U
Trichloroethene	mg/L	0.5	0.035	U			0.035	U	0.035	U
Vinyl chloride	mg/L	0.2	0.038	U			0.038	U	0.038	U
Arsenic	mg/L	5	0.14	BJ			0.13	В	0.15	В
Barium	mg/L	100	0.61	BJ			0.95	В	0.0058	В
Cadmium	mg/L	1	0.0012	U			0.0016	В	0.0012	U
Chromium	mg/L	5	14.3	J			0.053	В	27.4	
Lead	mg/L	5	0.03	В			1.2		0.018	В
Mercury	mg/L	0.2	0.000055	U			0.000055	U	0.000055	U
Selenium	mg/L	1	0.015	U			0.015	U	0.015	U
Silver	mg/L	5	0.0025	U			0.0025	U	0.0025	U
RCRA Characteristics and Indicators										
Corrosivity	SU	2 <ph<12.5< td=""><td>11.4</td><td></td><td></td><td></td><td>8.63</td><td></td><td>10.45</td><td></td></ph<12.5<>	11.4				8.63		10.45	
Cyanide	mg/Kg	23000	1.3	J			0.76	J	5.7	J
Total Sulfide (Reactivity)	mg/Kg		17.7	U			66.5		14.9	U
Ignitability	None		No				No		No	
Percent Solids	%		77.4				77.1		73.7	

TABLE 4-6

ANALYTICAL RESULTS PIPE RUN TRENCH SPOIL STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise
- The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26
- 3. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance).
 - Criterion for residential exposure to trivalent chromium was used for total chromium.
- Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 (ecfr.gpoaccess.gov). available at electronic CFR website

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
- S Organic results. Ion suppression.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-7
ANALYTICAL RESULTS
SEPTIC TANK SOLIDS SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	ST-02-S 05/29/08 Primary	3	ST-03-S 05/29/03 Primary	8	ST-04-S 05/29/08 Primary	3	ST-05-5 05/29/05 Primary	8	ST-06- 05/29/0 Primar	8	ST-07- 05/29/0 Primar	08
Volatile Organics			·				·							
1,1,1-Trichloroethane	mg/Kg	4200	12	U	3.6	U	110	U	8.8	U	52	U	200	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	12	U	4	U	120	U	9.8	U	58	U	220	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		12	U	4.4	U	130	U	11	U	63	U	240	U
1,1,2-Trichloroethane	mg/Kg	6	12	U	3.8	U	120	U	9.2	U	55	U	210	U
1,1-Dichloroethane	mg/Kg	24	12	U	3.4	U	110	U	8.5	U	50	U	190	U
1,1-Dichloroethene	mg/Kg	150	12	U	4.1	U	130	U	10	U	60	U	230	U
1,2,4-Trichlorobenzene	mg/Kg	820	12	U	120	TT	2600	TT	12	J	360	TT	6300	11
1,2-Dibromoethane 1,2-Dichlorobenzene	mg/Kg	0.04 59000	12	U	3.7	U	110	U	9	U	53	U	200	U
1,2-Dichloroethane	mg/Kg	39000	12 12	U	1100 3.9	U	8500	U	26 9.5	J U	2500 56	U	32000 210	U
,	mg/Kg mg/Kg	5	12	U	3.9	U	120 120	U	9.5 9.6	U	57	U	210	U
1,2-Dichloropropane 1,3-Dichlorobenzene	mg/Kg	59000	12	U	3.9	U	9900	U	<u>9.6</u> 27	J	1400		27000	$+^{\circ}$
1,4-Dichlorobenzene	mg/Kg	13	12	\vdash	680		6400		21	J	2700		16000	
2-Butanone	mg/Kg	44000	12	U	3.4	U	110	U	8.4	U	50	U	190	U
2-Hexanone	mg/Kg		12	U	2.8	U	87	U	6.9	U	41	U	150	U
4-Methyl-2-pentanone	mg/Kg		12	U	3.1	U	95	U	7.5	U	45	U	170	U
Acetone	mg/Kg		12	U	4.2	U	130	U	10	U	61	U	230	U
Benzene	mg/Kg	5	12	J	21		110	U	70		53	U	200	U
Bromodichloromethane	mg/Kg	3	12	U	3.4	U	110	U	8.4	U	50	U	190	U
Bromoform	mg/Kg	280	12	U	3.6	U	110	U	8.8	U	52	U	200	U
Bromomethane	mg/Kg	59	12	U	4.5	U	140	U	11	U	65	U	240	U
Carbon disulfide	mg/Kg	110000	12	U	4.3	U	130	U	11	U	63	U	240	U
Carbon tetrachloride	mg/Kg	2	12	U	3.2	U	98	U	7.7	U	46	U	170	U
Chlorobenzene	mg/Kg	7400	12	-	2200		1000		1200		420	1	980	T
Chloroethane	mg/Kg	1100	12	U	5.1	U	160	U	12	U	74	U	280	U
Chloroform	mg/Kg	2	12	U	3.7	U	120	U	9.2	U	54	U	200	U
Chloromethane	mg/Kg	12	12	U	3.9	U	120	U	9.6	U	57	U	210	U
cis-1,2-Dichloroethene	mg/Kg	560	12	U	3.8	U	120	U	9.4	U	55	U	210	U
cis-1,3-Dichloropropene	mg/Kg	7	12	U	3.2	U	98	U	7.8	U	46	U	170	U
Cyclohexane	mg/Kg		12	U	3.5	U	110	U	8.7	U	51	U	190	U
Dibromochloromethane	mg/Kg	8	12	U	3.3	U	100	U	8	U	48	U	180	U
Dibromochloropropane	mg/Kg		12	U	3	U	92	U	7.3	U	43	U	160	U
Dichlorodifluoromethane	mg/Kg	230000	12	U	4.5	U	140	U	11	U	66	U	250	U
Ethylbenzene	mg/Kg	110000	12	U	4.2	U	130	U	10	U	61	U	230	U
Isopropylbenzene	mg/Kg		12	U	3.8	U	120	U	9.3	U	55	U	210	U
Methyl Acetate	mg/Kg		12	U	3.7	U	120	U	13	J	54	U	200	U
Methylcyclohexane	mg/Kg		12	U	4	U	120	U	9.7	U	58	U	220	U
Methylene chloride	mg/Kg	97	12	U	2.7	U	84	U	6.7	U	39	U	150	U
Methyltert-butylether	mg/Kg	320	12	U	3.3	U	100	U	8	U	47	U	180	U
Styrene	mg/Kg	260	12	U	3.9	U	120	U	9.7	U	57	U	210	U
Tetrachloroethene	mg/Kg	5	12	U	4.6	U	140	U	11	U	67	U	250	U
Toluene	mg/Kg	91000	12	U	6.2	J	87	U	6.9	U	41	U	150	U
trans-1,2-Dichloroethene	mg/Kg	720	12	U	4.1	U	130	U	10	U	60	U	220	U
trans-1,3-Dichloropropene	mg/Kg	7	12	U	3.1	U	95	U	7.6	U	45	U	170	U
Trichloroethene	mg/Kg	20	12	U	4	U	120	U	9.7	U	58	U	220	U
Trichlorofluoromethane	mg/Kg	340000	12	U	5.7	U	180	U	14	U	83	U	310	U
Vinyl chloride	mg/Kg	2	12	U	3.9	U	120	U	9.7	U	57	U	210	U
Xylene (total)	mg/Kg	170000	12	U	12	U	390	U	31	U	180	U	680	U
Semivolatile Organics						_								
1,1'-Biphenyl	mg/Kg	34000	160		4.5	J	130		3.7	J	7.1	J	52	
2,2'-oxybis(1-chloropropane)	mg/Kg		0.39	U	2	U	7.3	U	2.1	U	3.9	U	3	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.53	U	2.8	U	10	U	3	U	5.3	U	4.2	U
2,4,6-Trichlorophenol	mg/Kg	74	0.52	U	2.7	U	9.8	U	2.9	U	5.2	U	4.1	U
2,4-Dichlorophenol	mg/Kg	2100	0.19	U	<u>l</u>	U	3.6	U	1.1	U	1.9	U	1.5	U
2,4-Dimethylphenol	mg/Kg	14000	0.28	U	1.4	U	5.2	U	1.5	U	2.8	U	2.2	U
2,4-Dinitrophenol	mg/Kg	1400	7.6	U	40	U	140	U	42	U	76	U	60	U
2,4-Dinitrotoluene	mg/Kg	3	0.33	U	1.7	U	6.2	U	1.8	U	3.3	U	2.6	U
2,6-Dinitrotoluene	mg/Kg	3	0.42	U	2.2	U	7.8	U	2.3	U	4.1	U	3.3	U
2-Chloronaphthalene	mg/Kg	2200	0.37	U	1.9 1.7	U	7	U	2.1	U	3.7	U	2.9	U
2-Chlorophenol 2-Methylnaphthalene	mg/Kg	2200 2400	0.32 170	U	6	J	6.1 4500	U	1.8 32	U J	3.2 68	U	1700	$+^{\cup}$
2-Methylnaphthalene 2-Methylphenol	mg/Kg mg/Kg	3400	0.4	U	2.1	U	7.6	U	2.2	U	4	U	3.2	U
2-Metnyiphenoi 2-Nitroaniline	mg/Kg mg/Kg	23000	0.4	U	2.1	U	7.6	U	2.2	U	3.9	U	3.2	U
2-Nitrophenol	mg/Kg	23000	0.59	U	2.7	U	9.6	U	2.1	U	5.1	U	4	U
3,3'-Dichlorobenzidine	mg/Kg	4	1.5	U	7.6	U	27	U	8	U	14	U	11	U
3-Nitroaniline	mg/Kg		0.55	U	2.9	U	10	U	3.1	U	5.5	U	4.3	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	4.6	U	2.9	U	85	U	25	U	45	U	36	U
4-Bromophenylphenyl ether	mg/Kg		0.29	U	1.5	U	5.4	U	1.6	U	2.9	U	2.3	11
4-Chloro-3-methylphenol	mg/Kg		0.29	U	2.1	U	7.4	U	2.2	U	3.9	U	3.1	U
4-Chloroaniline	mg/Kg		0.56	U	3.2	J	10	U	3.1	U	5.6	U	4.4	U
4-Chlorophenyl phenyl ether	mg/Kg		0.30	U	1.7	U	6	U	1.8	U	3.2	U	2.5	U
4-Chlorophenyl phenyl ether 4-Methylphenol	mg/Kg	340	0.32	U	26	J	52	J	2.2	U	3.2 4	U	5	J
4-Nitroaniline	mg/Kg		0.4	U	1.4	U	5.1	U	1.5	U	6.2	J	2.1	U
4-Nitrophenol	mg/Kg		0.27	U	2.6	U	9.4	U	2.8	U	5	U	3.9	U
Acenaphthene	mg/Kg	37000	11	-	2.4	J	12	J	6.6	J	11	J	5.6	J
Acenaphthylene Acenaphthylene	mg/Kg	300000	0.38	U	2.4	U	7	U	2.1	U	3.7	U	2.9	U
Acetophenone	mg/Kg	5	0.39	U	2	U	7.3	U	2.2	U	3.9	U	3.1	U
Anthracene	mg/Kg	30000	5	J	1.9	U	6.9	U	4.7	J	3.7	U	2.9	U
Atrazine	mg/Kg	2400	0.44	U	2.3	U	8.3	U	2.5	U	4.4	U	3.5	U
Benzaldehyde	mg/Kg	68000	0.68	U	3.6	U	13	U	3.8	U	6.8	U	5.4	U
Benzo(a)anthracene	mg/Kg	2	2.3	J	3.7	J	4.8	U	22	J	8.1	J	2	U
Benzo(a)pyrene	mg/Kg	0.2	1.5	J	3.9	J	6.7	J	19	J	5.9	J	1.6	U
Benzo(b)fluoranthene	mg/Kg	2	2.8	J	4	I	4.7	U	36		9.7	J	1.9	U
Benzo(ghi)perylene	mg/Kg	30000	1	J	5	J	4.1	U	15	J	2.2	U	1.7	U
Benzo(k)fluoranthene	mg/Kg	23	0.21	U	1.1	U	3.9	U	1.1	U	2.1	U	1.6	U
DVIILO(II /IIIIOIIIIIII · · · · ·			~ · - ·	_ ~		. ~	J.,	. ~		. ~				
Bis(2-chloroethoxy)methane	mg/Kg		0.3	U	1.6	U	5.6	U	1.7	U	3	U	2.4	U

TABLE 4-7 ANALYTICAL RESULTS SEPTIC TANK SOLIDS SAMPLES STANDARD CHLORINE SITE **KEARNY, NEW JERSEY**

Constituent of Interest	Units	Criterion ⁽¹⁾	ST-02-S 05/29/08 Primary	3	ST-03-9 05/29/0 Primary	8	ST-04-S 05/29/08 Primary	3	ST-05-8 05/29/08 Primary	8	ST-06-5 05/29/0 Primary	8	ST-07-9 05/29/0 Primary	8
Semivolatile Organics (Continued)														
Bis(2-ethylhexyl)phthalate	mg/Kg	140	18		16	J	56	J	11	J	4.9	U	12	J
Butyl benzyl phthalate	mg/Kg	14000	0.52	U	4.6	J	9.7	U	2.9	U	5.2	U	4.1	U
Caprolactam	mg/Kg	340000	1.2	U	6.4	U	23	U	6.8	U	12	U	9.6	U
Carbazole	mg/Kg	96	0.7	J	2.5	J	5	U	1.5	U	2.6	U	2.1	U
Chrysene	mg/Kg	230	2.4	J	3.5	J	7.8	J	24	J	8.4	J	2	U
Dibenzo(a,h)anthracene Dibenzofuran	mg/Kg	0.2	6.2	U J	2.1	U	7.7	U	3.3	J	4.1	U J	3.2 9	U
Diethyl phthalate	mg/Kg mg/Kg	550000	0.58	U	1.9 3.3	J	6.7 11	U	3.8	U	8.6 5.8	U	4.5	U
Dimethyl phthalate	mg/Kg	330000	0.38	U	1.9	U	6.8	U	2	U	3.6	U	2.9	U
Di-n-butyl phthalate	mg/Kg	68000	1.1	U	5.6	U	20	U	5.9	U	11	U	8.4	U
Di-n-octyl phthalate	mg/Kg	27000	0.57	I	3.5	J	8.4	U	2.5	U	4.5	U	3.5	U
Fluoranthene	mg/Kg	24000	11		5.2	J	16	J	36		14	J	3.3	U
Semivolatile Organics (Continued)	88				0.2				30		1.		3.0	
Fluorene	mg/Kg	24000	8.8		2.1	J	5.9	U	4.9	J	5.3	J	2.4	U
Hexachlorobenzene	mg/Kg	1	1.1	J	2	U	7.3	U	2.1	U	3.9	U	3	U
Hexachlorobutadiene	mg/Kg	25	0.39	U	3	J	7.4	U	2.2	U	3.9	U	3.1	U
Hexachlorocyclopentadiene	mg/Kg	110	0.3	U	1.5	U	5.6	U	1.6	U	3	U	2.3	U
Hexachloroethane	mg/Kg	140	0.29	U	4.7	J	5.4	U	1.6	U	2.9	U	2.3	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	0.98	J	2.4	J	4.3	U	12	J	2.3	U	1.8	U
Isophorone	mg/Kg	2000	0.36	U	1.9	U	6.7	U	2	U	3.6	U	2.8	U
Naphthalene	mg/Kg	17	33	Ш	81		1100	\sqcup	620		1100		390	
Nitrobenzene	mg/Kg	340	0.16	U	0.84	U	3	U	0.89	U	1.6	U	1.3	U
N-Nitrosodiphenylamine	mg/Kg	390	0.35	U	1.8	U	6.6	U	1.9	U	3.5	U	2.7	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.16	U	0.82	U	3	U	0.87	U	1.6	U	1.2	U
Pentachlorophenol	mg/Kg	10	0.48	U	2.5	U	9	U	2.7	U	4.8	U	3.8	U
Phenanthrene	mg/Kg	300000	25	_	4	J	11	J	26	J	8.7	J	2.4	U
Phenol	mg/Kg	210000	0.56	J	2	U J	7.3	U J	2.2	J	3.9	U	5.1	U
Pyrene Polychlorinated Biphenyls (Aroclors)	mg/Kg	18000	7.6	ш	3.8	J	13	l j	29	J	9.7	J	5.1	J
Aroclor 1016	mg/Kg	1	0.24	U	0.013	U	0.018	U	0.013	U	0.0048	U	0.019	U
Aroclor 1221	mg/Kg	1	0.24	U	0.013	U	0.018	U	0.013	U	0.0048	U	0.019	U
Aroclor 1221 Aroclor 1232	mg/Kg	1	74		0.015	U	1.5		0.93		1		7.5	
Aroclor 1242	mg/Kg	1	0.26	U	0.013	U	0.02	U	0.015	U	0.0053	U	0.021	U
Aroclor 1248	mg/Kg	1	0.15	U	0.0081	U	0.011	Ü	0.0085	U	0.0031	U	0.012	U
Aroclor 1254	mg/Kg	1	0.23	U	0.012	U	0.017	U	0.013	U	0.0046	U	0.018	U
Aroclor 1260	mg/Kg	1	4		0.012	U	0.18	P	0.21		0.21		0.51	P
Aroclor 1262	mg/Kg	1	0.35	U	0.019	U	0.026	U	0.02	U	0.0071	U	0.028	U
Aroclor 1268	mg/Kg	1	0.21	U	0.011	U	0.015	U	0.012	U	0.0042	U	0.016	U
Metals														
Aluminum	mg/Kg		8250		7140		2230		6100		6980		8970	
Antimony	mg/Kg	450	9.4		2	В	2.6	В	1.3	В	11.9		6.8	В
Arsenic	mg/Kg	19	16.7		7.6		6.5	В	14.6		20.2		13.7	
Barium	mg/Kg	59000	216	J	67.1	BJ	72	BJ	198	J	621	J	82.4	BJ
Beryllium	mg/Kg	140	2.7		0.34	В	0.22	U	0.37	В	0.57	В	0.23	U
Cadmium	mg/Kg	78	1.8	\vdash	1.5	В	2.4	В	8.4	-	0.33	В	0.53	В
Calcium	mg/Kg	120000	10600		6130		16700		40900		10600		5130	
Chromium ⁽²⁾ Cobalt	mg/Kg mg/Kg	120000 590	4570 40.6	\vdash	2360 9.3	В	701 18.3	В	2290 185	1	2850 21.5	+	10500 21.3	В
Copper	mg/Kg mg/Kg	45000	692		247	D	228	D	451		590		510	В
Iron	mg/Kg	43000	65900	H	41100		45600	\vdash	34400	1	183000	+	34000	1
Lead	mg/Kg	800	2950	\vdash	438		182	\vdash	301		9330		2940	
Magnesium	mg/Kg		5720	П	3450	1	1960	В	9560	1	2640		5120	
Manganese	mg/Kg	5900	443		146		311	Ť	307		642		75.2	
Mercury	mg/Kg	65	4.8		2		9.1		11		6.1		1	
Nickel	mg/Kg	23000	255		60.1		34.7		97.5		178		194	1
Potassium	mg/Kg		488	В	452	В	417	В	629	В	674	В	520	В
Selenium	mg/Kg	5700	2.2		1.5	U	2.8	В	2.7		3.4		5.5	
Silver	mg/Kg	5700	9.3	J	6.2	J	1.8	BJ	1.5	BJ	22.5	J	1.7	BJ
Sodium	mg/Kg		451	В	1250	В	5790		6740		2300		10600	
Thallium	mg/Kg	79	1.9		1.7	U	2.3	U	1.7	U	4		2.4	U
Vanadium	mg/Kg	1100	249		115		77.1	Ш	210		78.8		651	
Zinc	mg/Kg	110000	1910	Е	530		1070		1070		196		224	
Indicator Parameters														
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>7.2</td><td></td><td>7.4</td><td></td><td>7.5</td><td></td><td>7.4</td><td></td><td>8.1</td><td><u> </u></td><td>8.5</td><td>1_</td></ph<12.5<>	7.2		7.4		7.5		7.4		8.1	<u> </u>	8.5	1_
G : 1		23000	1.2	1	1.9	В	0.78	В	0.72	В	0.75	В	0.85	В
Cyanide	mg/Kg			┝		-		\vdash			1500		1000	
Total Sulfide	mg/Kg		1090		6920		3210		16600		1790		4390	
•											1790 No 50.9		4390 No 13.1	

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs appendix1.pdf) unless noted otherwise.
- 2. Nonpromulgated criteria for total (trivalent) determined by chromium workgroup (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit. J - Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%.
- U Not detected at the detection limit indicated.
 -- Not analyzed or criteria unavailable.

TABLE 4-8
ANALYTICAL RESULTS
SEPTIC TANK WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Discharş NJDEP BG Mthly Avg.		ST-02- 05/29/ Prima	08	ST-03- 05/29/0 Prima	08	ST-04- 05/29/0 Prima)8	ST-05- 05/29/0 Prima	08	ST-06- 05/29/ Prima	08	ST-07- 05/29/ Prima	/08
Volatile Organics				1	T 7 7	1	1 77	1		1	T	1	1	1	1 77
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	21	54 10	0.93	U	0.93	U	0.93	U	0.93	U	0.93	U	0.93	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L ug/L			0.93	U	0.93	U	0.93	U	0.93	U	0.93	U	0.93	U
1,1,2-Trichloroethane	ug/L ug/L	21	54	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U
1,1-Dichloroethane	ug/L ug/L	22	59	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U
1,1-Dichloroethene	ug/L ug/L	26	25	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
1,2,4-Trichlorobenzene	ug/L ug/L	68	140	0.38	U	0.48	J	17		1.7	J	0.38	U	12	+
1,2-Dibromoethane	ug/L			0.61	U	0.61	U	0.61	U	0.61	U	0.61	U	0.61	U
1,2-Dichlorobenzene	ug/L	77	163	0.68	U	0.96	J	0.68	U	1.5	J	1.2	J	9.2	Ť
1,2-Dichloroethane	ug/L	68	211	0.96	U	0.96	Ü	0.96	U	0.96	U	0.96	U	0.96	U
1,2-Dichloropropane	ug/L	153	230	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
1,3-Dichlorobenzene	ug/L	31	44	0.51	U	1.5	J	0.51	U	1	J	2.7	J	160	
1,4-Dichlorobenzene	ug/L		28	0.53	U	0.69	J	0.53	U	1.1	J	6.1		63	
2-Butanone	ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
2-Hexanone	ug/L			0.57	U	0.57	U	0.57	U	0.57	U	0.57	U	0.57	U
4-Methyl-2-pentanone	ug/L			0.59	U	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U
Acetone	ug/L			5	U	5	U	5	U	5	U	5	U	5	U
Benzene	ug/L	37	136	0.99	U	0.99	U	6.6		0.99	U	0.99	U	0.99	U
Bromodichloromethane	ug/L		12	0.93	U	0.93	U	0.93	U	0.93	U	0.93	U	0.93	U
Bromoform	ug/L	29	58	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Bromomethane	ug/L	20	40	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Carbon disulfide	ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Carbon tetrachloride	ug/L	9		1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Chlorobenzene	ug/L	15	28	0.53	U	0.64	J	8.2	<u> </u>	1	J	8.7		15	4
Chloroethane	ug/L	104	268	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloroform	ug/L	21	46	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane	ug/L	86	190	1.4	U	1.4	U	1.4	U	1.4	U	1.4	U	1.4	U
cis-1,2-Dichloroethene	ug/L			0.67	U	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U
cis-1,3-Dichloropropene	ug/L	29	44	0.73	U	0.73	U	0.73	U	0.73	U	0.73	U	0.73	U
Cyclohexane	ug/L			0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Dibromochloromethane	ug/L			0.65	U	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U
Dibromochloropropane	ug/L		14	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U
Dichlorodifluoromethane	ug/L		100	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U
Ethylbenzene	ug/L	32	108	0.62	U	0.62	U	0.62	U U	0.62	U	0.62	U	0.62	U
Isopropylbenzene	ug/L			0.53	U	1.2	U	0.53	U	0.53	U	0.53	U	0.53	U
Methyl Acetate Methylcyclohexane	ug/L ug/L			1.2 0.56	U	0.56	U	0.56	U	0.56	U	0.56	U	0.56	U
Methylene chloride	ug/L ug/L	40	89	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Methyltert-butylether	ug/L ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Styrene	ug/L ug/L			0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U
Tetrachloroethene	ug/L ug/L	22	56	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U
Toluene	ug/L ug/L	26	80	0.85	U	0.85	U	0.85	U	0.82	U	0.82	U	0.82	U
trans-1,2-Dichloroethene	ug/L ug/L	21	54	0.85	U	0.85	U	0.85	U	0.85	U	0.85	U	0.85	U
trans-1,3-Dichloropropene	ug/L ug/L	29	44	0.73	U	0.78	U	0.73	U	0.73	U	0.73	U	0.73	U
Trichloroethene	ug/L ug/L	21	54	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U
Trichlorofluoromethane	ug/L ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Vinyl chloride	ug/L	104	268	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Xylene (total)	ug/L			2	U	2	U	2	U	2	U	2	U	2	U
Semivolatile Organics	48,2														<u> </u>
1,1'-Biphenyl	ug/L			0.62	U	0.63	U	0.65	U	0.62	U	0.63	U	0.63	U
2,2'-oxybis(1-chloropropane)	ug/L ug/L	301	757	0.02	U	0.27	U	0.03	U	0.02	U	0.03	U	0.03	U
2,4,5-Trichlorophenol	ug/L			0.64	U	0.65	U	0.68	U	0.64	U	0.65	U	0.65	U
2,4,6-Trichlorophenol	ug/L		20	0.59	U	0.59	U	0.61	U	0.59	U	0.59	U	0.59	U
2,4-Dichlorophenol	ug/L	39	112	0.5	U	0.51	U	0.52	U	0.5	U	0.51	U	6.8	J
2,4-Dimethylphenol	ug/L	18	36	0.53	U	0.54	U	0.56	U	0.53	U	0.54	U	0.54	U
2,4-Dinitrophenol	ug/L	71	123	13	U	13	U	14	U	13	U	13	U	13	U
2,4-Dinitrotoluene	ug/L		18	0.47	U	0.47	U	0.49	U	0.47	U	0.47	U	0.47	U
2,6-Dinitrotoluene	ug/L	255	641	0.52	U	0.53	U	0.55	U	0.52	U	0.53	U	0.53	U
2-Chloronaphthalene	ug/L			0.46	U	0.46	U	0.48	U	0.46	U	0.46	U	0.46	U
2-Chlorophenol	ug/L	31	98	0.47	U	0.47	U	0.49	U	0.47	U	0.47	U	0.47	U
2-Methylnaphthalene	ug/L			0.48	U	0.49	U	0.97	J	0.48	U	0.49	U	0.49	U
2-Methylphenol	ug/L			0.53	U	0.53	U	0.55	U	0.53	U	0.53	U	0.53	U
2-Nitroaniline	ug/L			0.49	U	0.49	U	0.51	U	0.49	U	0.49	U	0.49	U
2-Nitrophenol	ug/L	41	69	0.56	U	0.56	U	0.58	U	0.56	U	0.56	U	0.56	U
3,3'-Dichlorobenzidine	ug/L		60	0.42	U	0.43	U	0.44	U	0.42	U	0.43	U	0.43	U
3-Nitroaniline	ug/L			0.41	U	0.42	U	0.43	U	0.41	U	0.42	U	0.42	U
4,6-Dinitro-2-methylphenol	ug/L			15	U	15	U	15	U	15	U	15	U	15	U
4-Bromophenylphenyl ether	ug/L			0.51	U	0.52	U	0.54	U	0.51	U	0.52	U	0.52	U
4-Chloro-3-methylphenol	ug/L			0.61	U	0.61	U	0.64	U	0.61	U	0.61	U	0.61	U
4-Chloroaniline	ug/L			0.48	U	0.48	U	0.5	U	0.48	U	0.48	U	0.48	U
4-Chlorophenyl phenyl ether	ug/L			0.44	U	0.44	U	0.46	U	0.44	U	0.44	U	0.44	U
4-Methylphenol	ug/L			0.76	U	0.77	U	0.8	U	0.76	U	0.77	U	0.77	U
4-Nitroaniline	ug/L			0.26	U	0.26	U	0.27	U	0.26	U	0.26	U	0.26	U
4-Nitrophenol	ug/L	72	124	0.72	U	0.73	U	0.76	U	0.72	U	0.73	U	0.73	U
Acenaphthene	ug/L			0.54	U	0.54	U	0.56	U	0.54	U	0.54	U	0.54	U
Acenaphthylene	ug/L			0.48	U	0.48	U	0.5	U	0.48	U	0.48	U	0.48	U
Acetophenone	ug/L			0.48	U	0.48	U	0.5	U	0.48	U	0.48	U	0.48	U
Anthracene	ug/L	22	59	0.52	U	0.53	U	0.55	U	0.52	U	0.53	U	0.53	U
Atrazine	ug/L			0.4	U	0.41	U	0.42	U	0.4	U	0.41	U	0.41	U
Benzaldehyde	ug/L			0.56	U	0.56	U	0.58	U	0.56	U	0.56	U	0.56	U
Benzo(a)anthracene	ug/L		10	0.42	U	0.43	U	0.44	U	1.1	J	0.43	U	1.1	J

TABLE 4-8 ANALYTICAL RESULTS SEPTIC TANK WATER SAMPLES STANDARD CHLORINE SITE **KEARNY, NEW JERSEY**

Constituent of Interest	Units	NJDEP BG	ge Limits	ST-02- 05/29/0	08	ST-03- 05/29/0) 8	ST-04- 05/29/0	08	ST-05- 05/29/0	08	ST-06- 05/29/0) 8	ST-07- 05/29/0	08
Benzo(a)pyrene	ug/L	Mthly Avg.	Daily Max.	Prima 0.45	r y U	Prima 0.46	r y U	Prima 0.47	r y U	Prima 0.85	ry J	Prima 0.46	r y U	Prima 0.98	ry I i
Benzo(b)fluoranthene	ug/L ug/L		10	0.43	U	0.33	U	0.47	U	2.1	J	0.33	U	2	J
Benzo(ghi)perylene	ug/L			0.28	U	0.29	U	0.3	U	0.53	J	0.29	U	0.65	J
Benzo(k)fluoranthene	ug/L		20	0.41	U	0.41	U	0.43	U	0.41	U	0.41	U	0.41	U
Semivolatile Organics (Continued)	<u> </u>														
Bis(2-chloroethoxy)methane	ug/L			1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Bis(2-chloroethyl)ether	ug/L		10	0.47	U	0.48	U	0.5	U	0.47	U	0.48	U	0.48	U
Bis(2-ethylhexyl)phthalate	ug/L	59	118	1.2	U	1.2	U	1.3	U	1.2	U	1.2	U	1.2	U
Butyl benzyl phthalate	ug/L		24	1.4	U	1.4	U	1.5	U	1.4	U	1.4	U	1.4	U
Caprolactam	ug/L			1.9	U	2	U	2	U	1.9	U	2	U	2	U
Carbazole	ug/L			0.54	U	0.54	U	0.56	U	0.54	U	0.54	U	0.54	U
Chrysene	ug/L		20	0.37	U	0.37	U	0.38	U	1.6	J	0.37	U	1.1	J
Dibenzo(a,h)anthracene	ug/L		20	0.36	U	0.36	U	0.38	U	0.36	U	0.36	U	0.36	U
Dibenzofuran Di di la lata lata	ug/L		202	0.55	U	0.56	U	0.58	U	0.55	U	0.56	U	0.56	U
Diethyl phthalate	ug/L	81	203	2.5	U	2.5	U	2.6	U	2.5	U	2.5	U	2.5	U
Dimethyl phthalate	ug/L	19 27	47 57	0.43	U	0.44	U	0.46	U	0.43	U	0.44	U	0.44	U
Di-n-butyl phthalate Di-n-octyl phthalate	ug/L ug/L			0.48	U	0.48	U	0.5	U	0.48	U	0.48	U	0.48	U
Fluoranthene	ug/L ug/L	25	68	0.44	U	0.44	U	0.46	U	1.9	J	0.44	U	1.6	J
Fluorene	ug/L ug/L	22	59	0.56	U	0.56	U	0.59	U	0.56	U	0.56	U	0.56	U
Hexachlorobenzene	ug/L ug/L		10	0.45	U	0.45	U	0.47	U	0.45	U	0.45	U	0.45	U
Hexachlorobutadiene	ug/L ug/L	20	49	0.39	U	0.39	U	0.41	U	0.39	U	0.39	U	0.39	U
Hexachlorocyclopentadiene	ug/L		1800	0.82	U	0.83	U	0.86	U	0.82	U	0.83	U	0.83	U
Hexachloroethane	ug/L	21	54	0.45	U	0.45	U	0.47	U	0.45	U	0.45	U	0.45	U
Indeno(1,2,3-cd)pyrene	ug/L		20	0.49	U	0.49	U	0.51	U	0.55	J	0.49	U	0.56	J
Isophorone	ug/L		20	0.49	U	0.49	U	0.51	U	0.49	U	0.49	U	0.49	U
Naphthalene	ug/L			0.44	U	0.45	U	0.57	J	0.44	U	0.45	U	0.45	U
Nitrobenzene	ug/L	27	69	0.66	U	0.67	U	0.69	U	0.66	U	0.67	U	0.67	U
N-Nitrosodiphenylamine	ug/L		20	0.5	U	0.51	U	0.53	U	0.5	U	0.51	U	0.51	U
N-Nitrosodipropylamine	ug/L			0.61	U	0.62	U	0.64	U	0.61	U	0.62	U	0.62	U
Pentachlorophenol	ug/L		30	0.85	U	0.86	U	0.9	U	0.85	U	0.86	U	0.86	U
Phenanthrene	ug/L	22	59	0.57	U	0.57	U	0.59	U	0.63	J	0.57	U	0.66	J
Phenol	ug/L	15 25	26 67	0.23	U	0.23	U	0.24	U	0.23	U	0.23	U	0.23	U
Pyrene Polychlorinated Biphenyls (Aroclors)	ug/L	23	07	0.38	U	0.39	U	0.61	U	1.8	J	0.39	U	2.1	J
Aroclor 1016	ug/L	I	0.05	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor 1221	ug/L		0.05	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor 1232	ug/L		0.05	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U
Aroclor 1242	ug/L		0.05	0.076	U	0.076	U	0.075	U	0.075	U	0.076	U	0.076	U
Aroclor 1248	ug/L		0.05	0.093	U	0.093	U	0.092	U	0.092	U	0.093	U	0.093	U
Aroclor 1254	ug/L		0.05	0.093	U	0.093	U	0.092	U	0.092	U	0.093	U	0.093	U
Aroclor 1260	ug/L		0.05	0.055	U	0.055	U	0.055	U	0.055	U	0.055	U	0.055	U
Aroclor 1262	ug/L		0.05	0.084	U	0.084	U	0.083	U	0.083	U	0.084	U	0.084	U
Aroclor 1268	ug/L		0.05	0.11	U	0.11	U	0.11	U	0.11	U	0.11	U	0.11	U
Metals	~	T				27.5		404		220		44.0		1.40	- D.
Aluminum	ug/L			65.7	BJ	275	J	101	BJ	228	J	41.2	BJ	149	BJ
Antimony	ug/L	 50	100	2.9	U	2.9	U	2.9	U	2.9	U	2.9	U	2.9	U
Arsenic Barium	ug/L ug/L	50	100	4.9 15.9	B B	3.6 6.6	B B	2.2 13.4	U B	9.7 29.3	B B	2.3 89.4	B B	2.2 45.8	В
Beryllium	ug/L ug/L			0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
Cadmium	ug/L ug/L	50	100	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	В
Calcium	ug/L ug/L			23100	J	12900		28700		32500		48200		76400	
Chromium	ug/L ug/L	50	100	3.9	В	2790		10.7		27.9		4.6	В	372	П
Cobalt	ug/L			0.78	В	0.7	U	0.7	U	0.7	U	0.7	U	0.94	В
Copper	ug/L	50	100	28.1		1.6	В	5.2	В	3.8	В	0.72	U	2.6	В
Iron	ug/L			123		231		709		537		758		69.8	В
Lead	ug/L	50	100	2.4	U	2.4	U	10.8		11.4		10.9		2.4	U
Magnesium	ug/L			7900		7920		7860		9710		26700		96100	igsquare
Manganese	ug/L			131		13	В	63		28.9		153		72.1	igspace
Mercury	ug/L		1	0.055	U	0.055	U	0.055	U	0.055	U	0.055	U	0.055	U
Nickel	ug/L	50	100	2.1	В	1.1	U	1.1	U	2.2	В	1.1	U	1.8	В
Potassium	ug/L		100	2650	В	4910	В	1130	В	15000		13600		47000	
Selenium	ug/L	50	100	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Silver	ug/L	25	50	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U
Sodium Thallium	ug/L			12000 3.1	E U	30300 5.6	В	6720 3.1	U	118000 3.1	U	211000 3.1	U	956000 3.1	U
Vanadium	ug/L ug/L			12	В	109	מ	6.5	В	15.3	В	J.1 1	U	24.3	В
Zinc	ug/L ug/L	100	200	7.7	ВJ	11.8	BJ	11.6	ВJ	16.3	ВJ	10.9	В	25.8	J
Notes:	~ <u>&</u>	100	200	, . ,	200	11.0	200	11.0	200	10.5	رد	10.7	لـــــا	20.0	

Notes:

1. Criteria are as specified in the NJDEP Statewide Final NJPDES General Remediation Clean-up Permit (GRC) dated April 21, 2005. NJPDES Permit No. NJ0155438 Part III.

Potential exceedances of discharge limits are highlighted. Results which exceed both the monthly average and daily maximum are shown in bold, shaded typeface. Results which exceed the monthly average but not the daily maximum are shown in shaded typeface. Results which exceed the daily maximum but not the monthly average (i.e., when a daily maximum limit does not exist) are shown in bold typeface.

Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit. J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-9
ANALYTICAL RESULTS
SEPTIC TANK SOILS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion (1)	ST-1-E 11/22/2011	ST-1-N 11/22/2011	ST-1-S 11/22/2011	ST-1A-E 12/6/2011	ST-1A-N 12/6/2011	ST-1A-W 12/6/2011	ST-1B-E 11/22/2011	ST-1B-N 11/22/2011	ST-1B-S 11/22/2011	ST-1B-W 11/22/2011	ST-2-E 12/8/2011	ST-2-N 12/7/2011	ST-2-S 12/7/2011	ST-3-E 12/7/2011	ST-3-E DUP 12/7/2011
Volatile Organics																	
1,1,1-Trichloroethane	mg/Kg	4200	0.00023 U	0.00021 U	0.023 U	0.00017 U	0.00021 U	0.00017 U	1 U	0.00019 U	0.0002 U	0.023 U	0.039 U	0.31 U	0.24 U	0.023 U	U 0.023 U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.00094 U	0.00086 U	0.0079 U	0.00067 U	0.00086 U	0.0007 U	0.35 U	U 0.00075 U	0.00081 U	0.0079 U	0.014 U	0.11 U	0.084 U	0.0081 U	U 0.008 U
1,1,2-Trichloroethane	mg/Kg	6	0.00074 U	0.00067 U	0.0089 U	0.00053 U	0.00067 U	0.00055 U	0.4 U	U 0.00059 U	0.00063 U	0.0089 U	0.015 U	0.12 U	0.095 U	0.0092 U	U 0.009 U
1,1-Dichloroethane	mg/Kg	24	0.00031 U	0.00029 U	0.0092 U	0.00022 U	0.00028 U	0.00023 U	0.41 U	U 0.00025 U	0.00027 U	0.0092 U	0.016 U	0.12 U	0.097 U	0.0094 U	U 0.0092 U
1,1-Dichloroethene	mg/Kg	150	0.00046 U	0.00042 U	0.013 U	0.00033 U	0.00042 U	0.00034 U	0.57 U	U 0.00037 U	0.00039 U	0.013 U	0.022 U	0.18 U	0.14 U	0.013 U	U 0.013 U
1,2-Dichloroethane	mg/Kg	3	0.00048 U	0.00044 U	0.023 U	0.00035 U	0.00044 U	0.00036 U	1 U	U 0.00039 U	0.00041 U	0.023 U	0.039 U	0.31 U	0.24 U	0.023 U	U 0.023 U
1,2-Dichloropropane	mg/Kg	5	0.00094 J	0.00036 U	0.008 U	0.00028 U	0.00036 U	0.00029 U	0.36 U	U 0.00031 U	0.00034 U	0.008 U	0.014 U	0.11 U	0.085 U	0.0082 U	U 0.0081 U
2-Butanone	mg/Kg	44000	0.00071 U	0.00065 U	0.075 U	0.0058 J	0.00064 U	0.00053 U	3.4 U	J 0.0095 J	0.0006 U	0.075 U	0.13 U	1 U	0.8 U	0.077 U	U 0.076 U
2-Hexanone	mg/Kg		0.0021 U	0.0019 U	0.05 U	0.0015 U	0.0019 U	0.0016 U	2.2 U	U 0.0017 U	0.0018 U	0.05 U	0.086 U	0.68 U	0.53 U	0.052 U	U 0.05 U
4-Methyl-2-pentanone	mg/Kg		0.00089 U	0.00081 U	0.062 U	0.00063 U	0.00081 U	0.00066 U	2.8 U	U 0.00071 U	0.00076 U	0.063 U	0.11 U	0.85 U	0.66 U	0.064 U	U 0.063 U
Acetone	mg/Kg		0.014	0.012	0.23 U	0.028	0.0042 U	0.0068 J	10 U	0.058	0.013	0.23 U	0.39 U	3.1 U	2.4 U	0.23 U	U 0.23 U
Benzene	mg/Kg	5	0.00092 U	0.0031	0.066 J	0.00071 J	0.00084 U	0.00069 U	0.48 U	U 0.00073 U	0.00079 U	0.024 J	0.15 J	0.15 U	0.12 U	0.05	J 0.058 J
Bromodichloromethane	mg/Kg	3	0.00038 U	0.00034 U	0.0082 U	0.00027 U	0.00034 U	0.00028 U	0.37 U	U 0.0003 U	0.00032 U	0.0082 U	0.014 U	0.11 U	0.087 U	0.0085 U	U 0.0083 U
Bromoform	mg/Kg	280	0.00087 U	0.0008 U	0.0091 U	0.00062 U	0.00079 U	0.00065 U	0.4 U	U 0.00069 U	0.00074 U	0.0091 U	0.016 U	0.12 U	0.096 U	0.0094 U	U 0.0092 U
Bromomethane	mg/Kg	59	0.00051 U	0.00046 U	0.029 U	0.00036 U	0.00046 U	0.00038 U	1.3 U	U 0.00041 U	0.00043 U	0.029 U	0.049 U	0.39 U	0.3 U	0.03 U	U 0.029 U
Carbon disulfide	mg/Kg	110000	0.00058 U	0.00063 J	0.013 U	0.00041 U	0.00053 U	0.00043 U	0.6 U	U 0.00046 U	0.00049 U	0.013 U	0.023 U	0.18 U	0.14 U	0.014 U	U 0.013 U
Carbon tetrachloride	mg/Kg	2	0.00013 U	0.00011 U	0.016 U	0.00009 U	0.00011 U	0.000094 U	0.74 U	U 0.0001 U	0.00011 U	0.017 U	0.028 U	0.22 U	0.17 U	0.017 U	U 0.017 U
Chlorobenzene	mg/Kg	7400	0.061	0.055	9.7	0.00043 U	0.0097	0.00045 U	220	0.018	0.0085	6.7	6.7	370	9.1	3.7	3.8
Chloroethane	mg/Kg	1100	0.00049 U	0.00045 U	0.041 U	0.00035 U	0.00045 U	0.00037 U	1.8 U	U 0.0004 U	0.00042 U	0.041 U	0.07 U	0.56 U	0.43 U	0.042 U	U 0.041 U
Chloroform	mg/Kg	2	0.00029 U	0.00027 U	0.014 U	0.00021 U	0.00027 U	0.00022 U	0.63 U	U 0.00023 U	0.00025 U	0.014 U	0.024 U	0.19 U	0.15 U	0.015 U	U 0.014 U
Chloromethane	mg/Kg	12	0.00079 U	0.00072 U	0.019 U	0.00056 U	0.00072 U	0.00059 U	0.86 U	U 0.00063 U	0.00067 U	0.019 U	0.033 U	0.26 U	0.2 U	0.02 U	U 0.019 U
cis-1,2-Dichloroethene	mg/Kg	560	0.00029 U	0.00027 U	0.018 U	0.00021 U	0.00027 U	0.00022 U	0.79 U	U 0.00023 U	0.00025 U	0.018 U	0.03 U	0.24 U	0.19 U	0.018 U	U 0.018 U
cis-1,3-Dichloropropene	mg/Kg	7	0.00025 U	0.00023 U	0.0094 U	0.00018 U	0.00023 U	0.00019 U	0.42 U	U 0.0002 U	0.00021 U	0.0094 U	0.016 U	0.13 U	0.099 U	0.0096 U	U 0.0094 U
Dibromochloromethane	mg/Kg	8	0.00069 U	0.00064 U	0.0092 U	0.0005 U	0.00063 U	0.00052 U	0.41 U	U 0.00055 U	0.00059 U	0.0092 U	0.016 U	0.13 U	0.098 U	0.0095 U	U 0.0093 U
Ethylbenzene	mg/Kg	110000	0.00048 J	0.00022 U	0.023 U	0.00017 U	0.00022 U	0.00018 U	1 U	U 0.00019 U	0.0002 U	0.023 U	0.11 J	2.4	0.42 J	0.023 U	U 0.023 U
Methylene Chloride	mg/Kg	97	0.0023	0.00053 U	0.018 U	0.00042 U	0.00053 U	0.00044 U	0.79 U	0.0018	0.0027	0.018 U	0.03 U	0.24 U	0.19 U	0.018 U	U 0.018 U
Styrene	mg/Kg	260	0.00043 U	0.00039 U	0.013 U	0.00031 U	0.00039 U	0.00032 U	0.57 U	U 0.00034 U	0.00037 U	0.013 U	0.022 U	0.17 U	0.13 U	0.013 U	U 0.013 U
Tetrachloroethene	mg/Kg	5	0.00041 U	0.00037 U	0.018 U	0.00029 U	0.00037 U	0.00031 U	7.9	0.00033 U	0.00035 U	0.018 U	0.17	0.24 U	0.19 U	0.018 U	U 0.018 U
Toluene	mg/Kg	91000	0.00037 U	0.00034 U	0.0087 U	0.00027 U	0.00034 U	0.00028 U	0.39 U	U 0.0003 U	0.00032 U	0.0087 U	0.052 J	0.12 U	0.092 U	0.0089 U	U 0.0088 U
trans-1,2-Dichloroethene	mg/Kg	720	0.00035 U	0.00032 U	0.013 U	0.00025 U	0.00032 U	0.00026 U	0.56 U	U 0.00028 U	0.0003 U	0.013 U	0.022 U	0.17 U	0.13 U	0.013 U	U 0.013 U
trans-1,3-Dichloropropene	mg/Kg	7	0.00027 U	0.00025 U	0.011 U	0.0002 U	0.00025 U	0.0002 U	0.5 U	U 0.00022 U	0.00023 U	0.011 U	0.019 U	0.15 U	0.12 U	0.012 U	U 0.011 U
Trichloroethene	mg/Kg	20	0.00045 U	0.00041 U	0.016 U	0.00032 U	0.00041 U	0.00034 U	0.73 U	U 0.00036 U	0.00039 U	0.016 U	0.028 U	0.22 U	0.17 U	0.017 U	U 0.016 U
Vinyl chloride	mg/Kg	2	0.00029 U	0.00027 U	0.011 U	0.00021 U	0.00026 U	0.00022 U	0.49 U	U 0.00023 U	0.00025 U	0.011 U	0.019 U	0.15 U	0.12 U	0.011 U	U 0.011 U
Xylenes, Total	mg/Kg	170000	0.00097 U	0.00089 U	0.04 U	0.0007 U	0.00089 U	0.00073 U	1.8 U	U 0.00078 U	0.00083 U	0.04 U	0.64	3.4 J	1 J	0.041 U	U 0.04 U
Metals																	
Chromium ⁽²⁾	mg/Kg	120000	110	430	250	25	290	420	6100	110	320	28	630	30	110	90	54
Chromium, hexavalent	mg/Kg	20	1.8 U	3.7	1.6 U	1.7 U	2.8	1.7 U	4	1.6 U	8	1.7 U	5.8	1.8 U	1.8 U	1.7 U	U 0.17 U

TABLE 4-9
ANALYTICAL RESULTS
SEPTIC TANK SOILS
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	ST-3-N	ST-3-S	ST-3-W	ST-4-E	ST-4-N	ST-4-S	ST-4-W	ST-5-E	ST-5-S	ST-5-W	·- ·	ST-6-N	ST-6-S	ST-6-W	ST-7-E	ST-7-N	ST-7-N-DUP
	12/6/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/8/201	1 12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/8/2011	12/8/2011	12/8/2011
Volatile Organics																 	
1,1,1-Trichloroethane	0.0002 U	0.028 U	0.026	U 0.0002	U 0.0003 U	J 0.027	U 0.72	U 0.00033 U	U 0.00051	U 0.027	U 0.00038	U 0.00037 U	0.00029 U	U 0.00039 U	0.037 U	J 0.26	U 0.22 U
1,1,2,2-Tetrachloroethane	0.00082 U	0.0096 U	0.0092	U 0.00083	U 0.0012 U	J 0.0095	U 0.25	U 0.0014 U	U 0.0021	U 0.0095	U 0.0015	U 0.0015 U	0.0012 U	U 0.0016 U	0.013 U	J 0.091	U 0.078 U
1,1,2-Trichloroethane	0.00064 U	0.011 U	0.01	U 0.00065	U 0.00094 U	J 0.011	U 0.28	U 0.0011 U	U 0.0016	U 0.011	U 0.0012	U 0.0012 U	0.00091 U	U 0.0012 U	0.015 U	J 0.1	U 0.088 U
1,1-Dichloroethane	0.00027 U	0.011 U	0.011	U 0.00027	U 0.0004 U	J 0.011	U 0.29	U 0.00045 U	U 0.00068	U 0.011	U 0.00051	U 0.00049 U	0.00039 U	U 0.00052 U	0.015 U	J 0.11	U 0.09 U
1,1-Dichloroethene	0.0004 U	0.016 U	0.015	U 0.0004	U 0.00058 U	J 0.015	U 0.41	U 0.00066 U	U 0.001	U 0.016	U 0.00075	U 0.00072 U	0.00057 U	U 0.00077 U	0.021 U	J 0.15	U 0.13 U
1,2-Dichloroethane	0.00042 U	0.027 U	0.026	U 0.00043	U 0.00062 U	J 0.027	U 0.72	U 0.00069 U	U 0.0011	U 0.027	U 0.00079	U 0.00076 U	0.0006 U	U 0.00081 U	0.037 L	J 0.26	U 0.22 U
1,2-Dichloropropane	0.00034 U	0.0097 U	0.0093	U 0.00035	U 0.0005 U	J 0.0096	U 0.25	U 0.00057 U	U 0.00086	U 0.0097	U 0.00064	U 0.00062 U	0.00049 U	U 0.00066 U	0.013 U	J 0.093	U 0.079 U
2-Butanone	0.0086 J	0.091 U	0.087	U 0.00062	U 0.0009 U	J 0.09	U 2.4	U 0.0052	J 0.0087	J 0.091	U 0.0012	J 0.0029 J	0.0035 J	J 0.0012 U	0.12 U	J 0.87	U 0.74 U
2-Hexanone	0.0018 U	0.061 U	0.058	U 0.0018	U 0.0026 U	J 0.06	U 1.6	U 0.003 U	U 0.0045	U 0.06	U 0.0034	U 0.0033 U	0.0026 U	U 0.0035 U	0.082 U	J 0.58	U 0.49 U
4-Methyl-2-pentanone	0.00077 U	0.076 U	0.073	U 0.00078	U 0.0011 U	J 0.075	U 2	U 0.0013 U	U 0.0019	U 0.075	U 0.0014	U 0.0014 U	0.0011 U	U 0.0015 U	0.1 U	J 0.72	U 0.62 U
Acetone	0.049	0.28 U	0.26	U 0.0066	J 0.016	0.27	U 7.2	U 0.035	0.058	0.27	U 0.041	0.025	0.033	0.012 J	0.37 L	J 2.6	U 2.2 U
Benzene	0.0011	0.13	0.063	J 0.00081	U 0.0024	0.25	6.2	0.094	0.23	0.96	0.023	0.016	0.0011 U	U 0.0015 U	0.94	54	63
Bromodichloromethane	0.00033 U	0.01 U	0.0095	U 0.00033	U 0.00048 U	J 0.0099	U 0.26	U 0.00054 U	U 0.00082	U 0.0099	U 0.00061	U 0.00059 U	0.00047 U	U 0.00063 U	0.013 U	J 0.095	U 0.081 U
Bromoform	0.00075 U	0.011 U	0.011	U 0.00076	U 0.0011 U	J 0.011	U 0.29	U 0.0012 U	U 0.0019	U 0.011	U 0.0014	U 0.0014 U	0.0011 U	U 0.0015 U	0.015 U	J 0.11	U 0.089 U
Bromomethane	0.00044 U	0.035 U	0.033	U 0.00045	U 0.00065 U	J 0.035	U 0.91	U 0.00073 U	U 0.0011	U 0.035	U 0.00083	U 0.0008 U	0.00063 U	U 0.00085 U	0.047 L	J 0.33	U 0.28 U
Carbon disulfide	0.0005 U	0.016 U	0.016	U 0.00051	U 0.00073 U	J 0.016	U 0.42	U 0.00083 U	U 0.0059	0.016	U 0.00094	U 0.00091 U	0.00072 U	U 0.00096 U	0.022 U	J 0.15	U 0.13 U
Carbon tetrachloride	0.00011 U	0.02 U	0.019	U 0.00011	U 0.00016 U	J 0.02	U 0.52	U 0.00018 U	U 0.00027	U 0.02	U 0.0002	U 0.0002 U	0.00016 U	U 0.00021 U	0.027 L	J 0.19	U 0.16 U
Chlorobenzene	0.0012	16	1.3	0.0039	0.025	5.5	630	0.13	0.41	15	0.08	0.039	0.00074 U	U 0.001 U	16	270	310
Chloroethane	0.00043 U	0.05 U	0.047	U 0.00044	U 0.00063 U	J 0.049	U 1.3	U 0.00071 U	U 0.0011	U 0.049	U 0.00081	U 0.00078 U	0.00061 U	U 0.00083 U	0.067 L	J 0.47	U 0.4 U
Chloroform	0.00026 U	0.017 U	0.016	U 0.00026	U 0.00037 U	J 0.017	U 0.45	U 0.00042 U	U 0.00064	U 0.017	U 0.00048	U 0.00046 U	0.00037 U	U 0.00049 U	0.023 L	J 0.16	U 0.14 U
Chloromethane	0.00068 U	0.023 U	0.022	U 0.00069	U 0.001 U	J 0.023	U 0.61	U 0.0011 U	U 0.0017	U 0.023	U 0.0013	U 0.0012 U	0.00098 U	U 0.0013 U	0.031 U	J 0.22	U 0.19 U
cis-1,2-Dichloroethene	0.00025 U	0.022 U	0.021	U 0.00026	U 0.00037 U	J 0.021	U 0.56	U 0.00042 U	U 0.00064	U 0.021	U 0.00048	U 0.00046 U	0.00036 U	U 0.00049 U	0.029 U	J 0.21	U 0.17 U
cis-1,3-Dichloropropene	0.00022 U	0.011 U	0.011	U 0.00022	U 0.00032 U	J 0.011	U 0.3	U 0.00036 U	U 0.00054	U 0.011	U 0.00041	U 0.00039 U	0.00031 U	U 0.00042 U	0.015 U	J 0.11	U 0.092 U
Dibromochloromethane	0.0006 U	0.011 U	0.011	U 0.00061	U 0.00088 U	J 0.011	U 0.29	U 0.001 U	U 0.0015	U 0.011	U 0.0011	U 0.0011 U	0.00086 U	U 0.0012 U	0.015 U	J 0.11	U 0.091 U
Ethylbenzene	0.00021 U	0.027 U	0.026	U 0.00021	U 0.0003 U	J 0.027	U 0.72	U 0.00088 .	J 0.004	0.027	U 0.00054	J 0.00037 U	0.00029 U	U 0.0004 U	0.098	J 9.4	9.7
Methylene Chloride	0.00051 U	0.021 U	0.02	U 0.00051	U 0.00074 U	J 0.021	U 0.56	U 0.00084 U	U 0.0013	U 0.021	U 0.00095	U 0.00092 U	0.00073 U	U 0.00098 U	0.029 U	J 0.2	U 0.17 U
Styrene	0.00037 U	0.015 U	0.015	U 0.00038	U 0.00055 U	J 0.015	U 0.4	U 0.00061 U	U 0.00093	U 0.015	U 0.0007	U 0.00068 U	0.00053 U	U 0.00072 U	0.021 U	J 4	3.6
Tetrachloroethene	0.00036 U	0.022 U	0.021	U 0.00036	U 0.00052 U	J 0.022	U 0.57	U 0.00059 U	U 0.00089	U 0.022	U 0.00067	U 0.00064 U	0.00051 U	U 0.00068 U	0.029 U	J 4.1	3.9
Toluene	0.00032 U	0.011 U	0.024	J 0.00033	U 0.00047 U	J 0.01	U 0.27	U 0.0041	0.01	0.053	J 0.0026	0.0013 J	0.00046 U	U 0.00062 U	0.067	J 15	14
trans-1,2-Dichloroethene	0.0003 U	0.015 U	0.015	U 0.00031	U 0.00045 U	J 0.015	U 0.4	U 0.0005 U	U 0.00076	U 0.015	U 0.00057	U 0.00055 U	0.00044 U	J 0.00059 U	0.021 U	J 0.15	U 0.12 U
trans-1,3-Dichloropropene	0.00024 U	0.014 U	0.013	U 0.00024	U 0.00035 U	J 0.013	U 0.35	U 0.00039 U	U 0.0006	U 0.014	U 0.00045	U 0.00043 U	0.00034 U	U 0.00046 U	0.018 U	J 0.13	U 0.11 U
Trichloroethene	0.00039 U	0.02 U	0.019	U 0.0004	U 0.00057 U	J 0.02	U 0.52	U 0.00065 U	U 0.00098	U 0.02	U 0.00073	U 0.00071 U	0.00056 U	J 0.00075 U	0.027 U	J 0.19	U 0.16 U
Vinyl chloride	0.00025 U	0.013 U	0.013	U 0.00026	U 0.00037 U	J 0.013	U 0.35	U 0.00042 U	U 0.00063	U 0.013	U 0.00047	U 0.00046 U	0.00036 U	J 0.00049 U	0.018 U	J 0.13	U 0.11 U
Xylenes, Total	0.00085 U	0.048 U	0.046	U 0.00086	U 0.0012 U	J 0.048	U 1.3	U 0.0039	J 0.016	0.048	U 0.0024	J 0.0015 U	0.0012 U	U 0.0016 U	0.5	110	100
Metals		•													•		
Chromium ⁽²⁾	40	2000	730	15	14	16	58	26000	33000	1700	35000	37000	790	20000	1900	13000	16000
Chromium, hexavalent	1.8 U	5.1	9.6	1.8	U 2 U	J 1.8	U 2	U 6800	5600	27	5500	8500	14	3800	1.9	U 2.8	U 4

TABLE 4-9 ANALYTICAL RESULTS SEPTIC TANK SOILS STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	ST-7-S 12/8/201		ST-7-W 12/8/2011		ST-8-E 12/8/2011		ST-8-N 12/8/2011	1	ST-8-S 12/8/2011	1	ST-8-W 12/8/201	
Volatile Organics	•											
1,1,1-Trichloroethane	0.055	U	0.054	U	0.00037	U	0.00025	U	0.00033	U	0.03	U
1,1,2,2-Tetrachloroethane	0.019	U	0.019	U	0.0015	U	0.001	U	0.0013	U	0.01	U
1,1,2-Trichloroethane	0.022	U	0.021	U	0.0012	U	0.0008	U	0.0011	U	0.012	U
1,1-Dichloroethane	0.022	U	0.022	U	0.00049	U	0.00034	U	0.00045	U	0.012	U
1,1-Dichloroethene	0.031	U	0.031	U	0.00072	U	0.0005	U	0.00065	U	0.017	U
1,2-Dichloroethane	0.055	U	0.054	U	0.00076	U	0.00053	U	0.00069	U	0.029	U
1,2-Dichloropropane	0.019	U	0.019	U	0.00062	U	0.00043	U	0.00056	U	0.01	U
2-Butanone	0.18	U	0.18	U	0.0011	U	0.00077	U	0.001	U	0.098	U
2-Hexanone	0.12	U	0.12	U	0.0033	U	0.0023	U	0.003	U	0.065	U
4-Methyl-2-pentanone	0.15	U	0.15	U	0.0014	U	0.00097	U	0.0013	U	0.082	U
Acetone	0.55	U	0.55	U	0.011	J	0.005	U	0.0066	U	0.3	U
Benzene	0.14	J	12		0.0014	U	0.0026		0.0043		0.014	U
Bromodichloromethane	0.02	U	0.02	U	0.0006	U	0.00041	U	0.00054	U	0.011	U
Bromoform	0.022	U	0.022	U	0.0014	U	0.00095	U	0.0012	U	0.012	U
Bromomethane	0.07	U	0.069	U	0.0008	U	0.00055	U	0.00072	U	0.038	U
Carbon disulfide	0.032	U	0.032	U	0.00091	U	0.00063	U	0.004		0.017	U
Carbon tetrachloride	0.04	U	0.04	U	0.0002	U	0.00014	U	0.00018	U	0.022	U
Chlorobenzene	1.5		3.3		0.0072		0.043		0.011		0.15	
Chloroethane	0.099	U	0.098	U	0.00078	U	0.00054	U	0.00071	U	0.053	U
Chloroform	0.034	U	0.034	U	0.00046	U	0.00032	U	0.00042	U	0.019	U
Chloromethane	0.047	U	0.046	U	0.0012	U	0.00086	U	0.0011	U	0.025	U
cis-1,2-Dichloroethene	0.043	U	0.043	U	0.00046	U	0.00058	J	0.0021		0.023	U
cis-1,3-Dichloropropene	0.023	U	0.022	U	0.00039	U	0.00027	U	0.00036	U	0.012	U
Dibromochloromethane	0.022	U	0.022	U	0.0011	U	0.00076	U	0.00099	U	0.012	U
Ethylbenzene	0.055	U	0.13	J	0.00037	U	0.00073	J	0.0019		0.03	U
Methylene Chloride	0.043	U	0.042	U	0.0015	J	0.00064	U	0.00083	U	0.023	U
Styrene	0.031	U	0.031	U	0.00068	U	0.00047	U	0.00061	U	0.017	U
Tetrachloroethene	0.043	U	0.043	U	0.00065	U	0.00045	U	0.00058	U	0.023	U
Toluene	0.039	J	0.58		0.00059	U	0.00045	J	0.003		0.011	U
trans-1,2-Dichloroethene	0.031	U	0.03	U	0.00055	U	0.00038	U	0.00056	J	0.017	U
trans-1,3-Dichloropropene	0.027	U	0.027	U	0.00043	U	0.0003	U	0.00039	U	0.015	U
Trichloroethene	0.039	U	0.039	U	0.00071	U	0.00049	U	0.00064	U	0.021	U
Vinyl chloride	0.027	U	0.026	U	0.00046	U	0.00032	U	0.00096	J	0.014	U
Xylenes, Total	0.49	J	1.1		0.0015	U	0.0019	J	0.0062		0.052	U
Metals												
Chromium ⁽²⁾	290		30000		26000		4900		1700		11	
Chromium, hexavalent	13		11000		6900		170		1.9	U	2.2	J

- Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise.
 Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance).
 Criterion for residential exposure to trivalent chromium was used for total chromium.

TABLE 4-10

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - FILL UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	SC-MW-1 04/24/0		SC-MW-1 04/23/0		SC-MW-1 04/23/08		SC-MW-14 04/24/08		SC-MW-1 04/23/08		SC-PZ-1 04/23/0		SC-PZ-2 04/23/08	_	SC-PZ-3 04/23/08		SC-PZ-4 04/25/03		SC-PZ-5U 04/24/08
	Units	Criterion																			
Interest			Primar	<u>y</u>	Primar	<u>y</u>	Duplicat	e	Primary		Primary	<u> </u>	Primary	У	Primary	7	Primary	7	Primary	7	Primary
Volatile Organics	-	T		1		1	T		. <u> </u>		1	1 1		1 1		1 1		1 1		11	
1,1,1-Trichloroethane	ug/L	30	32	U		U	0.79	U		U	0.79	U	0.79	U	0.79	U	0.79	U	0.79	U	0.79
1,1,2,2-Tetrachloroethane	ug/L	1	25	U		U	0.63	U		U		U	0.63	U	0.63	U	0.63	U	0.63	U	0.63
1,1,2-Trichloroethane	ug/L	3	32	U		U	0.79	U		U	0.77	U	0.79	U	0.79	U	0.79	U	0.79	U	0.79
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L		49	U		U	1.2	U		U		U	1.2	U	1.2	U	1.2	U	1.2	U	1.2
1,1-Dichloroethane	ug/L	50	41	U		U		U		U		U	1	U	1	U	1	U	1	U	1
1,1-Dichloroethene	ug/L	1	35	U		U		U		U	0.87	U	0.87	U	0.87	U	0.87	U	0.87	U	0.87
1,2,4-Trichlorobenzene	ug/L	9	5000		0.42	U		J	230	J	0.42	U	0.42	U	0.89	J	0.42	U	4.1	J	11
1,2-Dibromoethane	ug/L	0.03	26	U	0.64	U	0.64	U	32	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64
1,2-Dichlorobenzene	ug/L	600	5200		4	J	11		7200		0.84	J	0.65	U	10		4.5	J	4.2	J	3.4
1,2-Dichloroethane	ug/L	2	26	U	0.64	U	0.64	U	32	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64
1,2-Dichloropropane	ug/L	1	27	U	0.67	U	0.67	U	33	U	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U	0.67
1,3-Dichlorobenzene	ug/L	600	1100		10		18		5600		2.6	J	0.66	U	3.4	J	0.66	U	2.6	J	0.66
1,4-Dichlorobenzene	ug/L	75	1800		35		55		9000		4.4	J	0.6	U	3.2	J	1	J	4.4	J	3.5
2-Butanone	ug/L	300	29	U	0.73	U	0.73	U	37	U	0.73	U	0.73	U	0.73	U	0.73	U	0.73	U	15
2-Hexanone ⁽²⁾	ug/L	300	18	U	0.45	U	0.45	U	22	U	0.45	U	0.45	U	0.45	U	0.45	U	0.45	U	0.45
4-Methyl-2-pentanone	ug/L		19	U		U	0.46	U		U	0.46	U	0.46	U	0.46	U	0.46	U	0.46	U	0.46
Acetone	ug/L	6,000	200	U		U	5	U	250	U		U	5	U	17	ī	5	U	5	U	63
Benzene	ug/L	1	36	J	0.81	U	_	J	41	U			0.81	U	1.5	J	10		0.81	U	15
Bromodichloromethane	ug/L	1	23	U		U		U		U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58
Bromoform	ug/L ug/L	4	15	U		U	0.37	U		U		U	0.37	U	0.37	U	0.37	U	0.37	U	0.37
Bromomethane	ug/L ug/L	10	30	U		U		U		U		U	0.75	U	0.75	U	0.75	U	0.75	U	0.75
Carbon disulfide	ug/L ug/L	700	43	U		U		U		U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1
Carbon tetrachloride	ug/L ug/L	1	37	U		U		U		II		U	0.91	U	0.91	U	0.91	U	0.91	U	0.91
Chlorobenzene	ug/L ug/L	50	450		37		53	10	490		320		0.71	U	10		2.4	I	17		25
Chloroethane (2)	ug/L	5	44	U		U	1.1	II	55	TT	1.1	U	1 1	U	1.1	U	1.1	U	1.1	U	1 1
Chloroform	ug/L ug/L	70	31	U		U	0.78	U		U		U	0.78	U	0.78	U	0.78	U	0.78	U	0.78
Chloromethane	ug/L		35	U		U		U		U		U	0.87	U	0.87	U	0.87	U	0.87	U	0.87
cis-1,2-Dichloroethene	ug/L ug/L	70	46	ī	1	U	1	U		U		U	1	U	1	U	2.4	I	1	U	1
cis-1,3-Dichloropropene	ug/L ug/L	1	32	U	0.79	U	0.79	U		U	•	U	0.79	U	0.79	U	0.79	U	0.79	U	0.79
Cyclohexane	ug/L ug/L		43	U		U		U		U		U	1.1	U	1.1	U	1.1	U	1.1	U	1.1
Dibromochloropropane	ug/L ug/L	0.02	50	U		U		11		II		U	1.3	U	1.3	U	1.3	U	1.3	U	1.3
Dibromochloromethane	ug/L ug/L	1	20	U		U	0.5	U	03	U	1.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5
Dichlorodifluoromethane	ug/L ug/L	1000	42	U		U	1	U		J	1	U	1	U	1	U	1	U	1	U	1
Ethylbenzene Ethylbenzene	ug/L ug/L	700	23	U		U	1.1	J	29	U	0.58	U	0.58	U	0.58	U	10		0.58	U	0.58
Isopropylbenzene	ug/L ug/L	700	29	U		U	0.72	U		U		U	0.72	U	0.72	U	3.1	T	0.72	U	0.72
Methyl Acetate	ug/L ug/L	7000	19	U		U		U		U		U	0.72	U	0.72	U	0.47	U	0.72	U	0.72
Methylcyclohexane		•	44	U		U		U		U		U	1.1	U	1.1	U	1.1	U	1.1	U	1.1
Methylene chloride	ug/L ug/L	3	30	U		U		U		J	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75
Methyltert-butylether	ug/L ug/L	70	31	U		U		U		U		U	0.73	U	0.73	U	0.73	U	0.73	U	0.73
, , , , , , , , , , , , , , , , , , ,		100		U				_		U											
Styrene Tetrachloroethylene	ug/L	100	32 42			U		U		U		U	0.8	U	0.8	U	0.8	U	0.8	U	0.8
,	ug/L	600		J U		U		U		_				U	0.57	U		U		J U	0.57
Toluene	ug/L	600	32	_				J		U		U	0.8	U		U	2.9	JB	0.8		1.6
trans-1,2-Dichloroethene	ug/L	100	36	U U		U		U U		U		U	0.9	U	0.9	U	0.9	U	0.9	U	0.9
trans-1,3-Dichloropropene	ug/L	1	23					_		U									0.57		
Trichloroethylene	ug/L	2000	35	U		U		U		_		U	0.88	U	0.88	U	0.88	U		U	0.88
Trichlorofluoromethane	ug/L	2000	32	U		U		U		U		U	0.8	U	0.8	U	0.8	U	0.8	U	0.8
Vinyl chloride	ug/L	1	38	U		U	0.94	U		U		U	0.94	U	0.94	U	0.94	U	0.94	U	0.94
Xylene (total)	ug/L	1000	98	U	2.4	U	2.9	J	120	U	2.4	U	2.4	U	2.4	U	39		2.4	U	2.4

TABLE 4-10

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - FILL UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	SC-MW-11 04/24/08		SC-MW-1 04/23/08		SC-MW-1 04/23/08		SC-MW-14 04/24/08	U	SC-MW-1 04/23/08		SC-PZ-1 04/23/0		SC-PZ-2 04/23/08		SC-PZ-31 04/23/08		SC-PZ-4 04/25/08		SC-PZ-5U 04/24/08
-	Units	Criterion																			
Interest Semivolatile Organics			Primary		Primary	/	Duplicat	e	Primary		Primary		Primary	/	Primary	/	Primary		Primary	/	Primary
1,1'-Biphenyl	ug/L	400	33	Т Т	1.2	Т	5.6	Т	3.2	T	0.63	U	0.75	U	0.64	U	28	Т	0.69	Tul	0.73 U
1,2,4-Trichlorobenzene	ug/L ug/L	9	NA		NA	+	NA	1	NA	Ľ	NA		NA		NA	+ + +	3.1		NA		NA
1,4-Dichlorobenzene	ug/L ug/L	75	NA	Н	NA		NA		NA		NA		NA		NA		2.4		NA		NA NA
2,2'-oxybis(1-chloropropane)	ug/L		0.29	U	0.3	U	0.28	U	0.29	U	0.27	U	0.32	U	0.27	U	0.28	U	0.3	U	0.32 U
2,4,5-Trichlorophenol	ug/L	700	37	Ť	0.71	U	0.68	U	0.69	U	0.66	U	0.78	U	0.66	U	0.68	U	0.72	U	0.76 U
2,4,6-Trichlorophenol	ug/L	20	11		0.65	U	0.62	U	0.63	U	0.6	U	0.71	U	0.6	U	0.62	U	0.65	U	0.69 U
2,4-Dichlorophenol	ug/L	20	46		1.4	J	1.1	J	0.54	U	0.51	U	0.61	U	0.51	U	0.53	U	0.56	U	0.59 U
2,4-Dimethylphenol	ug/L	100	99	\Box	12		29		7.8	J	6.9	J	0.65	U	3.3	J	12		9.8	J	13
2,4-Dinitrophenol	ug/L	40	14	U	15	U	14	U	14	U	13	U	16	U	14	U	14	U	15	U	16 U
2,4-Dinitrotoluene	ug/L	10	0.5	U	0.51	U	0.49	U	0.5	U	0.47	U	0.56	U	0.48	U	0.49	U	0.52	U	0.55 U
2,6-Dinitrotoluene	ug/L	10	0.56	U	0.58	U	0.55	U	0.56	U	0.53	U	0.64	U	0.54	U	0.55	U	0.58	U	0.62 U
2-Chloronaphthalene	ug/L	600	0.49	U	0.5	U	0.48	U	0.49	U	0.46	U	0.55	U	0.47	U	0.48	U	0.51	U	0.54 U
2-Chlorophenol	ug/L	40	0.5	U	0.52	U	0.49	U	0.5	U	0.48	U	0.57	U	0.48	U	0.49	U	0.52	U	0.55 U
2-Methylnaphthalene ⁽²⁾	ug/L	30	260		0.69	J	14		3.6	J	0.49	U	0.59	U	1.2	J	590	П	1.4	J	4.3
2-Methylphenol	ug/L		49	\Box	3.5	J	14		3.5	J	7.6	J	0.64	U	1.1	J	7.4	J	11	J	110
2-Nitroaniline	ug/L		0.52	U	0.54	U	0.52	U	0.53	U	0.5	U	0.59	U	0.5	U	0.52	U	0.55	U	0.58 U
2-Nitrophenol	ug/L		0.59	U	0.62	U	0.59	U	0.6	U	0.57	U	0.68	U	0.57	U	0.59	U	0.62	U	3.4
3,3-Dichlorobenzidine	ug/L	30	0.45	U	0.47	U	0.45	U	0.45	U	0.43	U	0.51	U	0.43	U	0.45	U	0.47	U	0.5 U
3-Nitroaniline	ug/L		0.44	U	0.46	U	0.44	U	0.45	U	0.42	U	0.5	U	0.43	U	0.44	U	0.46	U	0.49 U
4,6-Dinitro-2-methylphenol ⁽²⁾	ug/L	1	16	U	16	U	15	U	16	U	15	U	18	U	15	U	15	U	16	U	17 U
4-Bromophenylphenyl ether	ug/L		0.55	U	0.56	U	0.54	U	0.55	U	0.52	U	0.62	U	0.53	U	0.54	U	0.57	U	0.6 U
4-Chloroaniline	ug/L	30	0.51	U	0.53	U	0.5	U	0.51	U	0.49	U	0.58	U	0.49	U	0.5	U	0.53	U	0.56 U
4-Chlorophenyl phenyl ether	ug/L		0.47	U	0.49	U	0.46	U	0.47	U	0.45	U	0.53	U	0.45	U	0.46	U	0.49	U	0.52 U
4-Chloro-3-methylphenol ⁽²⁾	ug/L	100	0.65	U	0.67	U	0.64	U	0.66	U	0.62	U	0.74	U	0.63	U	0.64	U	0.68	U	0.72 U
4-Methylphenol	ug/L		140		16		63		8.9	J	31		0.92	U	3.3	J	18	1 1	23		810
4-Nitroaniline	ug/L		0.28	U	0.29	U	0.28	U	0.28	U	0.27	U	0.32	U	0.27	U	0.28	U	0.29	U	0.31 U
4-Nitrophenol	ug/L		0.77	U	0.8	U	0.76	U	0.78	U	0.74	U	0.88	U	0.74	U	0.76	U	0.81	U	0.86 U
Acenaphthene	ug/L	400	30		3.4	J	13		97		6.1	J	0.65	U	1.2	J	61		5.6	J	0.64 U
Acenaphthylene ⁽²⁾	ug/L	100	0.51	U	0.59	J	0.5	IJ	1.6	J	0.49	U	0.58	IJ	0.49	U	0.5	U	0.85	J	0.56 U
Acetophenone	ug/L	700	2.4	J	0.53	U	0.58	J	0.51	U	0.49	U	0.58	U	0.49	U	0.5	U	0.53	U	1.6
Anthracene	ug/L	2000	20		0.66	J	1.2	J	1.3	J	0.53	U	0.63	U	0.54	U	1.4	J	1	J	0.62 U
Atrazine	ug/L	3	0.43	U	0.44	U	0.42	U	0.43	U	0.41	U	0.49	U	0.41	U	0.42	U	0.45	U	0.48 U
Benzaldehyde	ug/L		0.6	U	0.62	U	0.59	U	0.6	U	0.57	U	0.68	U	0.57	U	0.59	U	0.62	U	3.4
Benzo(a)anthracene	ug/L	0.1	1.6	J	0.47	U	0.45	U	0.46	U	0.43	U	0.51	U	0.44	U	0.45	U	2.3	J	0.5 U
Benzo(a)pyrene	ug/L	0.1	0.72	J	0.5	U	0.48	U	0.49	U	0.46	U	0.55	U	0.46	U	0.48	U	2.2	J	0.53 U
Benzo(b)fluoranthene	ug/L	0.2	1.1	J	0.36	U	0.34	U	0.35	U	0.33	U	0.39	U	0.33	U	0.34	U	3.8	J	0.38 U
Benzo(ghi)perylene ⁽²⁾	ug/L	100	0.3	U	0.31	U	0.3	U	0.3	U	0.29	U	0.34	U	0.29	U	0.3	U	1.9	J	0.34 U
Benzo(k)fluoranthene	ug/L	0.5	0.53	J	0.45	U	0.43	U	0.44	U	0.41	U	0.49	U	0.42	U	0.43	U	0.45	U	0.48 U
Bis(2-chloroethoxy)methane	ug/L		1.3	U	1.4	U	1.3	U	1.4	U	1.3	U	1.5	U	1.3	U	1.3	U	1.4	U	1.5 U
Bis(2-chloroethyl)ether	ug/L	7	0.51	U	0.52	U	0.5	U	0.51	U	0.48	U	0.58	U	0.49	U	0.5	U	0.53	U	0.56 U
Bis(2-ethylhexyl)phthalate	ug/L	3	1.4	J	1.5	J	2.6	J	1.7	J	1.3	U	1.5	J	2.6	J	1.8	J	1.4	U	2.1 .
Butyl benzyl phthalate	ug/L	100	1.5	U	1.6	U	1.5	U	1.5	J	1.4	U	1.7	U	1.5	U	1.5	U	1.6	U	1.7 U
Caprolactam ⁽²⁾	ug/L	5000	2.1	U	3.8	J	6.3	J	2.1	U	2	U	3.2	J	5	J	3.6	J	2.2	U	2.3 U
Carbazole	ug/L		5.7	J	0.6	U	2.6	J	2.1	J	0.55	U	0.65	U	0.55	U	2.4	J	0.6	U	0.64 U
Chrysene	ug/L	5	1.2	J	0.41	U	0.39	U	0.5	J	0.37	U	0.44	U	0.38	U	0.39	U	2.1	J	0.43 U
Dibenzo(a,h)anthracene	ug/L	0.3	0.38	U	0.4	U	0.38	U	0.39	U	0.37	U	0.44	U	0.37	U	0.38	U	0.4	U	0.43 U
Dibenzofuran	ug/L		51		3	J	11		46		0.56	U	0.67	U	0.57	U	20		0.61	U	0.65 U
Diethyl phthalate	ug/L	6000	2.7	U	2.8	U	2.7	U	2.7	U	2.6	U	3	U	2.6	U	2.7	U	2.8	U	3 U

TABLE 4-10

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - FILL UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent			SC-MW-1	1U	SC-MW-1	2U	SC-MW-12	2U	SC-MW-1	4U	SC-MW-1	5U	SC-PZ-1	U	SC-PZ-2	U	SC-PZ-3	U	SC-PZ-4		SC-PZ-5	
of	Units	Criterion ⁽¹⁾	04/24/08	;	04/23/08	;	04/23/08		04/24/08	;	04/23/08	3	04/23/08	;	04/23/08	; [04/23/08	3	04/25/08	;	04/24/08	8
Interest			Primary		Primary		Duplicate	•	Primary		Primary	,	Primary		Primary		Primary	•	Primary		Primary	/
Semivolatile Organics (Continued)																						
Dimethyl phthalate ⁽²⁾	ug/L	100	0.46	U	0.48	U	0.46	U	0.47	U	0.44	U	0.53	U	0.45	U	0.46	U	0.49	U	0.52	U
Di-n-butyl phthalate	ug/L	700	0.51	U	0.53	U	0.51	U	0.51	U	0.49	U	0.58	U	0.49	U	0.51	U	0.53	U	0.57	U
Di-n-octyl phthalate	ug/L	100	0.47	U	0.49	U	0.46	U	0.47	U	0.45	U	0.53	U	0.45	U	0.46	U	0.49	U	0.52	U
Fluoranthene	ug/L	300	6.8	J	1.1	J	1.6	J	2	J	0.71	J	0.62	U	0.52	U	0.54	U	3.8	J	0.6	U
Fluorene	ug/L	300	31		2.1	J	6.9	J	23		3.9	J	0.68	U	0.57	U	10	J	0.62	U	0.66	U
Hexachlorobenzene	ug/L	0.02	0.48	U	0.5	U	0.47	U	0.48	U	0.46	U	0.54	U	0.46	U	0.47	U	0.5	U	0.53	U
Hexachlorobutadiene	ug/L	1	0.41	U	0.43	U	0.41	U	0.42	U	0.39	U	0.47	U	0.4	U	0.41	U	0.43	U	0.46	U
Hexachlorocyclopentadiene	ug/L	40	0.88	U	0.91	U	0.87	U	0.89	U	0.84	U	1	U	0.85	U	0.87	U	0.92	U	0.98	U
Hexachloroethane	ug/L	7	0.48	U	0.5	U	0.47	U	0.48	U	0.46	U	0.54	U	0.46	U	0.47	U	0.5	U	0.53	U
Indeno(1,2,3-cd)pyrene	ug/L	0.2	0.52	U	0.54	U	0.52	U	0.53	U	0.5	U	0.59	U	0.5	U	0.52	U	1.7	J	0.58	U
Isophorone	ug/L	40	0.52	U	0.54	U	0.52	U	0.53	U	0.5	U	0.59	U	0.5	U	0.52	U	0.54	U	0.58	U
Naphthalene	ug/L	300	14000		6.2	J	310		740		0.45	U	0.54	U	2.1	J	5000		21		50	
Nitrobenzene	ug/L	6	0.7	U	0.73	U	0.7	U	0.71	U	0.67	U	0.8	U	0.68	U	0.7	U	0.74	U	0.78	U
N-Nitrosodiphenylamine	ug/L	10	0.54	U	0.56	U	0.53	U	0.54	U	0.51	U	0.61	U	0.52	U	0.53	U	0.56	U	0.6	U
N-Nitrosodipropylamine	ug/L	10	0.65	U	0.68	U	0.65	U	0.66	U	0.62	U	0.74	U	0.63	U	0.65	U	0.68	U	0.73	U
Pentachlorophenol	ug/L	0.3	10	J	0.95	U	0.9	U	0.92	U	0.87	U	1	U	0.88	U	0.9	U	0.95	U	1	U
Phenanthrene ⁽²⁾	ug/L	100	39		1	J	6.2	J	11		0.81	J	0.69	U	1.1	J	5.2	J	1.4	J	0.67	U
Phenol	ug/L	2000	49		5.1	J	36		5.1	J	39		0.28	U	6.9	J	5.8	J	29		870	
Pyrene	ug/L	200	3.6	J	0.77	J	1.2	J	1.2	J	0.59	U	0.71	U	0.6	U	0.62	U	2.9	J	0.69	U
Metals																						
Aluminum	ug/L	200	1130		40.3	В	27	В	191	В	55	В	1160		1750		136	В	2910	J	189	В
Antimony	ug/L	6	34	\perp	2.9	U	2.9	U	2.9	U	4.4	В	2.9	U	2.9	U	2.9	U	2.9	U	2.9	U
Arsenic	ug/L	3	9.5	В	2.2	U	2.2	U	2.2	U	2.2	U	3	В	2.2	U	16		2.2	U	2.2	U
Barium	ug/L	6000	524	J	19.2	BJ	17.1	В	28	В	352	J	280	J	149	BJ	50.7	BJ	12.3	В	1080	J
Beryllium	ug/L	1	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
Cadmium	ug/L	4	0.38	В	0.23	U	0.23	U	0.23	U	0.23	U	0.67	В	0.23	U	0.23	U	2	В	0.23	U
Calcium	ug/L		35200	J	45700	J	53000	J	85900	J	103000	J	63800	J	289000	J	10500	J	74500	J	546000	J
Chromium (Total)	ug/L	70	396	+	32.6		6.4	\perp	427		3.1	В	119	ш	4690	ш	142	ш	3650		2090	\blacksquare
Chromium (Hexavalent)	ug/L		50	U	10	U	10	U	10	U	10	U	250	U	4070		10	U	453		1650	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$
Cobalt ⁽²⁾	ug/L	100	3.3	В	0.74	В	0.7	U	1.8	В	0.7	U	2.8	В	0.7	U	0.7	U	6.6	В	2.5	В
Copper	ug/L	1300	58.5		2.5	В	1.4	В	2.9	В	1.3	В	25.8		1.2	В	1.9	В	12.6	В	19.1	В
Iron	ug/L	300	4280		673		275		475		7950		46100		33.4	В	1720		6550		833	
Lead	ug/L	5	550		2.4	U	2.4	U	11.9		37.7		3.2		2.4	U	2.4	U	15.5		10	
Magnesium	ug/L		97600	J	30300	J	18100	J	150000	J	19900	J	15500	J	73	BJ	11000	J	17400	J	2810	В
Manganese	ug/L	50	37.7		35		23.1		119		514		701		0.32	U	24.2		71		10.4	В
Mercury	ug/L	2	17.5		0.055	U	0.055	U	0.19	В	0.055	U	0.076	В	0.055	U	0.12	В	0.11	В	0.055	U
Nickel	ug/L	100	28	В	1.2	В	1.4	В	3.2	В	1.5	В	17.7	В	1.7	В	2.4	В	31.7	В	5.2	В
Potassium	ug/L		4880	В	2410	В	2100	В	6580		12900		3760	В	1140	В	14100		2210	В	944	В
Selenium	ug/L	40	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Silver	ug/L	40	0.72	В	0.59	U	0.59	U	0.96	В	0.59	U	0.59	U	0.64	В	0.59	U	0.89	В	0.59	U
Sodium	ug/L	50000	78300	\sqcup	36600	Ш	37600	Ш	68700	lacksquare	45300	$oldsymbol{\perp}$	113000	Ш	27000	Ш	195000		8780	$\perp \downarrow$	82100	
Thallium	ug/L	2	3.1	U	4.8	BJ	3.1	U	3.1	U	3.1	U	3.6	BJ	3.1	U	3.1	U	3.1	U	3.1	U
Vanadium ⁽³⁾	ug/L	60	48.6	В	4.8	BJ	1	U	11.2	В	1.3	BJ	48.7	BJ	1	U	9.9	BJ	135		1	U
Zinc	ug/L	2000	32.4		1.3	U	1.3	U	5	В	1.3	U	1940		107		108		5350		2430	

TABLE 4-10

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - FILL UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	SC-MW-11 04/24/08		SC-MW-12 04/23/08		SC-MW-1 04/23/08		SC-MW-14 04/24/08		SC-MW-1 04/23/08		SC-PZ-11 04/23/08		SC-PZ-2 04/23/08		SC-PZ-31 04/23/08		SC-PZ-4 04/25/08		SC-PZ-5U 04/24/08	
Interest	Units	Criterion	Primary		Primary	'	Duplicat		Primary		Primary		Primary		Primary		Primary	·	Primary		Primary	
PCBs			1 Timary		1 i i i i i i		Duplicat		1 milai y		Timary		1 Tilliai y		1 i i i i i i i i i i i i i i i i i i i		1 Tilliai y		1 i i i i i i		1 i i i i i i i i i i i i i i i i i i i	
Aroclor 1016	ug/L	0.5	1.3		0.11	U	0.11	U	0.1	U	0.11	U	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Aroclor 1221	ug/L	0.5	0.1	U	0.11	U	0.11	U	0.1	U	0.11	U	0.12	U	0.11	U	0.11	U	0.1	U		U
Aroclor 1221 Aroclor 1232	ug/L ug/L	0.5	0.12	U	0.13	U	0.11	U	0.12	U	0.13	U	0.14	U	0.13	U	0.13	U	0.12	U		U
Aroclor 1242	ug/L	0.5	0.077	U	0.085	U	0.083	U	0.077	U	0.08	U	0.091	U	0.082	U	0.081	U	0.077	U		U
Aroclor 1248	ug/L	0.5	0.094	U	0.1	U	0.1	U	0.095	U	0.098	U	0.11	U	0.1	U	0.099	U	0.095	U		U
Aroclor 1254	ug/L	0.5	0.094	U	0.1	U	0.1	U	0.095	U	0.099	U	0.11	U	0.1	U	0.1	U	0.095	U		U
Aroclor 1260	ug/L	0.5	0.056	U	0.062	U	0.061	U	0.056	U	0.059	U	0.066	U	0.06	U	0.059	U	0.056	U		U
Aroclor 1262	ug/L	0.5	0.085	U	0.094	U	0.092	U	0.086	U	0.089	U	0.1	U	0.091	U	0.09	U	0.086	U	0.085	U
Aroclor 1268	ug/L	0.5	0.11	U	0.12	U	0.12	U	0.11	U	0.12	U	0.13	U	0.12	U	0.12	U	0.11	U	0.11	U
Pesticides																						
4,4'-DDD	ug/L	0.1	0.008	U	0.0088	U	0.0086	U	0.008	U	0.0083	U	0.0094	U	0.0085	U	0.0084	U	0.008	U	0.0094	J
4,4'-DDE	ug/L	0.1	0.015	J	0.0077	U	0.0076	U	0.012	J	0.0073	U	0.0083	U	0.0074	U	0.0074	U	0.007	U	0.007	U
4,4'-DDT	ug/L	0.1	0.014	U	0.016	U	0.015	U	0.014	U	0.015	U	0.017	U	0.015	U	0.015	U	0.014	U	0.014	U
Aldrin	ug/L	0.04	0.011	U	0.013	U	0.038	J	0.012	U	0.012	U	0.014	U	0.012	U	0.012	U	0.012	U	0.011	U
alpha-BHC	ug/L	0.02	0.016	U	0.017	U	0.017	U	0.016	U	0.016	U	0.018	U	0.017	U	0.017	U	0.016	U		U
alpha-Chlordane	ug/L	0.5	0.012	U	0.013	U	0.013	U	0.012	U	0.012	U	0.014	U	0.012	U	0.012	U	0.012	U	0.012	U
beta-BHC	ug/L	0.04	0.015	U	0.017	U	0.016	U	0.015	U	0.016	U	0.018	U	0.016	U	0.016	U	0.015	U	0.015	U
delta-BHC	ug/L		0.0097	U	0.011	U	0.011	U	0.0098	U	0.01	U	0.012	U	0.01	U	0.01	U	0.0098	U		U
Dieldrin	ug/L	0.03	0.0082	U	0.0091	U	0.009	U	0.0083	U	0.0086	U	0.0098	U	0.0088	U	0.0087	U	0.0083	U		U
Endosulfan I	ug/L	40	0.019	J	0.0085	U	0.0083	U	0.0077	U	0.008	U	0.009	U	0.0082	U	0.0081	U	0.0077	U		U
Endosulfan II	ug/L	40	0.016	U	0.017	U	0.017	U	0.016	U	0.016	U	0.018	U	0.017	U	0.016	U	0.016	U		U
Endosulfan sulfate	ug/L	40	0.016	U	0.018	U	0.018	U	0.017	U	0.017	U	0.019	U	0.018	U	0.017	U	0.017	U		U
Endrin	ug/L	2	0.015	J	0.0087	U	0.0085	U	0.0079	U	0.0082	U	0.0093	U	0.0084	U	0.0083	U	0.0079	U		U
Endrin aldehyde	ug/L		0.012	U	0.014	U	0.013	U	0.013	U	0.013	U	0.015	U	0.013	U	0.013	U	0.013	U		U
Endrin ketone	ug/L		0.01	U	0.011	U	0.011	U	0.01	U	0.011	U	0.012	U	0.011	U	0.011	U	0.01	U		U
gamma-Chlordane	ug/L	0.5	0.074		0.0086	U	0.0085	U	0.0079	U	0.0082	U	0.0092	U	0.0083	U	0.0082	U	0.0079	U		U
Heptachlor	ug/L	0.05	0.038	J	0.016	U	0.016	U	0.014	U	0.015	U	0.017	U	0.015	U	0.015	U	0.014	U		U
Heptachlor epoxide	ug/L	0.2	0.022	J	0.011	U	0.011	U	0.01	U	0.011	U	0.012	U	0.011	U	0.011	U	0.01	U		U
Lindane	ug/L	0.03	0.46		0.017	U	0.047	J	0.028	J	0.016	U	0.018	U	0.078		0.017	U	0.016	U		U
Methoxychlor	ug/L	40	0.019	U	0.021	U	0.02	U	0.019	U	0.02	U	0.022	U	0.02	U	0.02	U	0.019	U		U
Toxaphene	ug/L	2	0.42	U	0.47	U	0.46	U	0.43	U	0.44	U	0.5	U	0.45	U	0.45	U	0.43	U	0.42	U
Indicators																						
Biological Oxygen Demand (BOD)	mg/L		34.6		63.6		NA		19.3		16.4		7.8		5	U	21.4		5	U	21.7	Ш
Carbon	mg/L		21.2	J	46.6	J	NA		31.4	J	6	J	0.48	BJ	3.9	J	9	J	2.1	J	17.5	J
Chemical Oxygen Demand (COD)	mg/L		86.5		156		NA		224		7.6	В	3.4	U	5.9	В	31.8	\sqcup	7.2	В	36.8	_
Oil & Grease (HEM)	mg/L		0.54	U	0.51	U	NA		0.54	U	0.52	U	0.52	U	0.51	U	0.51	U	0.54	U	5.3	_
Residue, filterable	mg/L		780		424		NA		944		413	$oldsymbol{oldsymbol{\perp}}$	527	$oxed{oxed}$	684		525	\sqcup	91	Ш	1300	
Residue, non-filterable	mg/L		129		4	U	NA		9.2		19.6	$oldsymbol{oldsymbol{\perp}}$	163	$oxed{oxed}$	4	U	6	\sqcup	58.8	Ш	64.8	
Total Alkalinity	mg/L		359	J	73	J	NA		595	J	437	J	447	J	742	J	365	J	86	J	1420	J

- 1. Specific Ground Water Quality Criteria Class IIA from Appendix Table 1 New Jersey Administrative Code 7:9C unless otherwise noted. Last amended July 7, 2008.
- 2. Interim Ground Water Quality Criteria as listed at www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm.
- 3. Standard reported for vanadium is for vanadium pentoxide.

Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-11

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - SAND UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest Volatile Organics	Units	Criterion ⁽¹⁾	SC-MW-1 04/25/0 Primar	8	SC-MW- 04/25/0 Primar	08	SC-MW-1 04/24/0 Primary	3	SC-MW-1: 04/24/08 Primary		SC-MW-2 04/24/08 Primary		SC-MW- 04/24/08 Primary	3	SC-MW-4 04/24/08 Primary		SC-MW- 04/24/0 Primar	8
1,1,1-Trichloroethane	ug/L	30	79	U	20	U	20	U	200	U	79	U	200	U	79	U	79	U
1,1,2,2-Tetrachloroethane	ug/L	1	63	U	16	U	16	U	160	U	63	U	160	U	63	U	63	U
1,1,2-Trichloroethane	ug/L	3	79	U	20	U	20	U	200	U	79	U	200	U	79	U	79	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L		120	U	31	U	31	U	310	U	120	U	310	Ü	120	U	120	U
1,1-Dichloroethane	ug/L	50	100	U	25	U	25	U	250	U	100	U	250	U	100	U	100	U
1,1-Dichloroethene	ug/L	1	87	U	22	U	22	U	220	U	87	U	220	U	87	U	87	U
1,2,4-Trichlorobenzene	ug/L	9	4200		2400		3400		440	J	840		1700		400	J	6700	
1,2-Dibromoethane	ug/L	0.03	64	U	16	U	16	U	160	U	64	U	160	U	64	U	64	U
1,2-Dichlorobenzene	ug/L	600	12000		700		5300		36000		12000		29000		9300		10000	
1,2-Dichloroethane	ug/L	2	64	U	16	U	16	U	160	U	64	U	160	U	64	U	64	U
1,2-Dichloropropane	ug/L	1	67	U	17	U	17	U	170	U	67	U	170	U	67	U	67	U
1,3-Dichlorobenzene	ug/L	600	4600		160		1900		26000		9700		20000		9000		3700	
1,4-Dichlorobenzene	ug/L	75	6200		380		2400		42000		15000		32000		13000		4900	
2-Butanone	ug/L	300	73	U	18	U	18	U	180	U	73	U	180	U	73	U	73	U
2-Hexanone ⁽²⁾	ug/L	300	45	U	11	U	11	U	110	U	45	U	110	U	45	U	45	U
4-Methyl-2-pentanone	ug/L		46	U	12	U	12	U	120	U	46	U	120	U	46	U	46	U
Acetone	ug/L	6,000	500	U	280	J	120	U	1200	U	500	U	1200	U	500	U	500	U
Benzene	ug/L	1	280	J	20	U	150	Ť	350	J	81	U	200	U	380	J	270	J
Bromodichloromethane	ug/L	1	58	U	15	U	15	U	150	U	58	U	150	U	58	U	58	U
Bromoform	ug/L	4	37	U	9.2	U	9.2	U	92	U	37	U	92	U	37	U	37	U
Bromomethane	ug/L	10	75	U	19	U	19	U	190	U	75	U	190	U	75	U	75	U
Carbon disulfide	ug/L	700	110	U	27	U	27	U	270	U	110	U	270	U	110	U	110	U
Carbon tetrachloride	ug/L	1	91	U	23	U	23	U	230	U	91	U	230	U	91	U	91	U
Chlorobenzene	ug/L	50	770	<u> </u>	33	J	920	Ť	7800		730	Ť	1700	Ť	440	J	1700	
Chloroethane ⁽²⁾	ug/L	5	110	U	28	U	28	U	280	U	110	U	280	U	110	U	110	U
Chloroform	ug/L ug/L	70	78	U	19	U	19	U	190	U	78	U	190	U	78	U	78	U
Chloromethane	ug/L ug/L		87	U	22	U	22	U	220	U	87	U	220	U	87	U	87	U
cis-1,2-Dichloroethene	ug/L ug/L	70	100	U	25	U	34	J	250	U	100	U	250	U	100	U	100	U
cis-1,3-Dichloropropene	ug/L ug/L	1	79	U	20	U	20	U	200	U	79	U	200	U	79	U	79	U
Cyclohexane	ug/L		110	U	27	U	27	U	270	U	110	U	270	U	110	U	110	U
Dibromochloropropane	ug/L	0.02	130	U	31	U	31	U	310	U	130	U	310	U	130	U	130	U
Dibromochloromethane	ug/L ug/L	1	50	U	12	U	12	U	120	U	50	U	120	U	50	U	50	U
Dichlorodifluoromethane	ug/L	1000	100	U	26	U	26	U	260	U	410	J	370	J	100	U	100	U
Ethylbenzene Ethylbenzene	ug/L	700	150	I	15	U	15	U	150	U	58	U	150	U	260	J	58	U
Isopropylbenzene	ug/L	700	72	U	18	U	18	U	180	U	72	U	180	U	72	U	72	U
Methyl Acetate	ug/L	7000	47	U	12	U	12	U	120	U	47	U	120	U	47	U	47	U
Methylcyclohexane	ug/L		110	U	27	U	27	U	270	U	110	U	270	Ü	110	U	110	U
Methylene chloride	ug/L	3	75	U	19	U	19	U	190	U	75	U	190	Ü	75	U	150	J
Methyltert-butylether	ug/L	70	77	U	19	U	19	U	190	U	77	U	190	U	77	U	77	U
Styrene	ug/L	100	80	U	20	U	20	U	200	U	80	U	200	U	80	U	80	U
Tetrachloroethylene	ug/L	1	57	U	14	U	340	Ť	140	U	57	U	140	U	57	U	640	۲
Toluene	ug/L	600	820	Ť	20	U	20	U	200	U	80	U	200	U	80	U	80	U
trans-1,2-Dichloroethene	ug/L	100	90	U	23	U	23	U	230	U	90	U	230	U	90	U	90	U
trans-1,3-Dichloropropene	ug/L	1	57	U	14	U	14	U	140	U	57	U	140	U	57	U	57	U
Trichloroethylene	ug/L	1	88	U	22	U	1100		220	U	88	U	220	U	88	U	1900	
Trichlorofluoromethane	ug/L	2000	80	U	20	U	20	U	200	U	80	U	200	U	80	U	80	U
Vinyl chloride	ug/L	1	94	U	24	U	30	J	240	U	94	U	240	U	94	U	94	U
Xylene (total)	ug/L	1000	810	J	61	U	61	U	610	U	240	U		U	240	U	240	U

TABLE 4-11

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - SAND UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	SC-MW-1 04/25/0		SC-MW-1 04/25/0		SC-MW-1 04/24/08		SC-MW-15 04/24/08	L	SC-MW-2 04/24/08		SC-MW-3 04/24/08		SC-MW-4 04/24/08		SC-MW- 04/24/0	
Interest			Primary	7	Primar	y	Primary	7	Primary		Primary		Primary		Primary		Primar	·y
Semivolatile Organics				•		,		1								, ,		
1,1'-Biphenyl	ug/L	400	0.66	U	140		59		0.63	U	0.63	U	0.87	J	4.6	J	21	
1,2,4-Trichlorobenzene	ug/L	9	NA		NA		NA		NA	Ш	NA	ш	NA	ш	NA	Ш	NA	
1,4-Dichlorobenzene	ug/L	75	NA		NA		NA		NA	Ш	NA	ш	NA		NA		NA	
2,2'-oxybis(1-chloropropane)	ug/L		0.28	U	1.4	U	0.28	U	0.27	U	0.27	U	0.28	U	0.29	U	0.3	U
2,4,5-Trichlorophenol	ug/L	700	0.68	U	3.4	U	0.68	U	0.66	U	0.66	U	0.68	U	0.7	U	73	
2,4,6-Trichlorophenol	ug/L	20	0.62	U	170		0.61	U	0.6	U	0.6	U	1.2	J	0.64	U	120	
2,4-Dichlorophenol	ug/L	20	0.53	U	2.6	U	0.52	U	48	Ш	360	ш	1000		170		450	
2,4-Dimethylphenol	ug/L	100	2500		3100	J	28000		3.9	J	6.7	J	4.2	J	680		660	
2,4-Dinitrophenol	ug/L	40	14	U	70	U	14	U	13	U	13	U	14	U	14	U	15	U
2,4-Dinitrotoluene	ug/L	10	0.49	U	2.5	U	0.49	U	0.47	U	0.47	U	0.49	U	0.51	U	0.51	U
2,6-Dinitrotoluene	ug/L	10	0.55	U	2.8	U	0.55	U	0.53	U	0.53	U	0.55	U	0.57	U	0.58	U
2-Chloronaphthalene	ug/L	600	0.48	U	2.4	U	0.48	U	0.46	U	0.46	U	8.5	J	0.5	U	0.5	U
2-Chlorophenol	ug/L	40	26		2.5	U	0.49	U	0.48	U	18	Ш	35	\perp	5.1	J	75	
2-Methylnaphthalene ⁽²⁾	ug/L	30	150	J	790		700	J	0.89	J	0.73	J	2	J	32		290	
2-Methylphenol	ug/L		2100		4000	J	20000		1.4	J	3	J	1.8	J	160	П	190	\neg
2-Nitroaniline	ug/L		0.52	U	2.6	U	0.51	U	0.5	U	0.5	U	0.52	U	0.53	U	0.54	U
2-Nitrophenol	ug/L		0.59	U	2.9	U	0.58	U	0.57	U	0.57	U	0.59	U	0.61	U	0.62	U
3,3-Dichlorobenzidine	ug/L	30	0.45	U	2.2	U	0.44	U	0.43	U	0.43	U	0.45	U	0.46	U	0.47	U
3-Nitroaniline	ug/L		0.44	U	2.2	U	0.43	U	0.42	U	0.42	U	0.44	U	0.45	U	0.46	U
4,6-Dinitro-2-methylphenol ⁽²⁾	ug/L	1	15	U	77	U	15	U	15	U	15	U	15	U	16	U	16	U
	ug/L ug/L		0.54	U	2.7	U	0.54	U	0.52	U	0.52	U	0.54	U	0.56	U	0.56	U
4-Bromophenylphenyl ether 4-Chloroaniline	ug/L ug/L	30	0.54	U	2.7	U	0.54	U	0.32	U	0.32	U	0.5	U	0.50	U	0.53	U
4-Chlorophenyl phenyl ether	ug/L ug/L		0.3	U	2.3	U	0.3	U	0.49	U	0.49	U	0.3	U	0.32	U	0.33	U
* * * * * * * * * * * * * * * * * * *						 		1		1		1 1		$\overline{}$		+ +		
4-Chloro-3-methylphenol ⁽²⁾	ug/L	100	0.64	U	3.2	U	0.64	U	0.62	U	0.62	U	0.64	U	0.66	U	0.67	U
4-Methylphenol	ug/L		7000		19000		68000	1	5.6	J	11	1	7.7	J	260		1200	4.
4-Nitroaniline	ug/L		0.28	U	1.4	U	0.27	U	0.27	U	0.27	U	0.28	U	0.28	U	0.29	U
4-Nitrophenol	ug/L		0.76	U	3.8	U	0.76	U	0.74	U	0.74	U	0.76	U	0.79	U	0.8	U
Acenaphthene	ug/L	400	380		11000	U	560	U	1	J	2.5	J	0.57	U	200		21	_
Acenaphthylene ⁽²⁾	ug/L	100	35		78		0.5	U	0.49	U	0.49	U	0.5	U	3.4	J	0.53	U
Acetophenone	ug/L	700	0.5	U	2.5	U	0.5	U	0.49	U	0.72	J	0.5	U	0.52	U	6.8	J
Anthracene	ug/L	2000	32		77		15		0.53	U		J	0.55	U	0.8	J	6.3	J
Atrazine	ug/L	3	0.42	U	2.1	U	0.42	U	0.41	U	0.41	U	0.42	U	0.44	U	0.44	U
Benzaldehyde	ug/L		0.59	U	2.9	U	0.58	U	0.57	U	0.57	U	0.59	U	0.61	U	0.62	U
Benzo(a)anthracene	ug/L	0.1	0.45	U	2.2	U	0.44	U	0.43	U	0.43	U	0.45	U	0.46	U	0.99	J
Benzo(a)pyrene	ug/L	0.1	0.48	U	2.4	U	1.9	J	0.46	U	0.46	U	0.48	U	0.49	U	0.5	U
Benzo(b)fluoranthene	ug/L	0.2	0.34	U	1.7	U	0.34	U	0.33	U	0.33	U	0.34	U	0.35	U	1	J
Benzo(ghi)perylene ⁽²⁾	ug/L	100	0.3	U	1.5	U	0.3	U	0.29	U	0.29	U	0.3	U	0.31	U	0.31	U
Benzo(k)fluoranthene	ug/L	0.5	0.43	U	2.1	U	0.43	U	0.41	U	0.41	U	0.43	U	0.44	U	0.45	U
Bis(2-chloroethoxy)methane	ug/L		1.3	U	6.6	U	1.3	U	1.3	U	1.3	U	1.3	U	1.4	U	1.4	U
Bis(2-chloroethyl)ether	ug/L	7	0.5	U	2.5	U	0.5	U	0.48	U	0.48	U	0.5	U	0.52	U	0.52	U
Bis(2-ethylhexyl)phthalate	ug/L	3	1.3	U	6.5	U	3.8	J	1.8	J	1.3	U	2	J	2	J	1.7	J
Butyl benzyl phthalate	ug/L	100	1.5	U	7.5	U	1.5	U	2.5	J	1.4	U	1.5	U	1.5	J	1.6	Ū
Caprolactam ⁽²⁾	ug/L	5000	2	U	10	U	2	U	5.1	Ţ	2	U	5.3	J	2.1	U	2.1	U
Carbazole	ug/L ug/L		28	U	36	ī	7	J	2	J	0.55	U	0.6	J	2.1	ī	2.7	J
Chrysene	ug/L ug/L	5	0.39	U	1.9	U	0.38	U	0.37	U	0.33	U	0.39	U	0.4	U	0.81	J
Dibenzo(a,h)anthracene		0.3	0.39	U	1.9	U	0.38	U	0.37	U	0.37	U	0.39	U	0.4	U	0.81	Į
	ug/L		94	U	2.9	U	56	10	0.56	U	1	τ	0.58	U	32	U	26	+
Dibenzofuran	ug/L	 6000		ŢΤ				ΤT		_	2.6	ΙJ		_		TT		+ T
Diethyl phthalate	ug/L	6000	2.7	U	13	U	2.6	U	2.6	U	2.6	U	2.7	U	2.7	U	2.8	J
Dimethyl phthalate ⁽²⁾	ug/L	100	0.46	U	2.3	U	0.46	U	0.44	U	0.44	U	0.46	U	0.47	U	0.48	J

TABLE 4-11

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - SAND UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest Semivolatile Organics (Continued)	Units	Criterion ⁽¹⁾	SC-MW-1 04/25/0 Primary	8	SC-MW-1 04/25/0 Primary	8	SC-MW-1 04/24/08 Primary	3	SC-MW-1: 04/24/08 Primary		SC-MW-21 04/24/08 Primary	L	SC-MW-3 04/24/08 Primary	L	SC-MW-41 04/24/08 Primary	L	SC-MW-8 04/24/08 Primary	3
Di-n-butyl phthalate	ug/L	700	0.51	U	2.5	U	0.5	U	0.49	U	0.49	U	0.51	U	0.6	T	0.53	U
Di-n-octyl phthalate	ug/L ug/L	100	0.46	U	2.3	U	0.46	U	0.45	U	0.45	U	0.46	U		IJ	0.49	U
Fluoranthene	ug/L ug/L	300	7.6	I	13	I	0.53	U	0.43	ī	0.52	U	0.54	U		I	3.8	I
Fluorene	ug/L ug/L	300	7.6	,	170	+ -	32		0.57	U	0.94	J	0.59	U		I	17	+-
Hexachlorobenzene	ug/L	0.02	43		2.4	U	0.47	U	0.46	U	0.46	U	0.47	U		J	7.8	Ţ
Hexachlorobutadiene	ug/L	1	0.41	U	2	U	0.41	U	0.39	U	0.39	U	0.41	U		IJ	0.43	U
Hexachlorocyclopentadiene	ug/L	40	0.87	U	4.4	U	0.86	U	0.84	U	0.84	U	0.87	U		U	0.91	U
Hexachloroethane	ug/L	7	0.47	U	2.4	U	0.47	U	0.46	U	0.46	U	0.47	U		IJ	0.5	U
Indeno(1,2,3-cd)pyrene	ug/L	0.2	0.52	U	2.6	U	0.51	U	0.5	U	0.5	U	0.52	U		U	0.54	U
Isophorone	ug/L	40	0.52	U	2.6	U	0.51	U	0.5	U	0.5	U	0.52	U		U	0.54	U
Naphthalene	ug/L	300	2400		1700	J	9100	J	24	Ť	30	Ť	57	Ť	350	Ť	5300	
Nitrobenzene	ug/L	6	0.7	U	3.5	U	0.69	U	0.67	U	0.67	U	0.7	U		U	0.73	U
N-Nitrosodiphenylamine	ug/L	10	0.53	U	2.7	U	0.53	U	0.51	U	0.51	U	0.53	U		U	0.56	U
N-Nitrosodipropylamine	ug/L	10	0.65	U	3.2	U	0.64	U	0.62	U	0.62	U	0.65	U		U	0.68	U
Pentachlorophenol	ug/L	0.3	0.9	U	4.5	U	0.9	U	0.87	U	0.87	U	0.9	U		U	0.95	U
Phenanthrene ⁽²⁾	ug/L	100	49		19	ī	8.2	J	0.85	Ţ	0.98	ī	0.76	Ţ	11		18	
Phenol	ug/L	2000	3700		19000	-	40000	Ť	7.2	J	8.2	J	6.5	J	55		1500	+
Pyrene	ug/L	200	8.3	J	31	T	12		0.59	U	0.59	U	0.62	U		Ţ	2.2	Ţ
Metals	1 45/2	200	0.5		31	<u> </u>	12		0.57	101	0.03		0.02	10	0.01	10	2.2	
Aluminum	ug/L	200	4890	J	390000	J	13000		123	В	4210		308	П	7950		3400	
Antimony	ug/L	6	2.9	U	2.9	U	2.9	U	2.9	U	2.9	U	2.9	U		U	2.9	U
Arsenic	ug/L	3	25		56.5		6	В	2.2	U	268		191		330		9.1	В
Barium	ug/L	6000	18.9	В	44.5	В	24.3	В	88.9	В	240	J	417	J	220	J	50.6	В
Beryllium	ug/L	1	1.1	В	14.4		0.32	U	0.32	U	7.4		0.6	В			1.2	В
Cadmium	ug/L	4	0.23	U	0.23	U	0.49	В	0.23	U	5		1.2	В	0.65	В	2	В
Calcium	ug/L		208000	J	443000	J	495000	J	57600	J	94000	J	63200	J	49700	J	66600	J
Chromium (Total)	ug/L	70	57.4		6930		132		4.3	В	12100		171		10700		281	
Chromium (Hexavalent)	ug/L		10	U	20	U	10	U	10	U	250	U	250	U	500	U	10	U
Cobalt ⁽²⁾	ug/L	100	11.1	В	162		8.4	В	0.7	U	5.3	В	0.9	В	6.5	В	14.2	В
Copper	ug/L	1300	0.72	U	0.72	U	0.82	В	1.3	В	16.5	В	1	В		В	8.9	В
Iron	ug/L	300	73600		309000		45600		8120		44600		105000		55300		118000	
Lead	ug/L	5	2.4	U	401		2.4	U	79.4		26.4		2.4	U	12.1	П	3.2	
Magnesium	ug/L		27300	J	133000	J	70200	J	27400	J	75200	J	79800	J		J	93600	J
Manganese	ug/L	50	1000		3590		646		268		715		1510		1080		8580	
Mercury	ug/L	2	0.055	U	0.085	В	0.055	U	0.055	U	0.16	В	0.055	U	0.2		0.055	U
Nickel	ug/L	100	68.3		1980		71.9		1.2	В	47.3		4.1	В			14.7	В
Potassium	ug/L		13900		200000		18200		13600		27700		39100		31400		45900	
Selenium	ug/L	40	5.1		34.3		6.2		2.5	U	4.3	В		U			2.5	U
Silver	ug/L	40	0.65	В	0.83	В	0.59	U	0.59	U	0.94	В		В	1.8	В	2.3	В
Sodium	ug/L	50000	210000		1010000		226000		64200		1440000		771000		1370000		1430000	
Thallium	ug/L	2	3.1	U	15.4	U	3.1	U	3.1	U	3.3	В	3.1	U	3.1	U	3.1	U
Vanadium ⁽³⁾	ug/L	60	24.4	В	386		8	В	6.4	В	531	J	77.7	J	1520	J	286	J
Zinc	ug/L	2000	78.7		818		42.1		1.5	В	115		2.2	В			36.6	

TABLE 4-11

ANALYTICAL RESULTS
GROUNDWATER SAMPLES - SAND UNIT
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	SC-MW-1 04/25/08		SC-MW-1 04/25/0		SC-MW-1 04/24/08		SC-MW-1: 04/24/08		SC-MW-2 04/24/08		SC-MW-3 04/24/08		SC-MW-4 04/24/08		SC-MW- 04/24/0	
Interest			Primary	7	Primar	y	Primary		Primary		Primary		Primary		Primary		Primar	y
PCBs																		
Aroclor 1016	ug/L	0.5	4.5		7.5		1.2		0.1	U	0.1	U	0.1	U		U	78	
Aroclor 1221	ug/L	0.5	0.1	U	1	U	0.1	U	0.1	U	0.1	U	0.1	U		U	2.1	U
Aroclor 1232	ug/L	0.5	0.12	U	1.2	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	2.4	U
Aroclor 1242	ug/L	0.5	0.077	U	0.76	U	0.076	U	0.076	U	0.076	U	0.076	U	0.077	U	1.5	U
Aroclor 1248	ug/L	0.5	0.095	U	0.93	U	0.61	PG	0.093	U	0.093	U	0.093	U	0.095	U	58	
Aroclor 1254	ug/L	0.5	0.095	U	0.93	U	0.093	U	0.093	U	0.093	U	0.093	U	0.095	U	1.9	U
Aroclor 1260	ug/L	0.5	1.4		0.55	U	0.055	U	0.055	U	0.055	U	0.055	U	0.056	U	14	
Aroclor 1262	ug/L	0.5	0.086	U	0.84	U	0.084	U	0.084	U	0.084	U	0.084	U	0.086	U	1.7	U
Aroclor 1268	ug/L	0.5	0.11	U	1.1	U	0.11	U	0.11	U	0.11	U	0.11	U	0.11	U	2.3	U
Pesticides																		
4,4'-DDD	ug/L	0.1	0.0087	JPG	0.079	U	0.0079	U	0.0079	U	0.0079	U	0.0079	U	0.008	U	0.08	U
4,4'-DDE	ug/L	0.1	0.21		0.069	U	0.043	J	0.0069	U	0.0069	U	0.0069	U	0.013	J	0.59	PG
4,4'-DDT	ug/L	0.1	0.014	U	0.14	U	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U	0.24	J
Aldrin	ug/L	0.04	0.012	U	0.12	JPG	0.011	U	0.011	U	0.011	U	0.011	U	0.012	U	0.12	U
alpha-BHC	ug/L	0.02	0.016	U	0.15	U	0.015	U	0.015	U	0.015	U	0.015	U	0.016	U	0.16	U
alpha-Chlordane	ug/L	0.5	0.012	U	0.38	J	0.011	U	0.011	U	0.011	U	0.011	U	0.018	J	0.12	U
beta-BHC	ug/L	0.04	0.015	U	0.15	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.15	U
delta-BHC	ug/L		0.0098	U	0.24	J	0.09		0.0097	U	0.0097	U	0.0097	U	0.021	J	2.8	
Dieldrin	ug/L	0.03	0.0083	U	0.082	U	0.0082	U	0.0082	U	0.0082	U	0.0082	U	0.024	J	0.083	U
Endosulfan I	ug/L	40	0.0077	U	0.076	U	0.0076	U	0.0076	U	0.0076	U	0.0076	U	0.0077	U	0.21	J
Endosulfan II	ug/L	40	0.063	PG	0.15	U	0.015	U	0.015	U	0.015	U	0.015	U	0.016	U	0.16	J
Endosulfan sulfate	ug/L	40	0.017	U	0.16	U	0.016	U	0.016	U	0.016	U	0.016	U	0.017	U	0.49	J
Endrin	ug/L	2	0.0079	U	0.078	U	0.012	J	0.0078	U	0.0078	U	0.0078	U	0.0079	U	0.1	J
Endrin aldehyde	ug/L		0.013	U	0.12	U	0.085	PG	0.012	U	0.012	U	0.012	U	0.013	U	0.13	U
Endrin ketone	ug/L		0.025	JPG	0.1	U	0.028	J	0.01	U	0.01	U	0.01	U	0.01	U	0.1	U
gamma-Chlordane	ug/L	0.5	0.0079	U	0.077	U	0.0077	U	0.0077	U	0.0077	U	0.0077	U	0.0079	U	0.079	U
Heptachlor	ug/L	0.05	0.066	PG	0.17	JPG	0.042	J	0.014	U	0.014	U	0.014	U	0.014	U	2.1	
Heptachlor epoxide	ug/L	0.2	0.079		0.1	U	0.077	PG	0.01	U	0.01	U	0.01	U	0.018	J	0.93	PG
Lindane	ug/L	0.03	0.016	U	0.15	U	0.2		0.015	U	0.015	U	0.015	U	0.016	U	0.62	PG
Methoxychlor	ug/L	40	0.019	U	0.19	U	0.019	U	0.019	U	0.019	U	0.019	U	0.019	U	0.19	U
Toxaphene	ug/L	2	0.43	U	4.2	U	0.42	U	0.42	U	0.42	U	0.42	U	0.43	U	4.3	U
Indicators															•			
Biological Oxygen Demand (BOD)	mg/L		297		457		415		129		120		17.3		240		40.9	
Carbon	mg/L		886	J	7050	J	849	J	18.4	J	51.4	J	67.6	J	245	J	136	J
Chemical Oxygen Demand (COD)	mg/L		2950		23900		2810		66	\top	275		227		687		504	\top
Oil & Grease (HEM)	mg/L		26.9		15.9		6		0.52	U	NA		0.52	U			7	
Residue, filterable	mg/L		2970		21700		4390		454	11	6300	\sqcap	2930		7070	T	5330	\top
Residue, non-filterable	mg/L		39.6		30.8		31.5		8	11	14.5	T	167		26.8		21.5	1
Total Alkalinity	mg/L		10.7	J	0.41	U	0.41	U	316	J	1090	J	748	J	1940	J	836	J

- 1. Specific Ground Water Quality Criteria Class IIA from Appendix Table 1 New Jersey Administrative Code 7:9C unless otherwise noted. Last amended July 7, 2008.
- $2. \ Interim\ Ground\ Water\ Quality\ Criteria\ as\ listed\ at\ www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm.$
- 3. Standard reported for vanadium is for vanadium pentoxide.

Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-12

ANALYTICAL RESULTS

DENSE NON-AQUEOUS PHASE LIQUID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent			SC-MW-3I		SC-MW-13	L
of	Units	Criterion	04/30/08		04/30/08	
Interest			Primary		Primary	
Polychlorinated Dioxins/Furans	1 /27					1
1,2,3,4,6,7,8-HpCDD	ug/Kg		9.2		6000	U
1,2,3,4,6,7,8-HpCDF	ug/Kg		1200	В	400000	
1,2,3,4,7,8,9-HpCDF	ug/Kg		35		12000	U
1,2,3,4,7,8-HxCDD	ug/Kg		0.83	QJ	890	U
1,2,3,4,7,8-HxCDF	ug/Kg		310	QB	130000	lacksquare
1,2,3,6,7,8-HxCDD	ug/Kg		3	J	2300	U
1,2,3,6,7,8-HxCDF	ug/Kg		63	QB	15000	J
1,2,3,7,8,9-HxCDD	ug/Kg		1.6	QJ	1500	U
1,2,3,7,8,9-HxCDF	ug/Kg		0.34	QJ	580	U
1,2,3,7,8-PCDD	ug/Kg		1.7	QJ	1900	U
1,2,3,7,8-PCDF	ug/Kg		8.7		2600	U
2,3,4,6,7,8-HxCDF	ug/Kg		15		5100	U
2,3,4,7,8-PCDF	ug/Kg		28	Q	16000	J
2,3,7,8-TCDD	ug/Kg		0.55	QJ	210	U
2,3,7,8-TCDF	ug/Kg		5.4	Q	13000	
OCDD	ug/Kg		32	В	23000	U
OCDF	ug/Kg		2100	В	880000	
Total HpCDD	ug/Kg		23		6000	U
Total HpCDF	ug/Kg		1300	В	430000	
Total HxCDD	ug/Kg		24	Q	5600	U
Total HxCDF	ug/Kg		770	QB	210000	
Total PeCDD	ug/Kg		31	Q	7700	U
Total PeCDF	ug/Kg		380	Q	70000	
Total TCDD	ug/Kg		43	Q	20000	
Total TCDF	ug/Kg		250	Q	34000	
Polychlorinated Dioxins/Furans (2,3,7,8						
1,2,3,4,6,7,8-HpCDD	0.01		0.092			
1,2,3,4,6,7,8-HpCDF	0.01		12		4000	_
1,2,3,4,7,8,9-HpCDF	0.01		0.35			
1,2,3,4,7,8-HxCDD	0.10					
1,2,3,4,7,8-HxCDF	0.10				13000	
1,2,3,6,7,8-HxCDD	0.10		0.3			
1,2,3,6,7,8-HxCDF	0.10				1500	
1,2,3,7,8,9-HxCDD	0.10					lacksquare
1,2,3,7,8,9-HxCDF	0.10					_
1,2,3,7,8-PCDD	1.00					
1,2,3,7,8-PCDF	0.05		0.435			
2,3,4,6,7,8-HxCDF	0.10		1.5			
2,3,4,7,8-PCDF	0.50				8000	
2,3,7,8-TCDD	1.00					
2,3,7,8-TCDF	0.10				1300	
OCDD	0.0001		0.0032			
OCDF	0.0001		0.21		88	Ш
Total 2,3,7,8-TCDD Equivalents ⁽¹⁾	ug/Kg	1	1.5E+01		2.8E+04	
Metals						
Chromium (Hexavalent) ⁽²⁾	mg/Kg	20	2	U	2	U
Toxicity Characteristic Leaching Proced						
1,1-Dichloroethene	mg/Kg	0.7	58	U	58	U
1,2-Dichloroethane	mg/Kg	0.7	55	U	55	U
1,4-Dichlorobenzene	mg/Kg	7.5	520000		6300	J
2,4,5-Trichlorophenol	mg/Kg	400	970	U	970	U
2,4,6-Trichlorophenol	mg/Kg	2	700	U	700	U
2,4-Dinitrotoluene	mg/Kg	0.13	900	U	900	U
2-Butanone	mg/Kg	200	49	U	49	U
2 Duminone	mg/rxg	200	マク	U	77	

TABLE 4-12
ANALYTICAL RESULTS
DENSE NON-AQUEOUS PHASE LIQUID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion	SC-MW-31 04/30/08 Primary	L	SC-MW-13 04/30/08 Primary	
Toxicity Characteristic Leaching Proc	edure ⁽³⁾ (Contin	ued)				
Benzene	mg/Kg	0.5	110	J	52	U
Carbon tetrachloride	mg/Kg	0.5	45	U	45	U
Chlorobenzene	mg/Kg	100	8800		410	
Chloroform	mg/Kg	6	53	U	53	U
Cresols	mg/Kg	200	43	J	1400	J
Hexachlorobenzene	mg/Kg	0.13	820	U	12000	
Hexachlorobutadiene	mg/Kg	0.5	1400	U	1400	U
Hexachloroethane	mg/Kg	3	1400	U	1400	U
Nitrobenzene	mg/Kg	2	940	U	940	U
Pentachlorophenol	mg/Kg	100	690	U	690	U
Pyridine	mg/Kg	5	510	U	510	U
Tetrachloroethene	mg/Kg	0.7	120	J	220	J
Trichloroethene	mg/Kg	0.5	56	U	58	J
Vinyl chloride	mg/Kg	0.2	56	U	56	U
Arsenic	mg/Kg	5	0.9	В	0.29	В
Barium	mg/Kg	100	0.18	В	0.19	В
Cadmium	mg/Kg	1	0.047	U	0.047	U
Chromium	mg/Kg	5	0.42	В	0.63	
Lead	mg/Kg	5	0.16	U	0.16	U
Mercury	mg/Kg	0.2	0.028	В	0.019	В
Selenium	mg/Kg	1	0.29	U	0.84	
Silver	mg/Kg	5	0.037	U	0.037	U
Polychlorinated Biphenyls (Aroclors)						
Aroclor 1016	mg/Kg	1	0.74	U	8600	
Aroclor 1221	mg/Kg	1	0.95	U	190	U
Aroclor 1232	mg/Kg	1	0.86	U	170	U
Aroclor 1242	mg/Kg	1	0.81	U	160	U
Aroclor 1248	mg/Kg	1	0.47	U	6000	
Aroclor 1254	mg/Kg	1	0.71	U	140	U
Aroclor 1260	mg/Kg	1	0.71	U	2100	
Aroclor 1262	mg/Kg	1	1.1	U	220	U
Aroclor 1268	mg/Kg	1	0.64	U	600	J
RCRA Characteristics and Indicator F	Parameters					
Cyanide (Reactivity)	mg/Kg	23000	0.42	В	0.44	В
Total Sulfide (Reactivity)	mg/Kg		40		552	
Flashpoint (Ignitability)	°F	>200	151		>200	
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>4.8</td><td></td><td>2.9</td><td></td></ph<12.5<>	4.8		2.9	
Total Organic Halogens	mg/Kg		266000	J	258000	J
Notes:						, v

Notes:

- 1. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.
- 2. Nonpromulgated criteria for hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance/rs/chrome_criteria.pdf).
- 3. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 available at electronic CFR website (ecfr.gpoaccess.gov).

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
 - U Not detected at the detection limit indicated.
 - -- Not analyzed or criteria unavailable.

TABLE 4-13

ANALYTICAL RESULTS
EAST AND WEST LAGOON SOLID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Volume transfer Volume V	Constituent of Interest	Units	Criterion ⁽¹⁾	WLWC 05/27/ Prima	/08 ry	WLWC 05/27/0 Primar	08 ry	WLWC 05/27/ Primar	08 ry	WLWC 05/27/0 Primar	08 ry	ELWC- 05/28/0 Primar	08 :y	ELWC 05/28/ Prima	08 ry	ELWC 05/28/ Prima	08 ry	ELWC- 05/28/ Primar	08 ry	ELWC 05/28/ Prima	08 ry	ELWC- 05/28/ Primar	08 ry	ELWC 05/28/ Duplic	/08 cate
Value (Separies Value (Separies Value (Separies Value (Value (Separies Value (Value (Separies) Value (Value (Value (Separies) Value (Value (Va		770																						0.0-4.0	
11.1-Tristopromeme		VOC	Sample Depth	3.0-4.0) ft	3.0-4.0	ft	1.0-2.0	ft	3.0-4.0	ft	1.0-2.0	ft	1.0-2.0) ft	3.0-4.0	ft	1.0-2.0) ft	3.0-4.0) ft	3.0-4.0) ft	3.0-4.0) ft
14.2-Tereshoroschane	9		1				1								1 1								1 1		4
11-27-Friedroschare	· ·				_		U		Ŭ		_	0.5			·	3	U	3.6			_		_	3	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, , ,		<u> </u>		-		U										, c		_				_	3.3	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6		-		U				_								_		_		_	3.6	U
1.1-Discheroscheme					-		U		_		_		-				U		_			1./	-	3.1	U
12.4-Incharcheurene	/				-	2.2	U				U			3.3			U		U					2.8	U
12-Definementance	,				U		U		U		U		U	4	U		U		U		U	2.,/	U	3.4	U
12-Dehloroberene	, ,		820							29								35		3300		3400		2600	4
12-Dichloroptome	1,2-Dibromoethane	mg/Kg			U		U	0.053	U	2.4	U		U	3.5	U	3.1	U		U	3.3	U	1.7	U	3	U
1.3-Dichloropopage	1,2-Dichlorobenzene	mg/Kg	59000			330		8.2		400		2.3			J			3.9	U	3400		390		360	
13-Dehloroberame	1,2-Dichloroethane	mg/Kg	3	2.5	U	2.4	U	0.055	U	2.6	U	0.33	U		U	3.2	U	3.9	U		U	1.8	U	3.2	U
14-Dichlerobenzene	1,2-Dichloropropane	mg/Kg	5	2.6	U	2.5	U	0.056	U	2.6	U	0.33	U	3.8	U	3.3	U	4	U	3.5	U	1.8	U	3.2	U
2-Hutanone mg/kg 44000 2.3 U 2.2 U 0.049 U 2.5 U 0.29 U 3.3 U 2.9 U 3.5 U 3.1 U 1.6 U 2.5 U 3.4 Modifyl-apertanone mg/kg 1.8 U 1.8 U 0.04 U 1.9 U 0.044 U 2.9 U 0.26 U 2.9 U 2.6 U 3.1 U 2.8 U 1.4 U 2.8 Modifyl-apertanone mg/kg 2.8 U 0.7 U 0.044 U 2.9 U 0.26 U 2.9 U 2.6 U 3.1 U 2.8 U 1.4 U 2.8 Modifyl-apertanone mg/kg 2.8 U 0.27 U 0.064 U 2.9 U 0.065 U 2.9 U 3.6 U 3.1 U 2.8 U 1.4 U 0.2 Modifyl-apertanone mg/kg 2.8 U 0.27 U 0.064 U 2.9 U 0.065 U 2.9 U 3.6 U 3.1 U 2.8 U 1.4 U 0.2 Modifyl-apertanone mg/kg 2.8 U 0.27 U 0.064 U 2.9 U 0.065 U 2.9 U 3.6 U 3.1 U 0.8 U 3.8 U 1.9 U 0.4 U 0.0 Modifyl-apertanone mg/kg 2.8 U 0.26 U 2.9 U 3.6 U 3.1 U 3.8 U 1.8 U 1.4 U 0.4 U 3.9 U 0.4 Modifyl-apertanone mg/kg 2.8 U 0.22 U 0.064 U 2.9 U 3.6 U 4.0 U 3.8 U 3.7 U 0.6 Modifyl-apertanone mg/kg 2.8 U 0.22 U 0.045 U 2.8 U 0.045 U 2.9 U 3.6 U 3.1 U 0.6 U 3.1 U 1.6 U 0.4 U 3.8 U 0.4 U 3.8 U 0.4 U 3.8 U 0.4 U 3.4 U 0.4 U 3.8 U 0.4 U 3.4 U 0.4 U 0.4 U 3.9 U 0.4 Modifyl-apertanone mg/kg 2.8 U 0.2 U 0.045 U 2.9 U 0.045 U 0.04	1,3-Dichlorobenzene	mg/Kg	59000	120		120		3.1		150		1	J	6.5	J	29		3.8	U	1300		47		52	
2-Hestanone	1,4-Dichlorobenzene	mg/Kg	13	190		190		4.8		240		3.4		11	J	54		4	J	2100		120		110	
2416-stanone	2-Butanone	mg/Kg	44000	2.3	U	2.2	U	0.049	U	2.3	U	0.29	U	3.3	U	2.9	U	3.5	U	3.1	U	1.6	U	2.8	U
Acetone mg/Kg 2.8 U 2.7 U 0.06 U 2.8 U 0.36 U 4.3 U 3.8 U 0.43 U 3.8 U 1.9 U 3.8 U 3.8 U 1.9 U 3.8 U 3.8 U 1.9 U 3.8 U		mg/Kg		1.8	U	1.8	U	0.04	U	1.9	U	0.24	U	2.7	U	2.3	U	2.8	U	2.5	U	1.3	U	2.3	U
Acetone mg/Kg 2.8 U 2.7 U 0.06 U 2.8 U 0.35 U 4.3 U 3.8 U 1.9 U 2.8 U 2.7 U 0.06 U 2.8 U 0.25 U 0.35 U 3.5 U 3.5 U 3.5 U 3.6 U 3.7 U 6.3 U 1.7 U 1.6 U 5.8 U 0.25	4-Methyl-2-pentanone	mg/Kg		2	U	1.9	U	0.044	U	2	U	0.26	U	2.9	U	2.6	U	3.1	U	2.8	U	1.4	U	2.5	U
Benzene				2.8	U	2.7	U	0.06	U	2.8	U	0.36	U	4	U	3.5	U	4.3	U	3.8	U	1.9	U	3.5	U
Bomodelloromethane			5		J		J		J		J			3.5	U		J	3.7	_		J	1.7	_	3	U
Bromonform			3	2.3	U		U		U		U	0.29	IJ		U		U		_		U	1.6	U	2.8	Ü
Bromomethane			280		_		U				_						U		_				_	3	U
Carbon disulfide					_		U				_	0.38	_			3.7	U				_		_	3.7	U
Carbon tetrachloride					_		IJ				_		_		Ť		U		Ť	3.9		2		3.6	U
Chlorobenzene mg/Kg 7400 19					_		IJ		U		_						U					1 4	_	2.6	U
Chloroethane mg/Kg 1100 3.3 U 3.2 U 0.073 U 3.4 U 0.43 U 4.9 U 4.2 U 5.1 U 4.6 U 2.3 U 2.5 U 0.060 U 2.5 U 0.32 U 3.6 U 3.1 U 3.8 U 3.8 U 3.4 U 1.7 U 1.8 U 3.5 U 1.8 U 3.5 U 3.4 U 1.7 U 1.8 U 3.5 U 1.8 U 3.5 U 3.4 U 1.7 U 1.8 U 3.5 U 3.4 U 1.7 U 1.8 U 3.5 U 3.4 U 3.5 U 3.4 U 1.7 U 1.8 U 3.5 U 3.4 U 3.5 U 3.4 U 3.5 U			7400			19	<u> </u>				Ŭ		_	3.8			U	4						9.6	T
Chloroform			_		IJ		IJ		IJ		IJ		_				U	5.1	_		IJ		IJ	4.2	U
Chloromethane mg/Kg 12 2.6 U 2.5 U 0.056 U 2.6 U 0.33 U 3.8 U 3.3 U 4 U 3.5 U 1.8 U 1.5 U 1.5 U 1.5 U 1.5 U 1.7 U 1.5 U			_		_		II				_				Ť		Ť						_	3.1	U
cis-1,2-Dichloroethene			12		_		II						_		Ť		-		_		_	1.7	-	3.2	U
cis-1,3-Dichloropropene					_		II				_						+ -	3.9	_		_			3.1	U
Cyclohexane mg/Kg 2.3 U 2.2 U 0.05 U 2.3 U 0.2 U 0.05 U 2.3 U 0.3 U 3.4 U 2.9 U 3.6 U 3.2 U 1.6 U 2.0 Dibromochloromethane mg/Kg 2.1 U 2.1 U 0.047 U 2.2 U 0.25 U 2.7 U 3.3 U 3.0 U 2.7 U 1.6 U 2.0 0.025 U 2.9 U 2.5 U 3.3 U 3.0 U 1.0 1.0 0.0	,		_		_		II		_												_	***		2.6	U
Dibromochloromethane mg/Kg 2.1 U 2.1 U 0.047 U 2.2 U 0.28 U 3.1 U 2.7 U 3.3 U 3 U 1.5 U 2.5 U 2.5 U 2.5 U 2.5 U 3.5 U 2.7 U 3.3 U 3.5 U			, 		_	_	II							3.4	_									2.9	II
Dibromochloropropane mg/Kg 8	•		+				II		_								II		_	3.2	_			2.7	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.1			II		_	2.2	_						II		_	2.7	_		_	2.4	U
Ethylbenzene mg/Kg 110000 5.8 J 6.1 J 0.13 J 6.8 J 8 6 J 20 7.7 J 3.8 U 2.6 J 3 Sopropylbenzene mg/Kg 2.5 U 2.4 U 0.054 U 2.5 U 0.94 J 3.6 U 3.2 J 3.8 U 6.8 J 1.7 U 3 Methyl acetate mg/Kg 2.3 U 2.5 U 0.49 24 9.1 3.6 U 20 3.8 U 33 U 33 U 3.8	. .		ų.	3			II			3	_		_				II		_				-	3.7	U
Sopropylbenzene mg/Kg 2.5 U 2.4 U 0.054 U 2.5 U 0.94 J 3.6 U 3.2 J 3.8 U 6.8 J 1.7 U 3.8 Methylacetate mg/Kg 2.6 U 2.5 U 0.49 24 9.1 3.6 U 20 3.8 U 33 U 3.8 U 3.3 U 4 U 3.6 U 3.8				J	I		I		Ī	_	I	8			ī				Ī				_	3.4	U
Methyl acetate mg/Kg 23 22 0.49 24 9.1 3.6 U 20 3.8 U 33 1.7 U 3.8 Methylcyclohexane mg/Kg 2.6 U 2.5 U 0.057 U 2.6 U 3.8 U 3.8 U 3.6 U 3.8 U 3.6 U 3.6 U 3.8 U 3.8 U 3.6 U 3.6 U 3.8 U 3.3 U 4 U 3.6 U 1.8 U 1.7 U 0.057 U 2.6 U 3.8 U 3.6 U 4 U 3.6 U 4 U 3.6 U 4.2 U 0.2 U 0.03 U 1.8 U 0.2 U 0.03 U 2.6 U 0.23 U 2.7 U 3.3 U 2.9 U 0.04 </td <td>· ·</td> <td></td> <td></td> <td></td> <td>II</td> <td></td> <td>II</td> <td></td> <td>II</td> <td></td> <td>II</td> <td>0.04</td> <td>ī</td> <td>-</td> <td>II</td> <td></td> <td>ī</td> <td></td> <td>II</td> <td></td> <td>ī</td> <td></td> <td>-</td> <td>3.1</td> <td>U</td>	· ·				II		II		II		II	0.04	ī	-	II		ī		II		ī		-	3.1	U
Methylcyclohexane mg/Kg 2.6 U 2.5 U 0.057 U 2.6 U 0.34 U 3.8 U 3.3 U 4 U 3.6 U 1.8 U 2.5 U 0.037 U 0.34 U 3.8 U 3.3 U 4 U 3.6 U 1.8 U 2.6 U 0.34 U 2.6 U 2.3 U 2.7 U 2.4 U 1.2 U 2.6 U 2.3 U 2.7 U 2.4 U 1.2 U 2.6 U 2.5 U 0.03 U 2.6 U 2.3 U 2.7 U 3.3 U 2.9 U 0.04 U 2.2 U 0.28 U 3.1 U 2.7 U 3.5 U 1.5 U 2.2 U 0.28 U 3.3 U 4.7 <	1 12		+		- 0						U		J				J		_		,		+	3.1	U
Methylene chloride mg/Kg 97 1.8 U 1.7 U 0.039 U 1.8 U 2.1 U 0.039 U 1.8 U 0.23 U 2.3 U 2.7 U 2.4 U 1.2 U 2.0 Methyltert-butylether mg/Kg 320 2.1 U 2.1 U 0.047 U 2.2 U 0.28 U 3.1 U 2.7 U 3.3 U 2.9 U 0.056 U 0.26 U 0.33 U 3.3 U 2.9 U 0.066 U 3.1 U 0.33 U 4.7 U 1.8 U 3.0 U 2.9 U 0.066 U 3.1 U 0.33 U 4.7 U 1.8 U 3.0 0.0 4.7 U 3.8 U 3.8 U 4.7 U 1.8 U 3.0 2.0 <td< td=""><td></td><td></td><td></td><td></td><td>II</td><td></td><td>II</td><td></td><td>II</td><td></td><td>ĪĪ</td><td></td><td>ĪĪ</td><td></td><td></td><td></td><td>II</td><td></td><td>_</td><td></td><td>TT</td><td>1.7</td><td>_</td><td>3.3</td><td>U</td></td<>					II		II		II		ĪĪ		ĪĪ				II		_		TT	1.7	_	3.3	U
Methyltert-butylether mg/Kg 320 2.1 U 2.1 U 0.047 U 2.2 U 0.28 U 3.1 U 2.7 U 3.3 U 2.9 U 1.5 U 2.5 Styrene mg/Kg 260 2.6 U 2.5 U 0.056 U 2.6 U 0.33 U 3.8 U 3.3 U 4 U 3.5 U 1.8 U 3.5 Tetrachloroethene mg/Kg 5 3 U 2.9 U 0.066 U 3.1 U 0.33 U 4.4 U 3.8 U 4.7 U 11 J 2.1 U 2.0 0.066 U 3.1 U 0.39 U 4.4 U 3.8 U 4.7 U 11 J 2.1 U 2.0 0.18 J 8.8 J 9 7.5 J 25 <td><u>, , , , , , , , , , , , , , , , , , , </u></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>II</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>II</td> <td>'</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>2.2</td> <td>U</td>	<u>, , , , , , , , , , , , , , , , , , , </u>				_		II						-				II	'	_					2.2	U
Styrene mg/Kg 260 2.6 U 2.5 U 0.056 U 2.6 U 0.33 U 3.8 U 3.3 U 4.4 U 3.5 U 1.8 U 3.5 Tetrachloroethene mg/Kg 5 3 U 2.9 U 0.066 U 3.1 U 0.39 U 4.4 U 3.8 U 4.7 U 11 J 2.1 U 3.0 U 0.39 U 4.4 U 3.8 U 4.7 U 11 J 2.1 U 2.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td>U</td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td>U</td><td></td><td>_</td><td></td><td>_</td><td>-</td><td>_</td><td></td><td>U</td></t<>					_		U				_		_				U		_		_	-	_		U
Tetrachloroethene mg/Kg 5 3 U 2.9 U 0.066 U 3.1 U 0.39 U 4.4 U 3.8 U 4.7 U 11 J 2.1 U 3.7 Toluene mg/Kg 91000 7.9 J 7.4 J 0.18 J 8.8 J 9 T 7.5 J 25 D 9.8 J 5 J 2.7 J 25 Trans-1,2-Dichloroethene mg/Kg 720 2.7 U 2.6 U 0.059 U 2.7 U 0.35 U 3.9 U 3.4 U 4.2 U 3.7 U 3.7 U 1.9 U 3.7 Trichloroethene mg/Kg 7 2 U 2.5 U 0.044 U 2 U 0.056 U 3.8 U	<u> </u>						U		_		_						U		_		_		_	2.7	-
Toluene mg/Kg 91000 7.9 J 7.4 J 0.18 J 8.8 J 9 7.5 J 25 9.8 J 5 J 2.7 J 25 mg/Kg 720 2.7 U 2.6 U 0.059 U 2.7 U 0.35 U 3.9 U 3.4 U 4.2 U 3.7 U 1.9 U 3.5 trans-1,3-Dichloropropene mg/Kg 7 2 U 2 U 0.044 U 2 U 0.056 U 3.8 U 3.	2				_		U				_		_				-	•					_	3.2	U
trans-1,2-Dichloroethene mg/Kg 720 2.7 U 2.6 U 0.059 U 2.7 U 0.35 U 3.9 U 3.4 U 4.2 U 3.7 U 1.9 U 3.7 trans-1,3-Dichloropropene mg/Kg 7 2 U 2 U 0.044 U 2 U 0.26 U 3.0 U 3.1 U 2.8 U 1.4 U 3.7 Trichloroethene mg/Kg 20 2.6 U 2.5 U 0.056 U 2.6 U 0.056 U 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 5.5 U 4.8 U 5.8 U 5.2 U 5.6 U 4.8 U 5.8 U 5.2 U 2.6 U 4.8 U 5.8 U 5.2 U 2.6 U 4.8 U 5.8 U 5.2 U 2.6 U 4.8 U 5.8 U 5.2 U 5.2 U 4.8 U 5.8 U 5.2 U 5.2 U 5.2 U 5.2 U 5.8 U 5.2 U 5.8 U 5.2 U 5.2 U 5.8 U 5.2 U 5.2 U 5.8 U 5.2 U 5.8 U 5.2 U 5.2 U 5.8 U 5.8 U 5.2 U 5.8 U 5.2 U 5.8 U 5.			-		U		T U		1		U		U		U		U		_		J			3.8	U
trans-1,3-Dichloropropene mg/Kg 7 2 U 2 U 0.044 U 2 U 0.26 U 3 U 2.6 U 3.1 U 2.8 U 1.4 U 2 Trichloroethene mg/Kg 20 2.6 U 2.5 U 0.056 U 2.6 U 3.3 U 4 U 3.6 U 1.8 U 3 Trichlorofluoromethane mg/Kg 340000 3.8 U 3.6 U 0.082 U 3.8 U 0.49 U 5.5 U 4.8 U 5.2 U 2.6 U 4					J		J TT		·		J		TT		J		T T				J			2.6	J T T
Trichloroethene mg/Kg 20 2.6 U 2.5 U 0.056 U 2.6 U 0.34 U 3.8 U 3.3 U 4 U 3.6 U 1.8 U 3.7 Trichlorofluoromethane mg/Kg 340000 3.8 U 3.6 U 0.082 U 3.8 U 0.49 U 5.5 U 4.8 U 5.2 U 2.6 U 4.8							U						_				+ -		_		_			3.4	U
Trichlorofluoromethane mg/Kg 340000 3.8 U 3.6 U 0.082 U 3.8 U 0.49 U 5.5 U 4.8 U 5.8 U 5.2 U 2.6 U 4.8 U 5.8 U 5.2 U 5.8 U 5.2 U 5.8			/		-		U				_						+ -		_					2.5	U
					-		U						_				U	7	_		_			3.3	U
Vinvl chloride mg/Kg 2 26 U 25 U 0.056 U 26 U 0.33 U 3.8 U 3.3 U 4 U 3.6 U 1.8 U 3.7 U					-		U				_				+-+		U		_					4.7	U
	3		2		U	2.5	U	0.056	U	2.6	U	0.33	U		U	3.3	U	•	U	3.6	U	1.8	_	3.2	U

TABLE 4-13

ANALYTICAL RESULTS
EAST AND WEST LAGOON SOLID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent	TT\$4~	C(1)	WLWC		WLWC		WLWC		WLWC 05/27/0		ELWC-		ELWC-		ELWC-		ELWC-		ELWC-05	ELWC-06		WC-06 5/28/08
of Lutanat	Units	Criterion ⁽¹⁾	05/27/		05/27/0		05/27/0				05/28/0		05/28/0		05/28/0		05/28/0		05/28/08	05/28/08		
Interest Semivolatile Organics			Prima	ry	Primar	y	Primai	ı y	Primai	ГУ	Primar	<u>.y</u>	Primar	<u>y</u>	Primar	<u>y</u>	Primai	. y	Primary	Primary	լ քա	plicate
1,1'-Biphenyl	mg/Kg	34000	1800	1 1	880	T	970	Ιī	620	T	23000	U	23000	ΙI	23000	U	23000	ΙΤΙ	23000 U	23000 U	230	00 U
2,2'-oxybis(1-chloropropane)	mg/Kg	34000	160	U	160	U	160	U	160	II	33000	U	33000	U	33000	U	33000	IJ	33000 U	33000 U		
2,4,5-Trichlorophenol	mg/Kg	68000	97	U	97	U	97	U	97	II	19000	U	19000	U	19000	U	19000	IJ	19000 U	19000 U	_	
2,4,6-Trichlorophenol	mg/Kg	74	70	U	70	U	70	U	70	II	14000	U	14000	U	14000	U	14000	IJ	14000 U	14000 U		
2,4-Dichlorophenol	mg/Kg	2100	100	U	100	U	100	U	100	U	21000	U	21000	U	21000	U	21000	IJ	21000 U	21000 U	_	
2,4-Dimethylphenol	mg/Kg	14000	1900		710	Ī	410	I	570	Ī	17000	U	17000	U	17000	U	17000	U	17000 U	17000 U		
2,4-Dinitrophenol	mg/Kg	1400	1500	U	1500	U	1500	U	1500	U	300000	U	300000	U	300000	U	300000	IJ	300000 U	300000 U		
2,4-Dinitrotoluene	mg/Kg	3	90	U	90	U	90	U	90	U	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U	_	
2,6-Dinitrotoluene	mg/Kg	3	75	Ü	75	U	75	U	75	U	15000	U	15000	U	15000	U	15000	U	15000 U	15000 U		
2-Chloronaphthalene	mg/Kg		90	Ü	90	U	90	U	90	U	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U		
2-Chlorophenol	mg/Kg	2200	180	U	180	U	180	U	180	U	36000	U	36000	U	36000	U	36000	U	36000 U	36000 U		
2-Methylnaphthalene	mg/Kg	2400	12000	J	21000		30000	U	15000	U	21000	U	21000	U	21000	U	24000	J	21000 U	21000 U		
2-Methylphenol	mg/Kg	3400	470	J	370	J	150	U	380	J	30000	U	30000	U	30000	U	30000	U	30000 U	30000 U	300	00 U
2-Nitroaniline	mg/Kg	23000	93	U	93	U	93	U	93	U	19000	U	19000	U	19000	U	19000	U	19000 U	19000 U	_	
2-Nitrophenol	mg/Kg		140	U	140	U	140	U	140	U	27000	U	27000	U	27000	U	27000	U	27000 U	27000 U	_	00 U
3,3'-Dichlorobenzidine	mg/Kg	4	60	U	60	U	60	U	60	U	12000	U	12000	U	12000	U	12000	U	12000 U	12000 U	120	00 U
3-Nitroaniline	mg/Kg		94	U	94	U	94	U	94	U	19000	U	19000	U	19000	U	19000	U	19000 U	19000 U	190	00 U
4,6-Dinitro-2-methylphenol	mg/Kg	68	64	U	64	U	64	U	64	U	13000	U	13000	U	13000	U	13000	U	13000 U	13000 U	130	00 U
4-Bromophenylphenyl ether	mg/Kg		83	U	83	U	83	U	83	U	17000	U	17000	U	17000	U	17000	U	17000 U	17000 U	170	00 U
4-Chloro-3-methylphenol	mg/Kg		85	U	85	U	85	U	85	U	17000	U	17000	U	17000	U	17000	U	17000 U	17000 U	170	00 U
4-Chloroaniline	mg/Kg		68	U	68	U	68	U	68	U	14000	U	14000	U	14000	U	14000	U	14000 U	14000 U	140	00 U
4-Chlorophenyl phenyl ether	mg/Kg		69	U	69	U	69	U	69	U	14000	U	14000	U	14000	U	14000	U	14000 U	14000 U	140	00 U
4-Methylphenol	mg/Kg	340	1400		1300		280	J	1400		45000	U	45000	U	45000	U	45000	U	45000 U	45000 U	450	00 U
4-Nitroaniline	mg/Kg		58	U	58	U	58	U	58	U	12000	U	12000	U	12000	U	12000	U	12000 U	12000 U	120	00 U
4-Nitrophenol	mg/Kg		69	U	69	U	69	U	69	U	14000	U	14000	U	14000	U	14000	U	14000 U	14000 U	140	00 U
Acenaphthene	mg/Kg	37000	1700		530	J	420	J	1400		16000	U	16000	U	16000	U	16000	U	16000 U	16000 U		
Acenaphthylene	mg/Kg	300000	92	U	92	U	92	U	92	U	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U	_	
Acetophenone	mg/Kg	5	150	U	150	U	150	U	150	U	30000	U	30000	U	30000	U	30000	U	30000 U	30000 U	_	
Anthracene	mg/Kg	30000	1000		220	J	520	J	710	J	19000	U	19000	U	19000	U	19000	U	19000 U	19000 U	_	
Atrazine	mg/Kg	2400	140	U	140	U	140	U	140	U	29000	U	29000	U	29000	U	29000	U	29000 U	29000 U	_	
Benzaldehyde	mg/Kg	68000	210	U	210	U	210	U	210	U	41000	U	41000	U	41000	U	41000	U	41000 U	41000 U		
Benzo(a)anthracene	mg/Kg	2	99	U	99	U	99	U	99	U	20000	U	20000	U	20000	U	20000	U	20000 U	20000 U		
Benzo(a)pyrene	mg/Kg	0.2	91	U	91	U	91	U	91	U	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U	_	
Benzo(b)fluoranthene	mg/Kg	2	130	U	130	U	130	U	130	U	27000	U	27000	U	27000	U	27000	U	27000 U	27000 U	_	
Benzo(ghi)perylene	mg/Kg	30000	87	U	87	U	87	U	87	U	17000	U	17000	U	17000	U	17000	U	17000 U	17000 U		
Benzo(k)fluoranthene	mg/Kg	23	130	U	130	U	130	U	130	U	26000	U	26000	U	26000	U	26000	U	26000 U	26000 U		
Bis(2-chloroethoxy)methane	mg/Kg		110	U	110	U	110	U	110	U	23000	U	23000	U	23000	U	23000	U	23000 U	23000 U	_	
Bis(2-chloroethyl)ether	mg/Kg	2	110	U	110	U	110	U	110	U	23000	U	23000	U	23000	U	23000	U	23000 U	23000 U		
Bis(2-ethylhexyl)phthalate	mg/Kg	140	98	U	98	U	98	U	98	U	20000	U	20000	U	20000	U	20000	U	20000 U	20000 U		
Butyl benzyl phthalate	mg/Kg	14000	110	U	110	U	110	U	110	U	21000	U	21000	U	21000	U	21000	U	21000 U	21000 U		
Caprolactam	mg/Kg	340000	140	U	140	U	140	U	140	U	29000	U	29000	U	29000	U	29000	U	29000 U	29000 U		
Carbazole	mg/Kg	96	500	J	88	U	110	J	300	J	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U		
Chrysene	mg/Kg	230	97	U	97	U	97	U	97	U	19000	U	19000	U	19000	U	19000	U	19000 U	19000 U		
Dibenzo furan	mg/Kg	0.2	67 2700	U	1100	U	67	U	67	U	13000	U	13000	U U	13000	U	13000	U	13000 U	13000 U	_	
Dibenzofuran	mg/Kg	550000		I I	1100	T T	1300	T T	1300	T T	19000	_	19000		19000	U	19000	U	19000 U	19000 U		
Diethyl phthalate	mg/Kg	550000	92	U	92	U	92	U	92	T T	18000	U	18000	U	18000	U	18000	U	18000 U	18000 U	_	
Dimethyl phthalate Di-n-butyl phthalate	mg/Kg	68000	81 90	U	81	U	81	U	81	IJ	16000	U	16000	U	16000	U	16000	U	16000 U	16000 U		
Di-n-butyl phthalate Di-n-octyl phthalate	mg/Kg			U	90	U	90	U	90	IJ	18000	U	18000	U	18000	U	18000	U	18000 U 17000 U	18000 U	_	
3 1	mg/Kg	27000 24000	87 480	U	87 160	U	87 310	T U	87 280	Ţ	17000	U	17000	U	17000 19000	U	17000 19000	U	1,000	17000 U 19000 U	_	
Fluoranthene	mg/Kg			J		J		J T		J	19000	_	19000						19000 U 17000 U		_	
Fluorene	mg/Kg	24000	1900		670	J	920	J	820	J	17000	U	17000	U	17000	U	17000	U	17000 U	17000 U	170	UU

TABLE 4-13

ANALYTICAL RESULTS

EAST AND WEST LAGOON SOLID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	WLWC 05/27/0		WLWC- 05/27/0		WLWC- 05/27/0		WLWC- 05/27/0		ELWC-05/28/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/	
Interest		Criterion	Primar		Primar		Primar		Primar		Primar		Primai		Primar		Prima		Primar		Primar		Duplic	
Semivolatile Organics (Continued)			1111141	J	1111141	<u> </u>	11111141	. J	Tilliai	<u>J</u>	1111141	<u> </u>	11111141	. J	Tilliai	<u>, </u>	Tima	<u> </u>	TTIIIQI	<u> </u>	11111141	<u>J</u>	Duplic	
Hexachlorobenzene	mg/Kg	1	82	U	150	ī	82	U	82	U	16000	U	16000	U	16000	IJ	16000	U	16000	U	16000	U	1600	T
Hexachlorobutadiene	mg/Kg	25	140	U	140	U	140	U	140	U	28000	U	28000	U	28000	U	28000	U	28000	U	28000	U	2800	U
Hexachlorocyclopentadiene	mg/Kg	110	68	U	68	U	68	U	68	U	14000	U	14000	U	14000	U	14000	U	14000	U	14000	U	1400	U
Hexachloroethane	mg/Kg	140	140	U	140	U	140	U	140	U	28000	U	28000	U	28000	U	28000	IJ	28000	U	28000	U	2800	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	71	U	71	IJ	71	U	71	U	14000	U	14000	U	14000	U	14000	U	14000	U	14000	U	1400	U
Isophorone	mg/Kg	2000	130	U	130	U	130	U	130	U	26000	U	26000	U	26000	U	26000	U	26000	U	26000	U	2600	U
Naphthalene	mg/Kg	17	210000	Ŭ	400000	Ŭ	330000	Ŭ	180000	Ť	260000	Ŭ	430000	Ŭ	600000		770000	Ŭ	400000		240000	Ŭ	250000	Ť
Nitrobenzene	mg/Kg	340	94	U	94	U	94	U	94	U	19000	U	19000	U	19000	IJ	19000	IJ	19000	U	19000	U	1900	U
N-Nitrosodiphenylamine	mg/Kg	390	110	U	110	U	110	U	110	U	22000	U	22000	U	22000	U	22000	U	22000	U	22000	U	2200	U
N-Nitrosodipropylamine	mg/Kg	0.3	100	U	100	U	100	U	100	U	20000	U	20000	U	20000	U	20000	U	20000	U	20000	U	2000	U
Pentachlorophenol	mg/Kg	10	69	U	69	U	69	U	69	U	14000	U	14000	U	14000	U	14000	U	14000	U	14000	U	1400	U
Phenanthrene	mg/Kg	300000	2300		740	J	1400	Ť	1300		19000	U	19000	U	19000	U	19000	U	19000	U	19000	U	1900	U
Phenol	mg/Kg	210000	440	J	640	J	110	U	570	J	22000	U	22000	U	22000	U	22000	U	22000	U	22000	U	2200	U
Pyrene	mg/Kg	18000	170	J	110	U	120	J	120	J	22000	U	22000	U	22000	U	22000	U	22000	U	22000	U	2200	U
Polychlorinated Dioxins/Furans	1118/118	10000	170		110	U	120	_ ·	120	, v	22000		22000		22000		22000			U	22000		2200	Ť
1,2,3,4,6,7,8-HpCDD	ug/kg	T	1.4	U	1.8	U	0.69	U	9.8	U	15	Π	0.64	IJ	8.8	J	0.45	IJ	410	J	410	J	460	TJ
1,2,3,4,6,7,8-HpCDF	ug/kg		280	E	440	E	4600	Ŭ	2400		510	Е	13	Ü	59	-	16		32000	E	13000	E	32000	E
1,2,3,4,7,8,9-HpCDF	ug/kg		9.7	I	17		130	ī	73	U	17		0.39	U	3.1	U	0.54	IJ	1100		480	Ī	1200	+-
1,2,3,4,7,8-HxCDD	ug/kg		0.37	U	0.24	IJ	0.14	U	3.8	U	3.4	U	1.7	U	1.9	U	0.28	U	62	IJ	100	U	99	IJ
1,2,3,4,7,8-HxCDF	ug/kg		96		220	E	1500	Ŭ	740		180	Ü	4.7	U	26		5.4	ī	12000	Е	4800		12000	E
1,2,3,6,7,8-HxCDD	ug/kg		0.46	U	0.89	U	0.27	U	4.1	U	6.5	U	0.5	U	5.2	U	0.32	U	110	U	190	U	250	U
1,2,3,6,7,8-HxCDF	ug/kg		12		29		170	Ī	88	U	22		0.57	U	3.7	U	0.63	U	1400		580		1500	+
1,2,3,7,8,9-HxCDD	ug/kg		0.3	U	0.45	U	0.26	U	3.2	U	3.7	U	0.47	U	3.2	U	0.2	II	68	U	100	U	130	U
1,2,3,7,8,9-HxCDF	ug/kg		2.9	U	6.7	Ī	41	U	20	U	7.1	J	0.15	U	2.7	U	0.12	U	330	Ī	170	U	410	Ť
1,2,3,7,8-PCDD	ug/kg		0.35	U	0.39	IJ	0.36	U	0.35	U	0.35	U	0.72	U	2.1	U	0.7	U	120	U	210	U	250	U
1,2,3,7,8-PCDF	ug/kg		5	I	14		15	U	9.1	U	3	U	0.2	U	0.73	U	0.37	U	140	U	92	U	160	U
2,3,4,6,7,8-HxCDF	ug/kg		4.3	U	8.2	J	65	U	33	U	8.3	J	0.26	U	3.2	U	0.3	U	430	J	200	U	460	T J
2,3,4,7,8-PCDF	ug/kg		7.5	J	23	Ť	120	U	56	U	28		0.63	U	8	J	1	U	1100	-	730		1400	一
2,3,7,8-TCDD	ug/kg		0.046	U	0.091	IJ	0.16	U	1.8	U	3.7	U	0.38	U	1.6	U	0.6	U	15	U	34	U	48	U
2,3,7,8-TCDF	ug/kg		5.6		17		87	Ī	42	U	43		1.7	U	30		1.5	U	1000		880		1500	+
OCDD	ug/kg		4.8	U	3.6	IJ	39	U	41	U	61		1.7	U	11	ī	1.8	U	3300		840	ī	930	+
OCDF	ug/kg		470	E	590	E	9200		4000		900	Е	22		90	-	27		61000	Е	23000	E	61000	$\frac{1}{E}$
Total HpCDD	ug/kg		1.5	U	2.1	U	0.8	U	13	U	28		0.64	U	19		0.46	IJ	800		750		890	+=
Total HpCDF	ug/kg		320		500		5000		2600		580		13		68		16		36000		15000		37000	+
Total HxCDD	ug/kg		1.3	U	2.4	IJ	0.8	U	11	U	33		1.3	U	21		0.98	IJ	270		830		1900	+
Total HxCDF	ug/kg		170		400		2500		1100		350		4.7	U	55		5.4		21000		8600		23000	+
Total PeCDD	ug/kg		1	U	1.8	IJ	0.65	U	7.1	U	27		4.3	U	79		6.8	IJ	380	U	2000		2000	+
Total PeCDF	ug/kg		62		190		500		150		250		2	U	82		2.3	U	8600		5200		10000	+
Total TCDD	ug/kg		3	U	2.9		3.5	U	76	U	40		3	U	32		3.1		1000		3300		2700	+
Total TCDF	ug/kg		29		90		350	Ŭ	89	Ŭ	290		1.7	U	140		1.5	U	4600		5000		7900	+
Polychlorinated Dioxins/Furans (2,3,7,8 l							330		0,7		2,0		1,7	Ü	110		1.5	Ü	1000		2000		7300	
1,2,3,4,6,7,8-HpCDD	0.01			Т							1.5E-01		I		8.8E-02			Т	4.1E+00		4.1E+00		4.6E+00	$\overline{}$
1,2,3,4,6,7,8-HpCDF	0.01		2.8E+00	 	4.4E+00		4.6E+01		2.4E+01		5.1E+00		1.3E-01		5.9E-01		1.6E-01	1	3.2E+02		1.3E+02		3.2E+02	_
1,2,3,4,7,8,9-HpCDF	0.01		9.7E-02	 	1.7E-01		1.3E+00								J.JE 01			1	J.ZE+02				1.2E+01	1
1,2,3,4,7,8-HxCDD	0.10		7.7L-02		1./L-01						1.7E+00							1	1.1E+02		4.8E+01			+
1,2,3,4,7,8-HxCDF	0.10		9.6E+00		2.2E+01		1.5E+02		7.4E+01		1./L+00							1	1.1L+02				1.2E+03	+
1,2,3,6,7,8-HxCDD	0.10		9.0E+00		2.2E+01 		1.3E+02		7.4E+01 		1.8E+01				2.6E+00		5.4E-01	1	1.2E+03		4.8E+02		1.2E+03	+
1,2,3,6,7,8-HxCDF	0.10		1.2E+00		2.9E+00		1.7E+01				2.2E+00				2.0E+00		J.4E-01	1	1.4E+02		5.8E+01		1.5E+02	+
1,2,3,7,8,9-HxCDD	0.10		1.2L+00		2.9E+00		1./E+01 				2.20 00							1	1.4E+02		J.6E+01		1.3E+02	+
1,2,3,7,8,9-HxCDF	0.10			1	6.7E-01	 		<u> </u>		 	7.1E-01							1	3.3E+01				4.1E+01	+
1,2,3,7,8-PCDD	1.00				U. / L:-UI					1	/.IL/-UI	I		1				1	J.JL 101	Ī			T.1L U1	1

TABLE 4-13

ANALYTICAL RESULTS
EAST AND WEST LAGOON SOLID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	WLWC- 05/27/0		WLWC- 05/27/0		WLWC- 05/27/0		WLWC 05/27/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/0		ELWC- 05/28/	
Interest			Primar	y	Primar	y	Primar	y	Primai	·y	Primar	·y	Primar	y	Primar	·y	Primar	\mathbf{y}	Primar	·y	Primar	y	Duplica	ate
Polychlorinated Dioxins/Furans (2,3,7,8 Eq	uivalents) (C	continued)																						
1,2,3,7,8-PCDF	0.05		2.5E-01		7.0E-01																			
2,3,4,6,7,8-HxCDF	0.10				8.2E-01						8.3E-01								4.3E+01				4.6E+01	
2,3,4,7,8-PCDF	0.50		3.8E+00		1.2E+01						1.4E+01				4.0E+00				5.5E+02		3.7E+02		7.0E+02	
2,3,7,8-TCDD	1.00																							1
2,3,7,8-TCDF	0.10		5.6E-01		1.7E+00		8.7E+00				4.3E+00				3.0E+00				1.0E+02		8.8E+01		1.5E+02	
OCDD	0.0001										6.1E-03				1.1E-03				3.3E-01		8.4E-02		9.3E-02	1
OCDF	0.0001		4.7E-02		5.9E-02		9.2E-01		4.0E-01		9.0E-02		2.2E-03		9.0E-03		2.7E-03		6.1E+00		2.3E+00		6.1E+00	
Total 2.3.7.8-TCDD Equivalents ⁽²⁾	ug/Kg	1	1.8E+01		4.5E+01		2.2E+02		9.8E+01		4.7E+01		1.3E-01		1.0E+01		7.0E-01		2.5E+03		1.2E+03		2.6E+03	
Polychlorinated Biphenyls (Aroclors)		•	•																					
Aroclor 1016	mg/Kg	1	1.5	U	1.5	U	0.074	U	0.074	U	0.74	U	0.074	U	0.074	U	0.74	U	15	U	7.4	U	3.7	U
Aroclor 1221	mg/Kg	1	1.9	U	1.9	U	0.095	U	0.095	U	0.95	U	0.095	U	0.095	U	0.95	U	19	U	9.5	U	4.8	U
Aroclor 1232	mg/Kg	1	1.7	U	1.7	U	0.086	U	0.086	U	70		0.086	U	0.086	U	200		2300		6200		3100	
Aroclor 1242	mg/Kg	1	1.6	U	1.6	U	0.081	U	0.081	U	0.81	U	0.081	U	0.081	U	0.81	U	16	U	8.1	U	4.1	U
Aroclor 1248	mg/Kg	1	0.95	U	0.95	Ū	0.047	U	0.047	U	18		0.047	U	0.047	Ū	46		650	PG	1300		780	Ť
Aroclor 1254	mg/Kg	1	1.4	U	1.4	Ū	0.071	U	0.071	U	0.71	U	0.071	U	0.071	Ū	0.71	U	14	U	7.1	U	3.6	U
Aroclor 1260	mg/Kg	1	3.4	J	2.5	JP	0.071	U	0.071	U	0.71	U	0.071	U	0.071	U	0.71	U	14	U	7.1	U	3.6	U
Aroclor 1262	mg/Kg	1	2.2	U	2.2	IJ	0.11	U	0.11	U	1.1	U	0.11	U	0.11	U	1.1	U	22	U	11	U	5.5	U
Aroclor 1268	mg/Kg	1	1.3	U	1.3	U	0.064	U	0.064	U	0.64	U	0.064	U	0.064	U	0.64	U	13	U	6.4	U	3.2	U
Metals	8.118		1.5	Ŭ	1.5		0.00.	Ü	0.001		0.0.		0.00.	, ,	0.00.		0.01	<u> </u>	10		Ü		J.2	
Aluminum	mg/Kg		79.6		3200		6220		155		245		141		66		17.1	В	112	Г	246		243	$\overline{}$
Antimony	mg/Kg	450	3.2		0.18	IJ	1.9		2.4		0.092	U	0.8	В	1.4		2.1		2		8.5		12.8	+-
Arsenic	mg/Kg	19	3.3		3.8		23.1		8.3		0.64	В	0.5	В	1.9		5.1		1.7		1.4		1.1	+
Barium	mg/Kg	59000	21.2	ī	22.5	Т	262	ī	60.1	ī	9.8	BJ	4.2	BJ	9.8	BJ	6.7	BJ	7.3	BJ	9.9	BJ	8	BJ
Beryllium	mg/Kg	140	0.037	В		U	0.99		0.031	U	0.031	U	0.031	U	0.031	IJ	0.035	В	0.031	U	0.031	U	0.031	U
Cadmium	mg/Kg	78	0.07	В	0.15	В	1.8		0.25	В	0.36	В	0.047	U	0.047	IJ	0.047	U	0.047	U	0.047	U	0.047	U
Calcium	mg/Kg		140	В	14700		6460		49000		1040		316	В	216	В	321	В	162	В	327	В	289	В
Chromium ⁽³⁾	mg/Kg	120000	60.9		3220		496		36.8		305		51.5		51.9		8.1		122	٦	428		355	Ť
Chromium (Hexavalent) ⁽³⁾	mg/Kg	20	65.4		564		12.1		15.9		278		14.9		8		0.4	IJ	45.8		129		126	\vdash
Cobalt	mg/Kg	590	1.6	В	11.9		6		0.5	В	0.92	В	0.55	В	0.15	В	0.21	В	0.88	В	0.69	В	0.64	В
Copper	mg/Kg	45000	197		98.6		45.8		31.8		26.7		54.5		49.1		146		38.8		66		40.4	+-
Iron	mg/Kg		580		9050		8000		482		2310		417		155		91.6		3660		1320		1690	+-
Lead	mg/Kg	800	289		537		2350		681		7.3		206		799		875		138		282		172	+-
Magnesium	mg/Kg		102	В	2950		1310		156	В	390	В	519		183	В	59	В	214	В	226	В	215	В
Manganese	mg/Kg	5900	2.6		66.2		42.6		4.2		5.9		3.6		1.5		0.86	В	18.8	٦	6.9		8.7	Ť
Mercury	mg/Kg	65	15		14.6		13.4		38.8		9.5		10.1		5.1		15.8		6.4		14.3		11.2	+
Nickel	mg/Kg	23000	77.2		113		87.1		18.3		3	В	23.4		4.1		17.2		18.9		15.7		11.2	+-
Potassium	mg/Kg		50	U	50	II	587		51.3	В	64.3	В	50	U	50	U	50	U	50	U	50	U	50	U
Selenium	mg/Kg	5700	1.7	U	1.8	0	1		1.1	Ь	0.29	U	0.77		1.5	C	1.4	0	0.45	В	0.81		0.64	+
Silver	mg/Kg	5700	0.12	BJ	0.26	BJ	0.17	BJ	0.095	BJ	0.069	BJ	0.096	BJ	0.18	BJ	0.16	BJ	0.43	BJ	0.31	BJ	0.04	BJ
Sodium	mg/Kg		345	В	843	DJ	91.1	В	304	В	1330	DJ	916	Б	417	В	557	DJ	1210	Б	410	В	388	B
Thallium	mg/Kg	79	0.64	U	0.32	ĪĪ	0.32	U	0.32	U	0.32	U	0.64	U	0.64	II	0.64	U	0.32	U	0.32	U	0.32	U
Vanadium	mg/Kg	1100	3	В	85	U	28.5	U	3.4	В	15.2		2.7	В	1.9	В	1 1	В	2.7	В	4.1	В	3.6	В
Zinc	mg/Kg	11000	7.8	ם	58.3		310		20.8	Ь.	165		5.2	ם	2.7	ם	2.6	ם	7.3	۳	5.9	ъ	5.5	+
		110000	7.0		30.3		310		20.0	_	103		5.4		4.1		2.0		1.3		3.7		5.5	
Toxicity Characteristic Leaching Procedure		0.7	0.025	TT	0.025	Τī	0.025	ŢŢ	0.025	T T	0.025	TT	0.025	TT.	0.025	T T	0.025	ŢŢ	0.025	T T	0.025	TT		_
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		+-
1,2-Dichloroethane 1,4-Dichlorobenzene	mg/L	0.5	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U		+-
I 4-I Jichloropenzene	mg/L	7.5	0.82		0.45		0.0048	J	0.078		0.02	J	0.0098	J	0.022	J	0.018	J	9.7	I	0.26			
·		400	0.0041	TT	0.0041	TT	0.0041	TT	0.0041	TΤ	0.0041	т,	0.0041	тт	0.0041	т т	0.0041	TT	0.0041	TΤ	0.0041	тт		
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/L mg/L	400	0.0041 0.041	U	0.0041 0.0026	U	0.0041	U	0.0041	U	0.0041 0.0026	U U	0.0041 0.0026	U U	0.0041 0.0026	U	0.0041 0.0026	U U	0.0041 0.0026	U U	0.0041 0.0026	U	 	_

TABLE 4-13

ANALYTICAL RESULTS
EAST AND WEST LAGOON SOLID SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	WLWC- 05/27/0 Primar	8	WLWC- 05/27/0 Primar	8	WLWC- 05/27/0 Primar	8	WLWC- 05/27/0 Primar)8	ELWC- 05/28/0 Primar	8	ELWC-05/28/0 Primar	8	ELWC-05/28/03 Primary	8	ELWC- 05/28/0 Primar) 8	ELWC- 05/28/0 Primar) 8	ELWC- 05/28/0 Primar)8	ELWC- 05/28/0 Duplica	08
Toxicity Characteristic Leaching Procedure	e ⁽⁴⁾ (Continue	ed)																						
2-Butanone	mg/L	200	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U		
Benzene	mg/L	0.5	0.033	U	0.033	U	0.033	U	0.073	J	0.033	U	0.033	U	0.088	J	0.033	U	0.053	J	0.033	U		
Carbon Tetrachloride	mg/L	0.5	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U		
Chlorobenzene	mg/L	100	0.43		0.18	J	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.83		0.1	J		
Chloroform	mg/L	6	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U		
Cresols	mg/L	200	27		50		7.8		48		55		53		110		31		7.3		22			
Hexachlorobenzene	mg/L	0.13	0.0082	J	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0076	J	0.22		0.14			
Hexachlorobutadiene	mg/L	0.5	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033	U		
Hexachloroethane	mg/L	3	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U		
Nitrobenzene	mg/L	2	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U		
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U		
Pyridine	mg/L	5	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U		
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U		
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U		
Arsenic	mg/L	5	0.14	В	0.18	В	0.17	В	0.25	В	0.27	В	0.24	В	0.23	В	0.19	В	0.18	В	0.18	В		
Barium	mg/L	100	0.034	BJ	0.087	BJ	0.14	BJ	0.1	BJ	0.089	BJ	0.048	BJ	0.076	BJ	0.03	BJ	0.052	BJ	0.058	BJ		
Cadmium	mg/L	1	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0012	U		
Chromium	mg/L	5	0.29	В	6.5		0.12	В	0.18	В	6.3		0.63		0.35	В	0.16	В	0.57		0.63			
Lead	mg/L	5	0.61		0.51		0.95	Е	3.1		4.4		4.9		11.2		3.5		0.83		1.1			
Mercury	mg/L	0.2	0.00034		0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.00014	В	0.000055	U	0.00031		0.0013		0.00025			
Selenium	mg/L	1	0.018	В	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U		
Silver	mg/L	5	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0026	В	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U		
RCRA Characteristics and Indicators																								
Corrosivity	SU	2 <ph<12.5< td=""><td>3.03</td><td></td><td>6.66</td><td></td><td>5.85</td><td></td><td>2.41</td><td></td><td>2.84</td><td></td><td>1.46</td><td></td><td>1.46</td><td></td><td>1.36</td><td></td><td>1.92</td><td></td><td>2</td><td></td><td></td><td></td></ph<12.5<>	3.03		6.66		5.85		2.41		2.84		1.46		1.46		1.36		1.92		2			
Cyanide	mg/Kg	23000	10.8	В	10	В	18.6	В	103		9.6	U	9.6	U	9.6	U	9.6	U	9.6	U	9.6	U	9.6	U
Total Sulfide (Reactivity)	mg/Kg		520		616		1320		360		472		368		456		552		120		344			
Ignitability	none		No		No		No		No		No		No		No		No		No		No			
Oxidation Reduction Potential	mV		334		321		340		370		354		374		388		382		415		364			
British Thermal Unit Contect	BTU/lb										3600				11000		12000		4000		4700			

TABLE 4-13

ANALYTICAL RESULTS EAST AND WEST LAGOON SOLID SAMPLES STANDARD CHLORINE SITE **KEARNY, NEW JERSEY**

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs appendix1.pdf) unless noted otherwise.
- 2. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.
- 3. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.
- 4. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 available at electronic CFR website (ecfr.gpoaccess.gov).

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- E Organic results. Result is an estimated concentration. Outside linear calibration range.

 J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%. U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

6 of 6

TABLE 4-14

ANALYTICAL RESULTS
LAGOON SURFACE WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

G		Dischar	ge Limits	ELWS-0	1	ELWS-0	2	ELWS-02	2D	WLWS-	01	WLWS-	-02
Constituent	Units	NJDEP BO	GR Permit ⁽¹⁾	04/25/08	3	04/25/08	3	04/25/08	3	04/25/0	8	04/25/0)8
of	Units	Monthly	Daily	East Lago	on	East Lago	on	East Lago	on	West Lag	oon	West Lag	zoon
Interest			Maximum	Primary		Primary		Duplicat		Primary		Primar	y
Volatile Organics													
1,1,1-Trichloroethane	ug/L	21	54	0.79	U	0.79	U	0.79	U	0.79	U	0.79	U
1,1,2,2-Tetrachloroethane	ug/L		10	0.63	U	0.63	U	0.63	U	0.63	U	0.63	U
1,1,2-Trichloroethane	ug/L	21	54	0.79	U	0.79	U	0.79	U	0.79	U	0.79	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L			1.2	U	1.2	U	1.2	U	1.2	U	1.2	U
1,1-Dichloroethane	ug/L	22	59	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	ug/L	26	25	0.87	U	0.87	U	0.87	U	0.87	U	0.87	U
1,2,4-Trichlorobenzene	ug/L	68	140	5.3		13		12		0.74	J	1.4	J
1,2-Dibromoethane	ug/L			0.64	U	0.64	U	0.64	U	0.64	U	0.64	U
1,2-Dichlorobenzene	ug/L	77	163	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U
1,2-Dichloroethane	ug/L	68	211	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U
1,2-Dichloropropane	ug/L	153	230	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U
1,3-Dichlorobenzene	ug/L	31	44	6.4		16		17		2.5	J	6.4	
1,4-Dichlorobenzene	ug/L		28	12		44		45		1.6	J	11	
2-Butanone	ug/L			0.73	U	0.73	U	0.73	U	0.73	U	0.73	U
2-Hexanone	ug/L			0.45	U	0.45	U	0.45	U	0.45	U	0.45	U
4-Methyl-2-pentanone	ug/L			0.46	U	0.46	U	0.46	U	0.46	U	0.46	U
Acetone	ug/L			5	U	5	U	5	U	5	U	5	U
Benzene	ug/L	37	136	0.81	U	0.81	U	0.81	U	0.81	U	0.81	U
Bromodichloromethane	ug/L		12	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U
Bromoform	ug/L	29	58	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
Bromomethane	ug/L	20	40	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Carbon disulfide	ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Carbon tetrachloride	ug/L	9		0.91	U	0.91	U	0.91	U	0.91	U	0.91	U
Chlorobenzene	ug/L	15	28	0.71	U	1.4	J	1.4	J	1.8	J	5.2	
Chloroethane	ug/L	104	268	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Chloroform	ug/L	21	46	0.78	U	0.78	U	0.78	U	0.78	U	0.78	U
Chloromethane	ug/L	86	190	0.87	U	0.87	U	0.87	U	0.87	U	0.87	U
cis-1,2-Dichloroethene	ug/L			1	U	1	U	1	U	1	U	1	U
cis-1,3-Dichloropropene	ug/L	29	44	0.79	U	0.79	U	0.79	U	0.79	U	0.79	U
Cyclohexane	ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Dibromochloropropane	ug/L			1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Dibromochloromethane	ug/L		14	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dichlorodifluoromethane	ug/L			1	U	1	U	1	U	1	U	1	U
Ethylbenzene	ug/L	32	108	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U

TABLE 4-14

ANALYTICAL RESULTS
LAGOON SURFACE WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent		Dischar	ge Limits	ELWS-0	1	ELWS-0	2	ELWS-02	2D	WLWS-	01	WLWS-	-02
Constituent	Units	NJDEP BO	GR Permit ⁽¹⁾	04/25/08	3	04/25/08	3	04/25/08	3	04/25/0	8	04/25/0)8
of	Units	Monthly	Daily	East Lago		East Lago	on	East Lago	on	West Lag	oon	West Lag	zoon
Interest			Maximum	Primary		Primary		Duplicat		Primary		Primar	_
Volatile Organics (Continued)													
Isopropylbenzene	ug/L			0.72	U	0.72	U	0.72	U	0.72	U	0.72	U
Methyl Acetate	ug/L			0.47	U	0.47	U	0.47	U	0.47	U	0.47	U
Methylcyclohexane	ug/L			1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Methylene chloride	ug/L	40	89	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Methyltert-butylether	ug/L			0.77	U	0.77	U	0.77	U	0.77	U	0.77	U
Styrene	ug/L			0.8	U	0.8	U	0.8	U	0.8	U	0.8	U
Tetrachloroethene	ug/L	22	56	0.57	U	0.57	U	0.57	U	0.57	U	0.57	U
Toluene	ug/L	26	80	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U
trans-1,2-Dichloroethene	ug/L	21	54	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U
trans-1,3-Dichloropropene	ug/L	29	44	0.57	U	0.57	U	0.57	U	0.57	U	0.57	U
Trichloroethene	ug/L	21	54	0.88	U	0.88	U	0.88	U	0.88	U	0.88	U
Trichlorofluoromethane	ug/L			0.8	U	0.8	U	0.8	U	0.8	U	0.8	U
Vinyl chloride	ug/L	104	268	0.94	U	0.94	U	0.94	U	0.94	U	0.94	U
Xylene (total)	ug/L			2.4	U	2.4	U	2.4	U	2.4	U	2.4	U
Semivolatile Organics													
1,1'-Biphenyl	ug/L			2	J	2.4	J	2.4	J	0.67	U	0.66	U
2,2'-oxybis(1-chloropropane)	ug/L	301	757	0.27	U	0.29	U	0.28	U	0.29	U	0.29	U
2,4,5-Trichlorophenol	ug/L			0.66	U	0.7	U	0.68	U	0.69	U	0.69	U
2,4,6-Trichlorophenol	ug/L		20	0.6	U	0.64	U	0.62	U	0.63	U	0.62	U
2,4-Dichlorophenol	ug/L	39	112	0.51	U	0.54	U	0.91	J	0.54	U	0.53	U
2,4-Dimethylphenol	ug/L	18	36	0.55	U	24		19		5.1	J	8	J
2,4-Dinitrophenol	ug/L	71	123	14	U	14	U	14	U	14	U	14	U
2,4-Dinitrotoluene	ug/L		18	0.48	U	0.51	U	0.49	U	0.5	U	0.5	U
2,6-Dinitrotoluene	ug/L	255	641	0.54	U	0.57	U	0.55	U	0.56	U	0.56	U
2-Chloronaphthalene	ug/L			0.47	U	0.5	U	0.48	U	0.49	U	0.49	U
2-Chlorophenol	ug/L	31	98	0.48	U	0.51	U	0.49	U	0.5	U	0.5	U
2-Methylnaphthalene	ug/L			0.63	J	0.52	U	0.51	U	0.52	U	0.55	J
2-Methylphenol	ug/L			13		15		14		8.5	J	9.1	J
2-Nitroaniline	ug/L			0.5	U	0.53	U	0.52	U	0.53	U	0.52	U
2-Nitrophenol	ug/L	41	69	0.57	U	0.61	U	0.59	U	0.6	U	0.59	U
3,3'-Dichlorobenzidine	ug/L		60	0.43	U	0.46	U	0.45	U	0.45	U	0.45	U
3-Nitroaniline	ug/L			0.43	U	0.45	U	0.44	U	0.45	U	0.44	U
4,6-Dinitro-2-methylphenol	ug/L			15	U	16	U	15	U	16	U	16	U
4-Bromophenylphenyl ether	ug/L			0.53	U	0.56	U	0.54	U	0.55	U	0.55	U

TABLE 4-14

ANALYTICAL RESULTS
LAGOON SURFACE WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

G		Dischar	ge Limits	ELWS-0	1	ELWS-0	2	ELWS-02	2D	WLWS-0	01	WLWS-	02
Constituent	Units	NJDEP BO	SR Permit ⁽¹⁾	04/25/08	3	04/25/08	3	04/25/08	3	04/25/08	8	04/25/0	8
of	Units	Monthly	Daily	East Lago		East Lago	on	East Lago	on	West Lago	oon	West Lag	oon
Interest			Maximum	Primary		Primary		Duplicat		Primary		Primar	_
Semivolatile Organics (Continued)				,		<i>J</i>							
4-Chloro-3-methylphenol	ug/L			0.63	U	0.66	U	0.64	U	0.66	U	0.65	U
4-Chloroaniline	ug/L			0.49	U	0.52	U	0.5	U	0.51	U	0.51	U
4-Chlorophenyl phenyl ether	ug/L			0.45	U	0.48	U	0.46	U	0.47	U	0.47	U
4-Methylphenol	ug/L			27		50		47		14		18	\Box
4-Nitroaniline	ug/L			0.27	U	0.28	U	0.28	U	0.28	U	0.28	U
4-Nitrophenol	ug/L	72	124	0.74	U	0.79	U	0.76	U	0.78	U	0.77	U
Acenaphthene	ug/L			2.5	J	1.7	J	1.5	J	3.9	J	2.6	J
Acenaphthylene	ug/L			0.53	J	0.64	J	0.5	U	0.51	U	0.51	U
Acetophenone	ug/L			2.2	J	2.3	J	2.3	J	0.51	U	0.51	U
Anthracene	ug/L	22	59	0.85	J	1	J	1.7	J	0.56	U	0.56	U
Atrazine	ug/L			0.41	U	0.44	U	0.42	U	0.43	U	0.43	U
Benzaldehyde	ug/L			0.57	U	0.61	U	0.59	U	0.6	U	0.6	U
Benzo(a)anthracene	ug/L		10	0.44	U	0.46	U	0.45	U	0.46	U	0.45	U
Benzo(a)pyrene	ug/L		20	0.46	U	0.49	U	0.48	U	0.49	U	0.48	U
Benzo(b)fluoranthene	ug/L		10	0.33	U	0.35	U	0.34	U	0.35	U	0.34	U
Benzo(ghi)perylene	ug/L			0.29	U	0.31	U	0.3	U	0.3	U	0.3	U
Benzo(k)fluoranthene	ug/L		20	0.42	U	0.44	U	0.43	U	0.44	U	0.43	U
Bis(2-chloroethoxy)methane	ug/L			1.3	U	1.4	U	1.3	U	1.4	U	1.3	U
Bis(2-chloroethyl)ether	ug/L		10	0.49	U	0.52	U	0.5	U	0.51	U	0.51	U
Bis(2-ethylhexyl)phthalate	ug/L	59	118	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Butyl benzyl phthalate	ug/L		24	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
Caprolactam	ug/L			2	U	2.1	U	2	U	2.1	U	2.1	U
Carbazole	ug/L			0.55	U	0.59	U	0.57	U	0.58	U	0.57	U
Chrysene	ug/L		20	0.38	U	0.4	U	0.39	U	0.39	U	0.39	U
Dibenzo(a,h)anthracene	ug/L		20	0.37	U	0.39	U	0.38	U	0.39	U	0.38	U
Dibenzofuran	ug/L			0.57	U	0.6	U	1.2	J	0.59	U	0.59	U
Diethyl phthalate	ug/L	81	203	2.6	U	2.7	U	2.7	U	2.7	U	2.7	U
Dimethyl phthalate	ug/L	19	47	0.45	U	0.47	U	0.46	U	0.47	U	0.46	U
Di-n-butyl phthalate	ug/L	27	57	0.49	U	0.52	U	0.51	U	0.51	U	0.51	U
Di-n-octyl phthalate	ug/L			0.45	U	0.48	U	0.46	U	0.47	U	0.47	U
Fluoranthene	ug/L	25	68	0.52	U	0.57	J	0.54	U	0.55	U	0.54	U
Fluorene	ug/L	22	59	0.79	J	0.61	U	0.98	J	0.68	J	0.6	U
Hexachlorobenzene	ug/L		10	0.46	U	0.49	U	0.47	U	0.48	U	0.48	U
Hexachlorobutadiene	ug/L	20	49	0.4	U	0.42	U	0.41	U	0.42	U	0.41	U

TABLE 4-14

ANALYTICAL RESULTS
LAGOON SURFACE WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constitution and		Dischar	ge Limits	ELWS-0)1	ELWS-0	2	ELWS-02	2D	WLWS-0)1	WLWS-0	02
Constituent	Units	NJDEP BO	R Permit ⁽¹⁾	04/25/0	8	04/25/08	8	04/25/08	3	04/25/08	3	04/25/08	8
of	Units	Monthly	Daily	East Lago		East Lago	on	East Lago	on	West Lago	on	West Lago	
Interest		•	Maximum	Primary		Primary		Duplicat		Primary		Primary	
Semivolatile Organics (Continued)		. 8		•						<u> </u>			
Hexachlorocyclopentadiene	ug/L		1800	0.85	U	0.9	U	0.87	U	0.89	U	0.88	U
Hexachloroethane	ug/L	21	54	0.46	U	0.49	U	0.47	U	0.48	U	0.48	U
Indeno(1,2,3-cd)pyrene	ug/L		20	0.5	U	0.53	U	0.52	U	0.53	U	0.52	U
Isophorone	ug/L		20	0.5	U	0.53	U	0.52	U	0.53	U	0.52	U
Naphthalene	ug/L			6.6	J	2.3	J	2	J	8.4	J	7.3	J
Nitrobenzene	ug/L	27	69	0.68	U	0.72	U	0.7	U	0.71	U	0.7	U
N-Nitrosodiphenylamine	ug/L		20	0.52	U	0.55	U	0.53	U	0.54	U	0.54	U
N-Nitrosodipropylamine	ug/L			0.63	U	0.67	U	0.65	U	0.66	U	0.65	U
Pentachlorophenol	ug/L		30	0.88	U	0.93	U	0.9	U	0.92	U	0.91	U
Phenanthrene	ug/L	22	59	0.85	J	1.1	J	0.9	J	0.61	U	0.61	U
Phenol	ug/L	15	26	24		24		21		22		20	
Pyrene	ug/L	25	67	0.6	U	0.63	U	0.62	U	0.63	U	0.62	U
Polychlorinated Biphenyls (Aroclors)													
Aroclor 1016	ug/L		0.05	0.1	U								
Aroclor 1221	ug/L		0.05	0.1	U								
Aroclor 1232	ug/L		0.05	0.12	U								
Aroclor 1242	ug/L		0.05	0.077	U	0.077	U	0.076	U	0.077	U	0.077	U
Aroclor 1248	ug/L		0.05	0.095	U	0.095	U	0.093	U	0.094	U	0.095	U
Aroclor 1254	ug/L		0.05	0.095	U	0.095	U	0.093	U	0.094	U	0.095	U
Aroclor 1260	ug/L		0.05	0.056	U	0.056	U	0.055	U	0.056	U	0.056	U
Aroclor 1262	ug/L		0.05	0.086	U	0.086	U	0.084	U	0.085	U	0.086	U
Aroclor 1268	ug/L		0.05	0.11	U								
Pesticides													
4,4'-DDD	ug/L		0.06	0.008	U	0.008	U	0.0079	U	0.008	U	0.008	U
4,4'-DDE	ug/L		0.04	0.007	U	0.007	U	0.0069	U	0.007	U	0.007	U
4,4'-DDT	ug/L		0.04	0.014	U								
Aldrin	ug/L		0.04	0.012	U	0.012	U	0.011	U	0.011	U	0.012	U
alpha-BHC	ug/L		0.02	0.016	U	0.016	U	0.015	U	0.016	U	0.016	U
alpha-Chlordane	ug/L		0.20	0.012	U	0.012	U	0.011	U	0.012	U	0.012	U
beta-BHC	ug/L	0.46	0.92	0.015	U								
delta-BHC	ug/L			0.022	JP	0.047	JP	0.049	J	0.0097	U	0.0098	U
Dieldrin	ug/L		0.03	0.0083	U	0.0083	U	0.0082	U	0.0082	U	0.0083	U
Endosulfan I	ug/L		0.02	0.0077	U	0.0077	U	0.0076	U	0.0076	U	0.0077	U
Endosulfan II	ug/L		0.04	0.016	U	0.016	U	0.015	U	0.016	U	0.016	U

TABLE 4-14

ANALYTICAL RESULTS
LAGOON SURFACE WATER SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

		Dischar	ge Limits	ELWS-0)1	ELWS-0	2	ELWS-02	2D	WLWS-0)1	WLWS-	02
Constituent	TT 14	NJDEP BO	GR Permit ⁽¹⁾	04/25/08	8	04/25/08	8	04/25/08	3	04/25/08	3	04/25/0	8
of	Units	Monthly	Daily	East Lago		East Lago		East Lago				West Lag	
Interest			Maximum	Primary		Primary		Duplicat		Primary		Primar	'
Pesticides (Continued)													
Endosulfan sulfate	ug/L	2	4	0.017	U	0.017	U	0.016	U	0.016	U	0.017	U
Endrin	ug/L		0.04	0.0094	JP	0.01	JP	0.011	J	0.0079	U	0.018	JP
Endrin aldehyde	ug/L	0.81	1.62	0.013	U	0.013	U	0.012	U	0.012	U	0.013	U
Endrin ketone	ug/L			0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
gamma-Chlordane	ug/L			0.0079	U	0.0079	U	0.0077	U	0.0078	U	0.0079	U
Heptachlor	ug/L		0.02	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U
Heptachlor epoxide	ug/L		0.40	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
Lindane	ug/L		0.03	0.016	U	0.016	U	0.015	U	0.016	U	0.016	U
Methoxychlor	ug/L			0.019	U	0.13		0.12		0.019	U	0.019	U
Toxaphene	ug/L		1	0.43	U	0.43	U	0.42	U	0.42	U	0.43	U
Metals													
Aluminum	ug/L			63	BJ	71.2	BJ	61.7	В	45.1	BJ	54.3	BJ
Antimony	ug/L			2.9	U	2.9	U	2.9	U	2.9	U	2.9	U
Arsenic	ug/L	50	100	2.2	U	2.2	U	2.2	U	2.2	U	2.2	U
Barium	ug/L			15.9	В	14.7	В	15	В	9	В	9.2	В
Beryllium	ug/L			0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
Cadmium	ug/L	50	100	0.23	U	0.23	U	0.23	U	0.23	U	0.23	U
Calcium	ug/L			47500	J	46600	J	47600	J	39300	J	40100	J
Chromium	ug/L	50	100	118		115		118		61		61.2	
Chromium (Hexavalent)	ug/L			10	U	10	U	10	U	10	U	10	U
Cobalt	ug/L			1.9	В	1.9	В	1.5	В	0.83	В	0.87	В
Copper	ug/L	50	100	6.7	В	6.5	В	6.6	В	3.5	В	3.7	В
Iron	ug/L			1240		1280		1300		279		319	
Lead	ug/L	50	100	57.5		56.3		57.7		5.9		7.2	
Magnesium	ug/L			72900	J	71400	J	72800	J	49900	J	50500	J
Manganese	ug/L			112		113		115		38.1		39.2	
Mercury	ug/L		1	0.24		0.23		0.22		0.074	В	0.085	В
Nickel	ug/L	50	100	17.8	В	17.9	В	18	В	9.8	В	9.6	В
Potassium	ug/L			2680	В	2580	В	2620	В	1710	В	1710	В
Selenium	ug/L	50	100	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Silver	ug/L	25	50	0.78	В	0.59	U	0.59	U	0.69	В	0.59	U
Sodium	ug/L			48100		46600		47200		32600		32800	
Thallium	ug/L			3.1	U	3.1	U	3.1	U	3.1	U	3.1	U
Vanadium	ug/L			17.6	В	16.4	В	17.6	В	12.1	В	11.9	В

TABLE 4-14

ANALYTICAL RESULTS

LAGOON SURFACE WATER SAMPLES

STANDARD CHLORINE SITE

KEARNY, NEW JERSEY

Constituent		Dischar	ge Limits	ELWS-0	1	ELWS-0	2	ELWS-02	2D	WLWS-	01	WLWS-	02
of	Units	NJDEP BO	SR Permit ⁽¹⁾	04/25/08	3	04/25/08	3	04/25/08	3	04/25/08	8	04/25/0	18
Interest		Monthly	Daily	East Lago	on	East Lago	on	East Lago	on	West Lago	oon	West Lag	oon
		Average	Maximum	Primary	,	Primary	7	Duplicat	e	Primary	7	Primar	y
Metals (Continued)													
Zinc	ug/L	100	200	6.6	В	7.4	В	6.5	В	7.9	В	3.6	В
Indicator Parameters													
Biochemical Oxygen Demand	mg/L			78		74.9		69.8		33.1		32	
Total Organic Carbon	mg/L		20	138	J	134	J	NA		68.2	J	69.6	J
Chemical Oxygen Demand (COD)	mg/L			411		397		NA		187		192	
Cyanide	mg/L	100	200	2	В	1.7	U	NA		1.7	U	1.7	U
Ferrous Iron	mg/L			0.15		0.13		0.18		0.1	U	0.1	U
Oil & Grease (Hexane Extractable)	mg/L			0.54	U	0.54	U	NA		0.54	U	0.52	U
Residue, filterable	mg/L			823		888		NA		565		522	
Residue, non-filterable	mg/L			4	U	4	U	NA		4	U	4	U
Total Alkalinity	mg/L			213	J	207	J	NA		172	J	174	J
Total Sulfide	mg/L			1.2	U	1.2	U	NA		1.2	U	1.2	U

Notes:

1. Criteria are as specified in the NJDEP Statewide Final NJPDES General Remediation Clean-up Permit (GRC) dated April 21, 2005. NJPDES Permit No. NJ0155438 P

Potential exceedances of discharge limits are highlighted. Results which exceed both the monthly average and daily maximum are shown in bold, shaded typeface. Results which exceed the monthly average but not the daily maximum are shown in shaded typeface. Results which exceed the daily maximum but not the monthly average (i.e., when a daily maximum limit does not exist) are shown in bold typeface.

Data qualifiers are as follows:

- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-15

ANALYTICAL RESULTS
SOUTH DITCH SOFT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	SDWC 05/21/0 0.5-1.0 Primar)8 ft	SDWC- 05/21/0 0.5-1.0 t Primar	8 ft	SDWC- 05/20/0 0.5-1.0 Primar	8 ft	SDWC- 05/20/0 0.5-1.0 Primar	8 ft	SDWC- 05/20/0 0.5-1.0 Primar	8 ft	SDWC- 05/20/0 0.5-1.0 Duplica	08 ft
Volatile Organics			2 2 2 2 2 2 2	J		J	1111141	J	1 1 111441	J	1111141	J	2 0,71100	
1,1,1-Trichloroethane	mg/Kg	4200	0.25	U	1.7	U	0.15	U	0.0015	U	0.13	U	0.00098	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.28	U	1.9	U	0.16	U	0.0022	U	0.14	U	0.0015	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.26	U	1.8 2.1	U	0.18	U	0.0033	U	0.15	U	0.0022 0.0017	U
1,1,2-Trichloroethane	mg/Kg	6 24	0.3	U	1.7	U	0.15	_	0.0026	U	0.13	U	0.0017	U
1,1-Dichloroethane	mg/Kg	150	0.24	U	2	U	0.14	U	0.0018	U	0.12	U	0.0013	U
1,2,4-Trichlorobenzene	mg/Kg mg/Kg	820	0.29	J	1.8	U	0.17	U	0.0026	U	4.3	U	0.0017	+ 0
1,2-Dibromoethane	mg/Kg	0.04	0.48	U	1.8	U	0.15	U	0.0027	U	0.13	U	0.12	U
,2-Dichlorobenzene	mg/Kg	59000	20	U	48	U	0.13	J	0.0027	U	0.13	J	0.0017	+
.2-Dichloroethane	mg/Kg	3	0.27	U	1.9	U	0.16	U	0.0019	U	0.14	U	0.0012	U
,2-Dichloropropane	mg/Kg	5	0.27	U	1.9	U	0.16	U	0.0017	U	0.14	U	0.0012	U
3-Dichlorobenzene	mg/Kg	59000	16		5.9	J	1		0.033		0.22	J	0.042	T
1.4-Dichlorobenzene	mg/Kg	13	19		43	Ů	1.3		0.047		0.45	J	0.059	T
2-Butanone	mg/Kg	44000	0.24	U	1.7	U	0.14	U	0.0027	U	0.12	U	0.0018	U
-Hexanone	mg/Kg		0.19	U	1.3	U	0.12	U	0.0021	U	0.098	U	0.0014	U
-Methyl-2-pentanone	mg/Kg		0.21	U	1.5	U	0.13	U	0.002	U	0.11	U	0.0013	U
Acetone	mg/Kg		0.29	U	2	U	0.17	U	0.016	U	0.15	U	0.01	U
Benzene	mg/Kg	5	0.25	U	5.5	J	0.15	U	0.0021	U	0.13	U	0.0014	U
Bromodichloromethane	mg/Kg	3	0.24	U	1.7	U	0.14	U	0.0017	U	0.12	U	0.0011	U
Bromoform	mg/Kg	280	0.25	U	1.7	U	0.15	U	0.0014	U	0.13	U	0.00089	U
Bromomethane	mg/Kg	59	0.31	U	2.2	U	0.18	U	0.0023	U	0.16	U	0.0015	U
Carbon disulfide	mg/Kg	110000	0.3	U	2.1	U	0.18	U	0.0016	U	0.15	U	0.001	U
Carbon tetrachloride	mg/Kg	2	0.22	U	1.5	U	0.13	U	0.0014	U	0.11	U	0.0009	U
Chlorobenzene	mg/Kg	7400	3.7	\perp	140	<u> </u>	13	$\downarrow \downarrow$	0.008	J	0.2	J	0.032	4
Chloroethane	mg/Kg	1100	0.35	U	2.4	U	0.21	U	0.0048	U	0.18	U	0.0031	U
Chloroform	mg/Kg	2	0.26	U	1.8	U	0.15	U	0.0018	U	0.13	U	0.0012	U
Chloromethane	mg/Kg	12	0.27	U	1.9	U	0.16	U	0.0026	U	0.14	U	0.0017	U
is-1,2-Dichloroethene	mg/Kg	560	0.26	U	1.8	U	0.16	U	0.0022	U	0.13	U	0.0014	U
is-1,3-Dichloropropene	mg/Kg	7	0.22	U	1.5	U	0.13	U	0.0021	U	0.11	U	0.0014	U
Cyclohexane	mg/Kg		0.24	U	1.7	U	0.15	U	0.0012	U	0.12	U	0.00075	U
Dibromochloromethane	mg/Kg	8	0.23	U	1.6	U	0.13	U	0.0022	U	0.12	U	0.0014	U
Dibromochloropropane	mg/Kg		0.21	U	1.4	U	0.12	U	0.0023	U	0.1	U	0.0015	U
Dichlorodifluoromethane	mg/Kg	230000	0.31	U	2.2	U	0.19	U	0.0021	U	0.16	U	0.0013	U
thylbenzene	mg/Kg	110000	0.29	U	2	U	0.17	U	0.002	U	0.15	U	0.0019 0.0014	J
sopropylbenzene	mg/Kg		0.26	U	1.8	U	0.16	U	0.0021	U	0.13	U		U
Methyl acetate Methylcyclohexane	mg/Kg		0.26	U	1.8	U	0.15 0.16	U	0.0028	U	0.13	U	0.0018 0.0015	U
1ethylene chloride	mg/Kg mg/Kg	 97	0.27	U	1.9	U	0.16	U	0.0023	U	0.14	U	0.0015	U
Tethyltert-butylether	mg/Kg mg/Kg	320	0.19	U	1.6	U	0.11	U	0.0021	U	0.095	U	0.0014	U
tyrene	mg/Kg mg/Kg	260	0.23	U	1.6	U	0.13	U	0.0023	U	0.11	U	0.0015	U
Tetrachloroethene	mg/Kg	5	0.27	U	2.2	U	0.10	U	0.0017	U	0.14	U	0.0011	U
oluene	mg/Kg	91000	0.32	U	1.3	U	0.19	U	0.0021	U	0.16	U	0.0014	U
rans-1,2-Dichloroethene	mg/Kg	720	0.19	U	2	U	0.12	U	0.0023	U	0.098	U	0.0013	U
rans-1,3-Dichloropropene	mg/Kg	7	0.28	U	1.5	U	0.17	U	0.0019	U	0.14	U	0.0012	U
richloroethene	mg/Kg	20	0.27	U	1.9	U	0.15	U	0.002	U	0.11	U	0.0012	U
richlorofluoromethane	mg/Kg	340000	0.4	U	2.8	U	0.24	U	0.0029	U	0.2	U	0.0019	U
inyl chloride	mg/Kg	2	0.27	U	1.9	U	0.16	U	0.0015	U	0.14	U	0.00095	U
Kylene (total)	mg/Kg	170000	0.86	U	6	U	0.51	U	0.007	U	0.44	U	0.0078	J
emivolatile Organics														
,1'-Biphenyl	mg/Kg	34000	3300	Е	0.67	U	0.053	U	0.15	J	0.065	U	0.21	J
,2'-oxybis(1-chloropropane)	mg/Kg		2.4	U	0.73	U	0.057	U	0.044	U	0.071	U	0.046	U
,4,5-Trichlorophenol	mg/Kg	68000	3.4	U	1	U	0.079	U	0.061	U	0.097	U	0.063	U
,4,6-Trichlorophenol	mg/Kg	74	3.3	U	0.99	U	0.077	U	0.06	U	0.095	U	0.061	U
,4-Dichlorophenol	mg/Kg	2100	1.2	U	0.36	U	0.028	U	0.022	U	0.035	U	0.023	U
4-Dimethylphenol	mg/Kg	14000	1.7	U	0.53	U	0.041	U	0.032	U	0.051	U	0.047	J
,4-Dinitrophenol	mg/Kg	1400	48	U	14	U	1.1	U	0.87	U	1.4	U	0.9	U
4-Dinitrotoluene	mg/Kg	3	2.1	U	0.63	U	0.049	U	0.038	U	0.061	U	0.039	U
,6-Dinitrotoluene	mg/Kg	3	2.6	U	0.79	U	0.061	U	0.047	U	0.076	U	0.049	U
-Chloronaphthalene	mg/Kg	2200	2.3	U	0.71	U	0.055	U	0.043	U	0.068	U	0.044	U
-Chlorophenol -Mathylpophthologo	mg/Kg	2200	2	U	0.62	U	0.048	U	0.037	U	0.059	U	0.038	U
-Methylphanol	mg/Kg	2400	5	J	0.68	U	0.2	J	0.59	J	0.14	J	0.87	+,
-Methylphenol -Nitroaniline	mg/Kg	3400 23000	2.5	U	0.77	U	0.06 0.057	U	0.046	U	0.074	U	0.048 0.046	U
-Nitroaniline -Nitrophenol	mg/Kg mg/Kg		3.2	U	0.74	U	0.057	U	0.044	U	0.071	U	0.046	U
3'-Dichlorobenzidine	mg/Kg mg/Kg	4	9.1	U	2.8	U	0.076	U	0.059	U	0.094	U	0.061	U
-Nitroaniline	mg/Kg mg/Kg		3.5	U	1	U	0.21	U	0.17	U	0.26	U	0.17	U
6-Dinitro-2-methylphenol	mg/Kg	68	29	U	8.6	U	0.082	U	0.063	U	0.1	U	0.063	U
-Bromophenylphenyl ether	mg/Kg		1.8	U	0.55	U	0.043	U	0.033	U	0.053	U	0.034	U
Chloro-3-methylphenol	mg/Kg		2.5	U	0.75	U	0.043	U	0.033	U	0.033	U	0.034	U
-Chloroaniline	mg/Kg		3.5	U	1.1	U	0.038	U	0.043	U	0.072	U	0.046	U
Chlorophenyl phenyl ether	mg/Kg		2	U	0.61	U	0.047	U	0.037	U	0.058	U	0.038	U
-Methylphenol	mg/Kg	340	2.5	U	0.77	U	0.06	U	0.046	U	0.28	J	0.048	U
-Nitroaniline	mg/Kg		1.7	U	0.51	U	0.04	U	0.031	U	0.049	U	0.032	U
Nitrophenol	mg/Kg		3.2	U	0.95	U	0.074	U	0.057	U	0.092	U	0.059	U
cenaphthene	mg/Kg	37000	2.1	U	4.8	J	0.56	J	0.52	J	0.093	J	0.73	J
cenaphthylene	mg/Kg	300000	2.4	U	1.5	J	0.3	J	0.16	J	0.17	J	0.29	J
cetophenone	mg/Kg	5	2.5	U	0.74	U	0.058	U	0.045	U	0.071	U	0.046	U
nthracene	mg/Kg	30000	13	J	19		0.28	J	0.22	J	0.11	J	0.35	J
trazine	mg/Kg	2400	2.8	U	0.84	U	0.066	U	0.051	U	0.081	U	0.052	U
Benzaldehyde	mg/Kg	68000	4.3	U	1.3	U	0.1	U	0.078	U	0.12	U	0.081	U
Senzo(a)anthracene	mg/Kg	2	27	J	45		0.96		0.36	J	0.37	J	0.67	J
Benzo(a)pyrene	mg/Kg	0.2	26	J	38		1.6	П	0.43	J	0.44	J	0.77	Г
Benzo(b)fluoranthene	mg/Kg	2	40		58		2.4		0.81		0.78	J	1.3	T
ochzo(b)Huoranunche														
Benzo(ghi)perylene	mg/Kg	30000	16	J	20		1.6		0.41	J	0.4	J	0.71	J

TABLE 4-15

ANALYTICAL RESULTS
SOUTH DITCH SOFT SOIL SAMPLES
STANDARD CHLORINE SITE
KEARNY NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	SDWC- 05/21/0 0.5-1.0	8 ft	SDWC- 05/21/03 0.5-1.0 f	8 ft	SDWC- 05/20/03 0.5-1.0 f	8	SDWC- 05/20/03 0.5-1.0 f	8 ft	SDWC- 05/20/0 0.5-1.0	8 ft	SDWC- 05/20/0 0.5-1.0	8
			Primar	y	Primar	y	Primar	y	Primar	y	Primar	y	Duplica	ite
Semivolatile Organics (Continued) Bis(2-chloroethoxy)methane	mg/Kg		1.9	U	0.57	U	0.044	U	0.034	U	0.055	U	0.035	ΙU
Bis(2-chloroethyl)ether	mg/Kg	2	0.91	U	0.28	U	0.021	U	0.017	U	0.026	U	0.017	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	3.1	U	0.94	U	1.1		0.057	U	0.09	U	0.058	U
Butyl benzyl phthalate	mg/Kg	14000	3.3	U	0.98	U	0.077	U	0.059	U	0.094	U	0.061	U
Caprolactam	mg/Kg	340000	7.7	U	2.3	U	0.18	U	0.14	U	0.22	U	0.14	U
Carbazole	mg/Kg	96	7.2	J	3.6	J	0.039	U	0.08	J	0.088	J	0.13	J
Chrysene	mg/Kg	230	24	J	39		1.1	_	0.43	J	0.37	J	0.63	J
Dibenzo(a,h)anthracene	mg/Kg	0.2	2.9	J	6.1	J	0.39	J	0.084	J	0.075	U	0.074	J
Dibenzofuran Diethyl phthalate	mg/Kg mg/Kg	550000	49 3.6	U	3.3	J U	0.3	J U	0.35 0.066	J U	0.15	J U	0.53	J U
Dimethyl phthalate	mg/Kg	330000	2.3	U	0.69	U	0.083	U	0.042	U	0.067	U	0.068	U
Di-n-butyl phthalate	mg/Kg	68000	6.7	U	2	U	0.034	U	0.042	U	0.007	U	0.043	U
Di-n-octyl phthalate	mg/Kg	27000	2.8	U	0.85	U	0.066	U	0.051	U	0.082	U	0.053	U
Fluoranthene	mg/Kg	24000	56		87		1.4		0.65	J	0.74	J	1.1	Ť
Fluorene	mg/Kg	24000	8.7	J	5.1	J	0.22	J	0.24	J	0.057	U	0.36	J
Hexachlorobenzene	mg/Kg	1	2.4	U	0.74	U	0.057	U	0.044	U	0.071	U	0.046	U
Hexachlorobutadiene	mg/Kg	25	2.5	U	0.75	U	0.058	U	0.045	U	0.072	U	0.047	U
Hexachlorocyclopentadiene	mg/Kg	110	1.9	U	0.56	U	0.044	U	0.034	U	0.054	U	0.035	U
Hexachloroethane	mg/Kg	140	1.8	U	0.55	U	0.043	U	0.033	U	0.053	U	0.034	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	14	J	19	<u> </u>	1.3		0.34	J	0.34	J	0.56	J
Isophorone	mg/Kg	2000	2.3	U	0.68	U	0.053	U	0.041	U	0.065	U	0.042	U
Naphthalene Nitrobangana	mg/Kg	17	38	J	0.59	U	0.57	J	0.93	ŢΤ	0.44	J	1.4	т т
Nitrobenzene N-Nitrosodiphenylamine	mg/Kg mg/Kg	340 390	2.2	U	0.3 0.66	U	0.024 0.052	U	0.018	U	0.029	U	0.019	U
N-Nitrosodipnenylamine N-Nitrosodipropylamine	mg/Kg mg/Kg	0.3	0.99	U	0.66	U	0.052	U	0.04	U	0.064	U	0.041	U
Pentachlorophenol	mg/Kg	10	3	U	0.5	U	0.023	U	0.018	U	0.029	U	0.019	U
Phenanthrene	mg/Kg	300000	53		57	J	0.071	J	0.033	J	0.088	J	0.86	T
Phenol	mg/Kg	210000	2.4	U	0.74	U	0.058	U	0.045	U	0.45	J	0.046	U
Pyrene	mg/Kg	18000	49		79		1.2		0.6	J	0.62	J	0.94	Ī
Polychlorinated Dioxins and Furans			•											
1,2,3,4,6,7,8-HpCDD	ug/Kg		1.2		0.17		0.14		0.13		0.051		0.24	
1,2,3,4,6,7,8-HpCDF	ug/Kg		14	В	10	В	11	В	18	В	2.4	В	34	В
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.48		0.33		0.41		0.53		0.073		1	ــــــ
1,2,3,4,7,8-HxCDD	ug/Kg		0.034	J	0.008	J	0.012	J	0.007	QJ	0.0032	J	0.016	Ļ
1,2,3,4,7,8-HxCDF	ug/Kg		4.6	В	2.9	QB	4.9	QB	6.2	QB	0.84	QB	13	В
1,2,3,6,7,8-HxCDD	ug/Kg		0.073	J B	0.021	D	0.025	В	0.032	D	0.008	J	0.063	В
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	ug/Kg ug/Kg		0.78 0.033	J	0.45 0.0086	B J	0.8	J	0.87 0.0068	B J	0.0034	В	0.015	B
1,2,3,7,8,9-HxCDF	ug/Kg		0.033	U	0.0069	J	0.011	J	0.0008	U	0.0034	U	0.013	U
1,2,3,7,8-PCDD	ug/Kg ug/Kg		0.035	J	0.0009	J	0.014	J	0.0098	J	0.0051	J	0.021	+
1,2,3,7,8-PCDF	ug/Kg		0.15	Ť	0.088	O	0.21	-	0.079	,	0.015	J	0.17	0
2,3,4,6,7,8-HxCDF	ug/Kg		0.28		0.18		0.24		0.3		0.046		0.57	\vdash
2,3,4,7,8-PCDF	ug/Kg		0.4		0.22	Q	0.44	Q	0.48		0.068		1	
2,3,7,8-TCDD	ug/Kg		0.03	Q	0.007	Q	0.0058		0.0033		0.0035	QJ	0.0071	
2,3,7,8-TCDF	ug/Kg		0.066	Q	0.089		0.049		0.019		0.0084		0.047	1
OCDD	ug/Kg		15	В	2	В	0.84	В	3.2	В	0.48	В	1.8	В
OCDF	ug/Kg		25	В	20	BE	16	BE	40	В	4.2	В	79	В
Total HpCDD	ug/Kg		2.6	В	0.39	В	0.27	В	0.27	В	0.11	В	0.5	В
Total HpCDF	ug/Kg	<u></u>	17	QB	12	QB	13	QB	21	QB	2.7	QB	39	QB
Total Hy/CDE	ug/Kg		0.91	Q OB	0.2 6.9	Q QB	0.17 11	Q QB	0.19	Q	0.056	QJ QB	0.41	Q QB
Total HxCDF Total PeCDD	ug/Kg ug/Kg		11	QB O	0.9	QB O	0.21	QB O	0.37	B O	0.17	QB O	0.84	QB O
Total PeCDF	ug/Kg ug/Kg		5.7	Q	3.4	Q	5.6	Q	5.3	Q	0.17	Q	11	0
Total TCDD	ug/Kg ug/Kg		0.58	0	0.2	Q	0.14	0	0.2	Q	0.094	0	0.42	0
Total TCDF	ug/Kg		5.1	Ŏ	2.5	Q	4	Ō	3.1	QE	0.61	0	6.4	QE
Polychlorinated Dioxins/Furans (2,3,7,8		ts)			= , ,						7,77		7,1	
1,2,3,4,6,7,8-HpCDD	0.01		1.2E-02		1.7E-03		1.4E-03		1.3E-03		5.1E-04		2.4E-03	
1,2,3,4,6,7,8-HpCDF	0.01		1.4E-01		1.0E-01		1.1E-01		1.8E-01		2.4E-02		3.4E-01	oxdot
1,2,3,4,7,8,9-HpCDF	0.01		7.3E-04		2.1E-04		2.5E-04		3.2E-04	Щ	8.0E-05		6.3E-04	₩.
1,2,3,4,7,8-HxCDD	0.10		4.8E-02		3.3E-02		4.1E-02		5.3E-02		7.3E-03		1.0E-01	₩
1,2,3,4,7,8-HxCDF	0.10		3.4E-03		8.0E-04		1.2E-03				3.2E-04		1.6E-03	
1,2,3,6,7,8-HxCDD	0.10		4.6E-01		4 5 F 00		0.05.02		0.7E.02		1 25 02		1.3E+00	+
1,2,3,6,7,8-HxCDF	0.10		7.8E-02		4.5E-02		8.0E-02		8.7E-02		1.2E-02		1.7E-01	\vdash
1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	0.10		3.3E-03		8.6E-04 6.9E-04		1.1E-03 1.4E-03		6.8E-04	\vdash	3.4E-04	\vdash	1.5E-03	
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PCDD	1.00		3.5E-02		1.0E-02		1.4E-03 1.1E-02		9.8E-03		5.1E-03		2 1E-02	+
1,2,3,7,8-PCDF	0.05		7.5E-03		1.0L-02		1.1E-02 1.1E-02		4.0E-03		7.5E-04		2.1E-02	T
2,3,4,6,7,8-HxCDF	0.10		2.8E-02		1.8E-02		2.4E-02		3.0E-02		4.6E-03		5.7E-02	T
2,3,4,7,8-PCDF	0.50		2.0E-01						2.4E-01		3.4E-02		5.0E-01	
2,3,7,8-TCDD	1.00						5.8E-03		3.3E-03				7.1E-03	\Box
2,3,7,8-TCDF	0.10				8.9E-03		4.9E-03		1.9E-03		8.4E-04		4.7E-03	$oxed{\Box}$
OCDD	0.0001		1.5E-03		2.0E-04	oxdot	8.4E-05		3.2E-04	oxdot	4.8E-05		1.8E-04	\perp
OCDF	0.0001		2.5E-03		2.0E-03		1.6E-03		4.0E-03		4.2E-04		7.9E-03	\perp
Total 2.3.7.8-TCDD Equivalents ⁽²⁾	ug/Kg	1	1.0E+00		2.2E-01		2.9E-01		6.2E-01		9.0E-02		2.5E+00	_
Polychlorinated Biphenyls (Aroclors)	177	1 1			0.22	D.C.	0.0076	7.	0.0055	7.	0.0000	7.7	0.0055	1
Aroclor 1016	mg/Kg	<u>l</u>	2.5	TT	0.33	PG	0.0072	U	0.0056	U	0.0088	U	0.0057	U
Aroclor 1221 Aroclor 1232	mg/Kg	1 1	0.016 0.014	U	0.0078 0.007	U	0.0092	U	0.0071	U	0.011	U PG	0.0073	U
Aroclor 1232 Aroclor 1242	mg/Kg mg/Kg	1	0.014	U	0.007	U	0.25	U	0.16	U	0.094	U	0.25	U
Aroclor 1242 Aroclor 1248	mg/Kg mg/Kg	1	0.013	U	0.0067	U	0.0079	U	0.0035	U	0.0096	U	0.0062	U
Aroclor 1248 Aroclor 1254	mg/Kg mg/Kg	1	3.3	<u> </u>	0.0039	U	0.0046	U	0.0053	U	0.0036	U	0.0036	U
Aroclor 1260	mg/Kg	1	0.012	U	2.2		0.0009	J	0.0033	J	0.0084	J	0.0034	T
Aroclor 1262	mg/Kg	1	0.012	U	0.009	U	0.011	U	0.0082	U	0.013	U	0.0084	U
-	- <i>0 0</i>		0.01		0.0053		0.0062	U	0.0048	U	0.0076		0.0049	U

TABLE 4-15 ANALYTICAL RESULTS SOUTH DITCH SOFT SOIL SAMPLES STANDARD CHLORINE SITE **KEARNY, NEW JERSEY**

Constituent of Interest	Units	Criterion ⁽¹⁾	SDWC- 05/21/03 0.5-1.0 f	8 ft	SDWC- 05/21/0 0.5-1.0 f	8 ft	SDWC- 05/20/03 0.5-1.0 f	8 It	SDWC- 05/20/03 0.5-1.0 f	8 It	SDWC- 05/20/0 0.5-1.0 t	8 ft	SDWC- 05/20/03 0.5-1.0 f	8 ft
Metals			Primar	<u>y</u>	Primar	<u>y</u>	Primar	y	Primar	y	Primar	y	Duplicat	te
Aluminum	mg/Kg	T	28600	J	5330	J	11300	J	1710	J	12500	J	1750	J
Antimony	mg/Kg	450	27.2		5.4	Ť	2.2	В	0.21	U	0.33	U	0.21	U
Arsenic	mg/Kg	19	17.9		10.1		7.8		2.8		7.4		3.2	
Barium	mg/Kg	59000	600	J	126	J	265	J	203	J	342	J	224	J
Beryllium	mg/Kg	140	0.52	В	0.3	В	0.09	U	0.069	U	0.43	В	0.071	U
Cadmium	mg/Kg	78	3.9		1.2		2		0.42	В	0.86	В	0.39	В
Calcium	mg/Kg	120000	84200		7270		166000		268000		154000		291000	₩
Chromium ⁽³⁾	mg/Kg	120000 20	10400	TI	1020		8700 29.5		1030		4920 24.3		999 9.2	\vdash
Chromium (Hexavalent) ⁽³⁾ Cobalt	mg/Kg mg/Kg	590	24.2	U B	16.9 5.3	В	15.8		6	В	15.7	В	6.1	В
Copper	mg/Kg	45000	213	ь	103	Ъ	88.8		66.8	ъ	24.2	ь	67.8	Б
Iron	mg/Kg		71200	J	36100	J	27000	J	7870	J	54400	J	7810	J
Lead	mg/Kg	800	8440	J	750	J	7170	J	214	J	86	J	220	J
Magnesium	mg/Kg		6010		2470		5710		18500		71700		19900	П
Manganese	mg/Kg	5900	596		412		631		395		597		432	
Mercury	mg/Kg	65	2.5		1.1		1.6		3.1		0.88		3.6	
Nickel	mg/Kg	23000	107		19.3		87.5		113		56.6		118	Ш
Potassium	mg/Kg		755	В	564	В	276	В	127	В	366	В	134	В
Selenium	mg/Kg	5700	2.2	В	0.78	В	0.83	U	0.65	U	1	U	0.66	U
Silver	mg/Kg	5700	2.4		0.6	В	1.1	В	0.3	В	0.72	В	0.31	В
Sodium Thallium	mg/Kg	 79	3660 4.5	D	457 0.79	В	1780 2.5	D	1090 0.72	B U	2000	D	1210 0.74	U
Vanadium	mg/Kg mg/Kg	1100	375	В	60.3	U	423	В	56.1	U	1.6 118	В	58.3	U
Zinc	mg/Kg	11000	3840		502		933		133		162		126	\vdash
Toxicity Characteristic Leaching Procedu		110000	3040		302		733		133		102		120	
1.1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		\blacksquare
1,2-Dichloroethane	mg/L	0.7	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U		\vdash
1,4-Dichlorobenzene	mg/L mg/L	7.5	1		0.69		0.0046	U	0.0054	J	0.0046	U		\vdash
2,4,5-Trichlorophenol	mg/L	400	0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U		\Box
2,4,6-Trichlorophenol	mg/L	2	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U		П
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	-	
2-Butanone	mg/L	200	0.033	U	0.029	U	0.029	U	0.029	U	0.029	U		
Benzene	mg/L	0.5	0.037	U	0.069	J	0.033	U	0.033	U	0.033	U		Ш
Carbon Tetrachloride	mg/L	0.5	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U		Ш
Chlorobenzene	mg/L	100	0.13	J	2.8		0.18	J	0.028	U	0.028	U		\vdash
Chloroform	mg/L	6	0.029	U	0.029	U	0.031	U	0.031	U	0.031	U		$\vdash\vdash$
Cresols Hexachlorobenzene	mg/L mg/L	200 0.13	0.0089	U	0.0089	U	0.0089 0.0049	U	0.0089	U	0.015 0.0049	J U		\vdash
Hexachlorobutadiene	mg/L	0.13	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U		\vdash
Hexachloroethane	mg/L mg/L	3	0.0035	U	0.0035	U	0.0035	U	0.0035	U	0.0035	U		\vdash
Nitrobenzene	mg/L	2	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U		\Box
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U		П
Pyridine	mg/L	5	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	-	
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U		
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		Ш
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U		Ш
Arsenic	mg/L	5	0.33	В	0.19	BJ	0.2	В	0.14	В	0.16	В		\vdash
Barium	mg/L	100	0.45	BJ	0.97	В	1.6	В	0.0012	В	0.55	В		\vdash
Cadmium Chromium	mg/L mg/L	5	0.0012 5.9	U	0.0012 0.081	U BE	0.0012 0.025	U BJ	0.0012	U BJ	0.0012 0.014	U BJ		\vdash
Lead	mg/L	5	0.13	В	0.081	E	6.6	DJ	0.00	В	0.014	В		\vdash
Mercury	mg/L mg/L	0.2	0.000076	В	0.00006	В	0.000055	U	0.000055	U	0.000055	U		\vdash
Selenium	mg/L	1	0.015	U	0.005	U	0.0053	U	0.0053	U	0.0053	U		\sqcap
Silver	mg/L	5	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U		\Box
RCRA Characteristics and Indicators		•												
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>6.68</td><td></td><td>7.3</td><td></td><td>7.99</td><td></td><td>11.83</td><td></td><td>12.1</td><td></td><td>11.8</td><td></td></ph<12.5<>	6.68		7.3		7.99		11.83		12.1		11.8	
Cyanide (Reactivity)	mg/Kg	23000	11.6	J	2	J	1.8		2.2		5		1.7	Ш
Total Sulfide (Reactivity)	mg/Kg		12900		1220		3160		144		1620			Щ
Ignitability	none		No		No		No		No		No		No	Щ
Oxidation Reduction Potential	mV		107		97		177		139		18		334	$\vdash \vdash$
Percent Solids	%		20.4	<u> </u>	40.7	<u> </u>	34.4		44.5	<u> </u>	28.2		43.6	ш

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise.
- 2. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.

3. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup, (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.

4. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 - available at electronic CFR website (ecfr.gpoaccess.gov).

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit. E - Organic results. Result is an estimated concentration. Outside linear calibration range.
- E Inorganic results. Serial dilution was outside quality control limits for this analyte.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit. J - Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%. Q - One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent	T T *4	a (1)	HRW(05/09/		HRW/ 05/09/		HRW(05/02/		HRW0 05/02/		HRW(05/02/	_	HRW0 05/02/		HRW0 05/07/		HRW 05/02		HRW0 05/02/		HRW0 04/24/		HRW 04/24	
Interest	Units	Criterion ⁽¹⁾	0.0-1.0 : Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		0.0-1.0 Duplic		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima	
Volatile Organics						•		Ť	•			-								Ť		Ť		
1,1,1-Trichloroethane	mg/Kg	4200	0.0018	U	0.11	U	0.0076	U	0.00097	U	0.0014	U	0.0012	U	0.076	U	0.0018	U	0.007	U	0.0017	U	0.0022	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.002	U	0.13	U	0.0085	U	0.0011	U	0.0016	U	0.0014	U	0.085	U	0.002	U	0.0078	U	0.0019	U	0.0024	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.0018	U	0.12	U	0.0092	U	0.0012	U	0.0017	U	0.0015	U	0.092	U	0.0021	U	0.0085	U	0.0021	U	0.0026	U
1,1,2-Trichloroethane	mg/Kg	6	0.0021	U	0.14	U	0.008	U	0.001	U	0.0015	U	0.0013	U	0.08	U	0.0018	U	0.0074	U	0.0018	U	0.0023	U
1,1-Dichloroethane	mg/Kg	24	0.0017	U	0.11	U	0.0073	U	0.00093	U	0.0014	U	0.0012	U	0.073	U	0.0017	U	0.0067	U	0.0017	U	0.0021	U
1,1-Dichloroethene	mg/Kg	150	0.002	U	0.13	U	0.0088	U	0.0011	U	0.0016	U	0.0014	U	0.088	U	0.002	U	0.0081	U	0.002	U	0.0025	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.0018	U	0.11	U	0.0077	U	0.00099	U	0.0014	U	0.0013	U	0.078	U	0.0018	U	0.0071	U	0.0018	U	0.0022	U
1,2-Dibromoethane	mg/Kg	0.04	0.0018	U	0.12	U	0.0078	U	0.00099	U	0.0014	U	0.0013	U	0.078	U	0.0018	U	0.0072	U	0.0018	U	0.0022	U
1,2-Dichlorobenzene	mg/Kg	59000	0.0019	U	0.12	U	0.013	J	0.001	U	0.0015	U	0.0013	U	0.083	U	0.0019	U	0.0076	U	0.0019	U	0.0023	U
1,2-Dichloroethane	mg/Kg	3	0.0019	U	0.12	U	0.0082	U	0.001	U	0.0015	U	0.0013	U	0.082	U	0.0019	U	0.0075	U	0.0019	U	0.0023	U
1,2-Dichloropropane	mg/Kg	5	0.0019	U	0.12	U	0.0083	U	0.0011	U	0.0015	U	0.0014	U	0.083	U	0.0019	U	0.0077	U	0.0019	U	0.0024	U
1,3-Dichlorobenzene	mg/Kg	59000	0.0059	J	0.12	U	0.024	J	0.001	U	0.0015	U	0.0013	Ü	0.31	J	0.0038	J	0.014	J	0.0018	U	0.0022	U
1,4-Dichlorobenzene	mg/Kg	13	0.021		0.23	J	0.038		0.0011	U	0.0015	U	0.0014	U	2.2		0.027		0.11		0.0019	U	0.0024	U
2-Butanone	mg/Kg	44000	0.016		0.11	U	0.054		0.01		0.0013	U	0.0012	U	0.073	U	0.0067	J	0.011	J	0.0017	U	0.0021	U
2-Hexanone	mg/Kg		0.0014	U	0.088	U	0.0059	U	0.00076	U	0.0013	Ü	0.00097	Ū	0.059	U	0.0014	U	0.0055	U	0.0017	U	0.0017	U
4-Methyl-2-pentanone	mg/Kg		0.0015	U	0.097	U	0.0065	U	0.00083	U	0.0012	U	0.0011	U	0.065	U	0.0015	U	0.006	U	0.0015	U	0.0019	Ü
Acetone	mg/Kg		0.082	,	0.13	U	0.24		0.051		0.007	U	0.0061	U	0.09	U	0.029	J	0.045	J	0.0085	U	0.011	J
Benzene	mg/Kg	5	0.0018	U	0.12	U	0.0078	IJ	0.00099	U	0.0014	U	0.0013	U	0.078	U	0.0018	U	0.0072	U	0.0018	U	0.0022	U
Bromodichloromethane	mg/Kg	3	0.0017	U	0.11	U	0.0073	U	0.00093	U	0.0014	U	0.0012	U	0.073	U	0.0017	U	0.0067	U	0.0017	U	0.0021	U
Bromoform	mg/Kg	280	0.0017	U	0.11	U	0.0076	IJ	0.00097	U	0.0014	U	0.0012	U	0.076	U	0.0017	U	0.007	IJ	0.0017	U	0.0022	U
Bromomethane	mg/Kg	59	0.0022	U	0.14	U	0.0095	IJ	0.0012	U	0.0011	U	0.0012	U	0.095	U	0.0022	U	0.0087	IJ	0.0022	U	0.0027	U
Carbon disulfide	mg/Kg	110000	0.0022	I	0.14	U	0.0092	II	0.002	I	0.0017	U	0.0015	II	0.092	II	0.0021	U	0.0085	U	0.0021	U	0.0027	<u> </u>
Carbon tetrachloride	mg/Kg	2	0.0037	U	0.099	U	0.0067	II	0.00085	U	0.0017	U	0.0013	U	0.067	U	0.0015	U	0.0062	U	0.0015	U	0.0019	U
Chlorobenzene	mg/Kg	7400	0.0019	U	1.5		0.0083	II	0.0011	U	0.0012	U	0.0014	U	0.23	ī	0.0019	U	0.0077	U	0.0019	U	0.0024	U
Chloroethane	mg/Kg	1100	0.0025	H	0.16	IJ	0.0003	II	0.0014	U	0.002	U	0.0011	U	0.11	II.	0.0025	U	0.0099	U	0.0024	U	0.0031	U
Chloroform	mg/Kg	2	0.0023	U	0.12	U	0.0079	II	0.001	U	0.0015	U	0.0013	U	0.079	II	0.0018	U	0.0073	U	0.0018	U	0.0023	U
Chloromethane	mg/Kg	12	0.0019	U	0.12	U	0.0083	II	0.001	II	0.0015	II	0.0013	II	0.083	II	0.0019	II	0.0077	II	0.0019	U	0.0024	U
cis-1,2-Dichloroethene	mg/Kg	560	0.0019	U	0.12	U	0.0081	II	0.001	U	0.0015	II	0.0013	II	0.081	II	0.0019	II	0.0074	II	0.0019	U	0.0023	U
cis-1,3-Dichloropropene	mg/Kg	7	0.0015	H	0.12	U	0.0067	II	0.00086	II	0.0013	II	0.0013	II	0.067	II	0.0015	II	0.0062	II	0.0015	U	0.0019	U
Cyclohexane	mg/Kg	<u>'</u>	0.0017	H	0.1	II	0.0007	II	0.00005	II	0.0012	II	0.0011	II	0.007	II	0.0010	II	0.0062	II	0.0013	IJ	0.0013	IJ
Dibromochloromethane	mg/Kg	8	0.0017	U	0.11	U	0.0069	II	0.00088	U	0.0013	U	0.0012	U	0.07	U	0.0017	U	0.0064	U	0.0016	U	0.0021	U
Dibromochloropropane	mg/Kg		0.0015	U	0.094	U	0.0063	II	0.0008	U	0.0013	U	0.001	II	0.063	U	0.0015	U	0.0058	U	0.0014	U	0.0018	U
Dichlorodifluoromethane	mg/Kg	230000	0.0022	U	0.14	U	0.0096	IJ	0.0012	U	0.0018	U	0.0016	U	0.096	U	0.0022	U	0.0088	U	0.0022	U	0.0027	U
Ethylbenzene	mg/Kg	110000	0.0022	U	0.13	U	0.0088	U	0.0012	U	0.0016	U	0.0014	U	0.089	U	0.0022	U	0.0082	U	0.002	U	0.0025	U
Isopropylbenzene	mg/Kg		0.002	U	0.13	U	0.0088	II	0.0011	U	0.0016	U	0.0014	II	0.08	IJ	0.002	11	0.0032	U	0.002	U	0.0023	U
Methyl acetate	mg/Kg		0.0019	U	0.12	U	0.0079	II	0.001	II	0.0015	II	0.0013	II	0.08	U	0.0019	II	0.0073	U	0.0018	U	0.0023	U
Methylcyclohexane	mg/Kg		0.0019	U	0.12	U	0.0073	II	0.001	U	0.0013	U	0.0013	U	0.084	U	0.0019	U	0.0073	U	0.0019	U	0.0023	U
Methylene chloride	mg/Kg	97	0.0019	I	0.085	U	0.0084	В	0.00011	В	0.0010	В	0.0014	Ī	0.058	U	0.0019	В	0.0077	В	0.0013	U	0.0024	U
Methyltert-butylether	mg/Kg	320	0.0016	U	0.083	U	0.0093	II	0.00097	U	0.0024	U	0.0012	U	0.069	U	0.0022	U	0.0038	U	0.0013	U	0.0010	U
Styrene	mg/Kg	260	0.0010	U	0.12	U	0.0083	II	0.0003	U	0.0015	U	0.0011	U	0.084	U	0.0010	U	0.0004	U	0.0010	U	0.0024	U
Tetrachloroethene	mg/Kg	5	0.0019	U	0.12	U	0.0083	II	0.0011	U	0.0013	U	0.0014	U	0.098	U	0.0019	U	0.0077	U	0.0019	U	0.0024	U
Toluene	mg/Kg	91000	0.0022	U	0.14	II	0.0057	II	0.0012	II	0.0013	II	0.0010	11	0.059	II	0.0022	11	0.0055	U	0.0022	U	0.0028	U
trans-1,2-Dichloroethene	mg/Kg	720	0.0014	U	0.088	U	0.0039	II	0.00076	II	0.0011	II	0.00097	11	0.039	II	0.0014	11	0.0033	U	0.0013	U	0.0017	U
trans-1,3-Dichloropropene	mg/Kg	7	0.002	U	0.13	U	0.0067	11	0.00011	U	0.0010	11	0.0014	11	0.065	II.	0.002	U	0.008	II	0.002	U	0.0023	U
Trichloroethene	mg/Kg	20	0.0013	U	0.097	U	0.0084	11	0.00083	II	0.0012	U	0.0011	II	0.084	IJ	0.0013	U	0.0077	U	0.0013	U	0.0019	U
Trichlorofluoromethane	mg/Kg	340000	0.0019	U	0.12	U	0.0084	11	0.0011	U	0.0010	U	0.0014	II	0.084	IJ	0.0019	U	0.0077	U	0.0019	U	0.0024	U
Vinyl chloride	mg/Kg	2	0.0028	U	0.18	U	0.012	II	0.0013	U	0.0023	II	0.002	11	0.12	IJ	0.0028	U	0.011	U	0.0028	U	0.0033	U
Xylene (total)	mg/Kg	170000	0.0019	U	0.12	U	0.0084	T T	0.0011	U	0.0016	U	0.0014	U	0.084	U	0.0019	U	0.0077	U	0.0019	U	0.0024	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent	TT */	G to (1)	HRW(05/09/		HRW(05/09/		HRW(05/02/		HRW 05/02		HRW(05/02/		HRW(05/02/		HRW(05/07/	_	HRW0 05/02/		HRW(05/02/		HRW 04/24		HRW(04/24/	
OI Interest	Units	Criterion ⁽¹⁾	0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		0.0-1.0 Duplic		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima	
Semivolatile Organics	_																							
1,1'-Biphenyl	mg/Kg	34000	0.095	U	0.56	J	0.38	J	0.063	U	0.073	J	0.034	J	0.056	J	0.11	J	0.13	U	0.024	U	0.041	U
2,2'-oxybis(1-chloropropane)	mg/Kg		0.1	U	0.08	U	0.032	U	0.069	U	0.029	U	0.028	U	0.03	U	0.039	U	0.14	U	0.026	U	0.045	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.14	U	0.11	U	0.044	U	0.095	U	0.04	U	0.039	U	0.042	U	0.053	U	0.19	U	0.035	U	0.062	U
2,4,6-Trichlorophenol	mg/Kg	74	0.14	U	0.11	U	0.043	U	0.093	U	0.039	U	0.038	U	0.041	U	0.052	U	0.19	U	0.035	U	0.06	U
2,4-Dichlorophenol	mg/Kg	2100	0.051	U	0.04	U	0.016	U	0.034	U	0.014	U	0.014	U	0.015	U	0.019	U	0.069	U	0.013	U	0.022	U
2,4-Dimethylphenol	mg/Kg	14000	0.074	U	0.057	U	0.03	J	0.18	J	0.021	U	0.024	J	0.056	J	0.028	U	0.099	U	0.018	U	0.15	J
2,4-Dinitrophenol	mg/Kg	1400	2	U	1.6	U	0.64	U	1.4	U	0.57	U	0.56	U	0.6	U	0.76	U	2.7	U	0.51	U	0.88	U
2,4-Dinitrotoluene	mg/Kg	3	0.089	U	0.069	U	0.028	U	0.059	U	0.025	U	0.025	U	0.026	U	0.033	U	0.12	U	0.022	U	0.039	U
2.6-Dinitrotoluene	mg/Kg	3	0.11	U	0.086	U	0.035	U	0.074	U	0.031	U	0.031	U	0.033	U	0.042	U	0.15	U	0.028	U	0.048	U
2-Chloronaphthalene	mg/Kg		0.099	U	0.077	U	0.031	U	0.066	U	0.028	U	0.027	U	0.029	U	0.037	U	0.13	U	0.025	U	0.043	U
2-Chlorophenol	mg/Kg	2200	0.086	U	0.067	U	0.027	U	0.058	U	0.024	U	0.024	U	0.026	U	0.032	U	0.12	U	0.022	U	0.038	U
2-Methylnaphthalene	mg/Kg	2400	0.15	J	7.3	<u> </u>	1.4		0.07	J	0.14	J	0.073	J	0.29	J	0.48	J	0.13	U	0.03	J	0.041	U
2-Methylphenol	mg/Kg	3400	0.11	U	0.083	U	0.034	U	0.072	U	0.03	U	0.03	U	0.032	U	0.04	U	1	J	0.027	U	0.047	U
2-Nitroaniline	mg/Kg	23000	0.1	U	0.08	U	0.032	U	0.069	U	0.029	U	0.029	U	0.031	IJ	0.039	U	0.14	U	0.026	U	0.045	U
2-Nitrophenol	mg/Kg		0.14	U	0.11	U	0.043	IJ	0.003	U	0.038	U	0.038	II .	0.04	U	0.051	U	0.14	II.	0.034	U	0.059	U
3,3'-Dichlorobenzidine	mg/Kg	4	0.39	U	0.3	U	0.12	U	0.26	U	0.11	IJ	0.11	IJ	0.11	IJ	0.15	U	0.52	U	0.096	U	0.17	U
3-Nitroaniline	mg/Kg		0.15	U	0.11	U	0.046	II	0.099	U	0.041	U	0.041	II	0.044	U	0.055	U	0.2	II	0.037	U	0.064	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	1.2	U	0.11	U	0.38	II	0.81	U	0.34	U	0.33	II	0.36	U	0.46	U	1.6	U	0.3	U	0.53	U
4-Bromophenylphenyl ether	mg/Kg		0.077	U	0.06	U	0.024	II	0.051	U	0.022	U	0.021	II	0.023	U	0.029	U	0.1	U	0.019	U	0.033	U
4-Chloro-3-methylphenol	mg/Kg		0.077	U	0.081	U	0.033	II	0.031	U	0.022	U	0.021	II	0.023	IJ	0.029	U	0.14	U	0.026	U	0.045	U
4-Chloroaniline	mg/Kg		0.15	U	0.001	U	0.033	II	0.099	U	0.023	U	0.027	II	0.031	U	0.056	U	0.14	U	0.020	U	0.043	U
4-Chlorophenyl phenyl ether	mg/Kg		0.085	II.	0.066	II	0.027	II	0.057	U	0.024	II	0.023	II	0.025	II	0.032	U	0.11	II	0.021	U	0.037	U
4-Methylphenol	mg/Kg	340	0.003	U	0.083	U	0.027	I	0.072	U	0.024	ī	0.023	ī	0.023	ī	0.032	U	0.11	U	0.021	U	0.037	U
4-Nitroaniline	mg/Kg		0.072	U	0.056	U	0.023	II	0.072	U	0.033	II	0.02	II	0.002	II	0.04	U	0.097	II	0.018	U	0.031	U
4-Nitrophenol	mg/Kg		0.072	U	0.030	U	0.042	II	0.048	U	0.02	U	0.02	U	0.021	U	0.027	U	0.097	U	0.013	U	0.051	U
Acenaphthene	mg/Kg	37000	0.13	ī	4.1		0.99		0.007	Ī	0.51		0.059	I	0.68		0.78	C	0.16	ī	0.025	I	0.06	T T
Acenaphthylene	mg/Kg	300000	0.23	Ī	2.1		1.5		0.21	T T	0.48		0.039	I	0.08	T	1.5		0.16	J	0.023	I	0.00	1
Acetophenone	mg/Kg	5	0.73	IJ	0.081	IJ	0.033	II	0.17	U	0.029	IJ	0.029	II	0.23	IJ	0.039	U	0.40	II	0.039	U	0.075	U
Anthracene	mg/Kg	30000	1.2	ī	4.5	U	1.5		0.07	ī	0.63	U	0.029	ī	1.9	0	2.1	U	0.14	ī	0.020	I	0.16	1
Attrazine	mg/Kg	2400	0.12	IJ	0.092	IJ	0.037	II	0.27	U	0.03	IJ	0.23	J II	0.035	IJ	0.044	U	0.16	J II	0.077	U	0.10	U
Benzaldehyde	mg/Kg	68000	0.12	U	0.092	U	0.057	U	0.079	U	0.053	U	0.05	II	0.053	U	0.044	U	0.10	II	0.03	U	0.031	U
	mg/Kg	2	2.9	U	5.1	U	5.7	U	0.12	Ī	2	U	0.03	U	7.4	U	6.2	U	0.24	U	0.043	U	0.079	T
Benzo(a)anthracene		0.2	2.9		3.9		5.8		0.31	Ţ	1.9		0.73		0				0.74	J T	0.48		0.28	
Benzo(a)pyrene Benzo(b)fluoranthene	mg/Kg mg/Kg	2	4.8		6.2	-	7.5		0.59	J	3.6		1.9	_	12		5.4 6.3		0.05	J	0.93		0.32	J
		30000	2.1		2.6	-	3.8		0.31	J T			0.62				2.9			J		+	0.32	J ,
Benzo(ghi)perylene	mg/Kg		0.055	IJ	0.043	IJ	0.017	TT	0.24	J	1.4	TT		TT	6.1	TT	0.021	TT	0.3	J	0.46	TT		J
Benzo(k)fluoranthene	mg/Kg	23		Ŭ		Ŭ		U		U	0.015	U	0.015	U	0.016	U		U		U	0.014	U	0.024	U
Bis(2-chloroethoxy)methane	mg/Kg	2	0.08	U	0.062	U	0.025	U	0.054	U	0.022	U	0.022	U	0.024	U	0.03	U	0.11	U	0.02	U	0.035	U
Bis(2-chloroethyl)ether	mg/Kg		0.039	U	0.03	U	0.012	U	0.026	U	0.011	U	0.011	U	0.011	U	0.015	U	0.052	U	0.0096	U	0.017	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	3.3	7.7	5.3	7.7	4.2	7.7	0.1	J	0.62	T.T.	0.59	T.7	0.039	U	0.65	TT	0.18	U	0.12	J	0.057	U
Butyl benzyl phthalate	mg/Kg	14000	0.14	U	0.11	U	0.043	U	0.092	U	0.039	U	0.038	U	0.041	U	0.052	U	0.18	U	0.034	U	0.06	U
Caprolactam	mg/Kg	340000	0.33	U	0.25	U	0.1	U	0.22	U	0.091	U	0.09	U	0.096	U	0.12	U	0.44	U	0.081	U	0.14	U
Carbazole	mg/Kg	96	0.17	J	3.8	<u> </u>	0.13	J	0.047	U	0.066	J	0.03	J	0.92		0.026	U	0.094	U	0.018	U	0.031	U
Chrysene	mg/Kg	230	2.6	-	4.4	<u> </u>	5.9		0.49	l î	1.7	-	0.68		7		6.5		0.69	J	0.54	.	0.24	J J
Dibenzo(a,h)anthracene	mg/Kg	0.2	0.43	J	0.78	J	1.1		0.084	l î	0.31	J	0.16	J	1.6	<u> </u>	0.62	J	0.15	U	0.1	J	0.047	U
Dibenzofuran Di	mg/Kg		0.17	J	5.5	• •	1.3		0.069	J	0.27	J	0.06	J	0.34	J	0.22	J	0.13	U	0.024	U	0.048]
Diethyl phthalate	mg/Kg	550000	0.15	U	0.12	U	0.048	U	0.1	U	0.043	U	0.042	U	0.045	U	0.058	U	0.21	U	0.038	U	0.067	U
Dimethyl phthalate	mg/Kg		0.097	U	0.075	U	0.03	U	0.065	U	0.027	U	0.027	U	0.029	U	0.036	U	0.13	U	0.024	U	0.042	U
Di-n-butyl phthalate	mg/Kg	68000	0.28	U	0.22	U	0.089	U	0.19	U	0.08	U	0.079	U	0.084	U	0.11	U	0.38	U	0.071	U	0.12	U
Di-n-octyl phthalate	mg/Kg	27000	0.12	U	1.3		0.037	U	0.08	U	0.033	U	0.033	U	0.035	U	0.045	U	0.16	U	0.03	U	0.052	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

					_																			
Constituent			HRWO		HRW		HRW		HRW		HRWO		HRW		HRWO		HRWC		HRW		HRW		HRW	
of	Units	Criterion ⁽¹⁾	05/09/		05/09/	08	05/02/	'08	05/02/	'08	05/02/		05/02/		05/07/	08	05/02/0		05/02	/08	04/24/		04/24/	/08
Interest		Criterion	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	0.0-1.0	ft ⁽²⁾	2.0-3.0	ft (0.0-1.0 f	t ⁽²⁾	2.0-3.	0 ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft
Interest			Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Duplic	ate	Prima	ry	Primar	y	Prima	ry	Prima	ry	Prima	ıry
Semivolatile Organics (Continued)	<u> </u>	T						•						•					1	1				
Fluoranthene	mg/Kg	24000	5.9		12		11		0.94	J	3.4		1.2		10		12		1.8	J	0.42	J	0.61	<u> </u>
Fluorene	mg/Kg	24000	0.25	J	6.6		1.1		0.13	J	0.44	J	0.069	J	0.64		0.36	J	0.11	U	0.021	U	0.079	J
Hexachlorobenzene	mg/Kg	1	0.1	U	0.08	U	0.032	U	0.069	U	0.032	J	0.029	U	0.031	U	0.039	U	0.14	U	0.026	U	0.045	U
Hexachlorobutadiene	mg/Kg	25	0.11	U	0.081	U	0.033	U	0.07	U	0.029	U	0.029	U	0.031	U	0.039	U	0.14	U	0.026	U	0.046	U
Hexachlorocyclopentadiene	mg/Kg	110	0.079	U	0.061	U	0.025	U	0.053	U	0.022	U	0.022	U	0.023	U	0.03	U	0.11	U	0.02	U	0.034	U
Hexachloroethane	mg/Kg	140	0.077	U	0.059	U	0.024	U	0.051	U	0.021	U	0.021	U	0.023	U	0.029	U	0.1	U	0.019	U	0.033	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	1.8		2.3		3.1		0.21	J	1.3		0.54		5.2		2.6		0.33	J	0.39	J	0.12	J
Isophorone	mg/Kg	2000	0.096	U	0.074	U	0.03	U	0.064	U	0.027	U	0.026	U	0.028	U	0.036	U	0.13	U	0.024	U	0.042	U
Naphthalene	mg/Kg	17	1.9		300	Е	15		0.17	J	24		97		2.2		6.2		0.26	J	0.28	J	0.79	<u> </u>
Nitrobenzene	mg/Kg	340	0.043	U	0.033	U	0.013	U	0.029	U	0.012	U	0.012	U	0.013	U	0.016	U	0.057	U	0.011	U	0.019	U
N-Nitrosodiphenylamine	mg/Kg	390	0.093	U	0.072	U	0.029	U	0.062	U	0.026	U	0.026	U	0.028	U	0.035	U	0.12	U	0.023	U	0.04	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.042	U	0.033	U	0.013	U	0.028	U	0.012	U	0.012	U	0.012	U	0.016	U	0.056	U	0.01	U	0.018	U
Pentachlorophenol	mg/Kg	10	0.13	U	0.099	U	0.04	U	0.086	U	0.036	U	0.035	U	0.038	U	0.048	U	0.17	U	0.032	U	0.056	U
Phenanthrene	mg/Kg	300000	1.3	J	14		1.7		0.35	J	1.1		0.33	J	5.6		1.5		0.99	J	0.12	J	0.33	J
Phenol	mg/Kg	210000	0.1	U	0.08	U	0.075	J	0.069	U	0.029	U	0.035	J	0.031	U	0.068	J	0.14	U	0.026	U	0.045	U
Pyrene	mg/Kg	18000	4.6		9.1		9.5		0.86	J	2.2		0.9		9.2		11		1.2	J	0.39	J	0.42	J
Polychlorinated Dioxins and Furans																								
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.063		0.17		0.12		0.042	J	0.22		1.1		0.054	J	0.16		0.029	QJ	0.036	J	0.013	QJ
1,2,3,4,6,7,8-HpCDF	ug/Kg		1.5		1.3		1.8		0.057	J	3.2		4.9		5.7		2.9		0.19	QJ	1.8		0.017	QJ
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.057	Q	0.035	Q	0.048	QJ	0.17	U	0.11		0.017	J	0.19		0.13		0.35	U	0.05	J	0.11	U
1,2,3,4,7,8-HxCDD	ug/Kg		0.0012	QJ	0.01	U	0.003	QJ	0.17	U	0.073	U	0.44		0.077	U	0.0037	QJ	0.35	U	0.065	U	0.11	U
1,2,3,4,7,8-HxCDF	ug/Kg		0.55	Q	0.42	Q	0.59		0.022	J	1.1		2.4		1.5	Q	1.2		0.067	J	0.51		0.0083	QJ
1,2,3,6,7,8-HxCDD	ug/Kg		0.0069	J	0.013		0.0067	QJ	0.17	U	0.017	QJ	0.57		0.0071	J	0.014	J	0.35	U	0.0057	QJ	0.11	U
1,2,3,6,7,8-HxCDF	ug/Kg		0.065		0.057		0.11	Q	0.17	U	0.21	Q	0.48	Q	0.23	Q	0.17	Q	0.011	QJ	0.11	Q	0.002	QJ
1,2,3,7,8,9-HxCDD	ug/Kg		0.0034	J	0.0065	QJ	0.0084	QJ	0.17	U	0.0066	QJ	0.21		0.0019	QJ	0.0062	QJ	0.35	U	0.065	U	0.11	U
1,2,3,7,8,9-HxCDF	ug/Kg		0.013	U	0.01	U	0.081	U	0.17	U	0.073	U	0.017	J	0.077	U	0.097	U	0.35	U	0.065	U	0.11	U
1,2,3,7,8-PCDD	ug/Kg		0.002	J	0.0031	QJ	0.081	U	0.17	U	0.0024	QJ	0.9	Q	0.077	U	0.0064	QJ	0.35	U	0.065	U	0.11	U
1,2,3,7,8-PCDF	ug/Kg		0.007	J	0.013		0.017	QJ	0.17	U	0.023	J	0.15	Q	0.0083	QJ	0.018	J	0.35	U	0.013	QJ	0.11	U
2,3,4,6,7,8-HxCDF	ug/Kg		0.018		0.027	Q	0.027	QJ	0.17	U	0.048	QJ	0.18		0.063	J	0.036	Q	0.35	U	0.045	J	0.11	U
2,3,4,7,8-PCDF	ug/Kg		0.042	Q	0.038		0.048	QJ	0.17	U	0.1	Q	1.5	Q	0.11	Q	0.09	J	0.35	U	0.044	J	0.11	U
2,3,7,8-TCDD	ug/Kg		0.016	Q	0.23		0.016	U	0.035	U	0.047	Q	0.1	Q	0.04	Q	0.1		0.07	U	0.013	U	0.022	U
2,3,7,8-TCDF	ug/Kg		0.0042		0.012	Q	0.02	Q	0.035	U	0.048	Q	0.46	Q	0.0039	J	0.037	Q	0.07	U	0.0098	QJ	0.022	U
OCDD	ug/Kg		0.67		2.4		1.7	В	1.6	В	2.3	В	3.4	В	0.48	В	2.7	В	0.82	В	1	В	0.28	В
OCDF	ug/Kg		2.6	В	2	В	2.5	В	0.12	BJ	5	В	6.8	В	8.2		5.4	В	0.44	BJ	2.1	В	0.029	QBJ
Total HpCDD	ug/Kg		0.15		0.48		0.31		0.13	J	0.55		2.5		0.13	QJ	0.43		0.073	QJ	0.081	QJ	0.029	QJ
Total HpCDF	ug/Kg		1.7	Q	1.5	Q	2	Q	0.057	J	3.7		6.2		6.4		3.3	Q	0.22	QJ	2		0.017	QJ
Total HxCDD	ug/Kg		0.052	Q	0.12	Q	0.087	QJ	0.015	QJ	0.15	QJ	4.2	Q	0.052	QJ	0.15	QJ	0.35	Ü	0.032	QJ	0.11	Ü
Total HxCDF	ug/Kg		1.2	Q	0.99	Q	1.4	Q	0.046	QJ	2.6	Q	7.3	Q	3.1	Q	2.4	Q	0.11	QJ	1.4	Q	0.018	QJ
Total PeCDD	ug/Kg		0.035	QJ	0.085	Q	0.051	QJ	0.17	Ü	0.057	QJ	41	QEB	0.022	QJ	0.16	QJ	0.35	Ü	0.0068	QJ	0.11	U
Total PeCDF	ug/Kg		0.52	Q	0.72	Q	0.67	Q	0.17	Ü	1.3	Q	11	Q	1.2	Q	1.2	Q	0.013	QJ	0.59	Q	0.01	QJ
Total TCDD	ug/Kg		0.061	Q	0.31	Ŏ.	0.059	O O	0.035	U	0.099	0	9.8	QS	0.068	O	0.17	0	0.07	U	0.0067	J	0.022	U
Total TCDF	ug/Kg		0.3	Q	0.71	QS	0.51	Q	0.017	QJ	0.83	Q	14	QS	0.61	Q	1	0	0.07	U	0.23	O	0.022	U
Polychlorinated Dioxins/Furans (2,3,						ξ~						_			,,,,,	_	-		,					الله الله
1,2,3,4,6,7,8-HpCDD	0.01		6.3E-04		1.7E-03		1.2E-03		4.2E-04		2.2E-03		1.1E-02		5.4E-04		1.6E-03				3.6E-04			
1,2,3,4,6,7,8-HpCDF	0.01		1.5E-02		1.7E 03		1.8E-02		5.7E-04		3.2E-02		4.9E-02		5.7E-02		2.9E-02				1.8E-02			\vdash
1,2,3,4,7,8,9-HpCDF	0.01		6.9E-05		1.3E-04		1.0L-02		3.7L-04		J.ZL-02		5.7E-03		1.9E-03		1.3E-03				5.0E-04			+-
1,2,3,4,7,8-HxCDD	0.01		0.9E-03		1.3E-04			 		 	1.1E-02		1.7E-03		1.912-03		1.3E-03			1	J.UL-04			+
1,2,3,4,7,8-HxCDF	0.10										1.1E-02		4.4E-02				1.2E-01		6.7E-03		5.1E-02			+-
1,2,3,6,7,8-HxCDD	0.10					 	5.9E-02		2.2E-03	 	1.1E-01		2.4E-01		7.1E-04		1.4E-03		0.7E-03	1	J.1L-02	\vdash		+

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	(1)	HRW(05/09/		HRWC		HRWO	C -6	HRW	C -6	HRW	C -7	HRW	C- 7	HRWO	C- 7	HRW	C -8	HRW	C -8	HRW	C -9	HRW	C 0
of	Units	(1)	05/09/	V6																				
		Criterion ⁽¹⁾			05/09/	08	05/02/	08	05/02/	08	05/02/	'08	05/02/	08	05/07/	08	05/02/	'08	05/02/	08	04/24/	08	04/24/	/08
interest.	2 2240	Criterion	0.0-1.0	ft ⁽²⁾	2.0-3.0	ft	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	0.0-1.0	ft ⁽²⁾	2.0-3.0	ft	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft
			Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Duplic	ate	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ıry
1,2,3,6,7,8-HxCDF	0.10		6.5E-03		5.7E-03																			
Polychlorinated Dioxins/Furans (2,3,7,3		s) (Continued)								1	•	ı								1	•			
1,2,3,7,8,9-HxCDD	0.10	 -	3.4E-04										2.1E-02											₩
1,2,3,7,8,9-HxCDF	0.10												1.7E-03											
1,2,3,7,8-PCDD	1.00		2.0E-03																					
1,2,3,7,8-PCDF	0.05		3.5E-04		6.5E-04						1.2E-03						9.0E-04							<u> </u>
2,3,4,6,7,8-HxCDF	0.10		1.8E-03										1.8E-02		6.3E-03						4.5E-03			
2,3,4,7,8-PCDF	0.50				1.9E-02												4.5E-02				2.2E-02			
2,3,7,8-TCDD	1.00				2.3E-01												1.0E-01							<u> </u>
2,3,7,8-TCDF	0.10		4.2E-04												3.9E-04									
OCDD	0.0001		6.7E-05		2.4E-04		1.7E-04		1.6E-04		2.3E-04		3.4E-04		4.8E-05		2.7E-04		8.2E-05		1.0E-04		2.8E-05	<u> </u>
OCDF	0.0001		2.6E-04		2.0E-04		2.5E-04		1.2E-05		5.0E-04		6.8E-04		8.2E-04		5.4E-04		4.4E-05		2.1E-04		<u> </u>	
Total 2,3,7,8-TCDD Equivalents ⁽³⁾	ug/Kg	1	2.7E-02		2.7E-01		7.9E-02		3.4E-03		1.6E-01		3.9E-01		6.8E-02		3.0E-01		6.8E-03		9.7E-02		2.8E-05	
Polychlorinated Biphenyls (Aroclors)																								
Aroclor 1016	mg/Kg	1	0.0064	U	0.005	U	0.004	U	0.0085	U	0.0036	U	0.0035	U	0.0038	U	0.0048	U	0.017	U	0.0032	U	0.0055	U
Aroclor 1221	mg/Kg	1	0.0082	U	0.0065	U	0.0052	U	0.011	U	0.0047	U	0.0046	U	0.0049	U	0.0062	U	0.022	U	0.0041	U	0.0071	U
Aroclor 1232	mg/Kg	1	0.0074	U	0.0058	U	0.39		0.0098	U	0.7		0.43		0.19		1.9		0.02	U	0.0037	U	0.0064	U
Aroclor 1242	mg/Kg	1	0.007	U	0.0055	U	0.0044	U	0.0093	U	0.004	U	0.0039	U	0.0042	U	0.0053	U	0.019	U	0.0035	U	0.006	U
Aroclor 1248	mg/Kg	1	0.35		1.7		0.0026	U	0.0054	U	0.0023	U	0.0023	U	0.0024	U	0.0031	U	0.011	U	0.002	U	0.0035	U
Aroclor 1254	mg/Kg	1	0.0061	U	1.1		0.087		0.0081	U	0.23		0.16		0.0036	U	0.29		0.017	U	0.0031	U	0.0053	U
Aroclor 1260	mg/Kg	1	0.16		0.0048	U	0.049		0.0081	U	0.086		0.08		0.034		0.071		0.017	U	0.014	J	0.0053	U
Aroclor 1262	mg/Kg	1	0.0095	U	0.0074	U	0.0059	U	0.013	U	0.0053	U	0.0052	U	0.0056	U	0.0071	U	0.026	U	0.0047	U	0.0081	U
Aroclor 1268	mg/Kg	1	0.0055	U	0.0044	U	0.0035	U	0.0073	U	0.0031	U	0.0031	U	0.0033	U	0.0042	U	0.015	U	0.0028	U	0.0048	U
Polychlorinated Biphenyls (Congeners/		s)	0,000				313333						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
PCB 1	mg/Kg	1	0.0012	QB	0.0006	BJ	0.00011	OJ	0.000012	QBJ	0.00015	J			0.00008	В	0.0006	OJ	0.000042	QBJ	0.000004	QJ	8.3E-06	BJ
PCB 2 (BZ)	mg/Kg	1	0.00031	BJ	0.00019	BJ	0.00065	U	0.000014	QBJ	0.00059	U			0.000069	BJ	0.00048	J	0.000022	QBJ		QJ	0.000009	BJ
PCB 3 (BZ)	mg/Kg	1	0.00068	QJ	0.00035	QJ	0.00015	J	0.000019	J	0.00059	U			0.000055	OJ	0.00049	QJ	0.000032	J	3.4E-06	QJ	8.1E-06	QJ
PCB 4	mg/Kg	1	0.0024	QB	0.0072	В	0.00054	QBJ	0.000026	OBJ	0.00043	QBJ			0.00048	QB	0.0039	QB	0.0002	В	0.000014	QBJ	6.7E-06	QBJ
PCB 5 (BZ)	mg/Kg	1	0.00035	QJ	0.0002	QJ	0.00065	U	0.000035	U	0.00059	U			0.000016	OJ	0.00052	QJ	9.8E-06	QJ	0.000013	U	1.9E-06	QJ
PCB 6	mg/Kg	1	0.0025	QB	0.0031	QB	0.00023	QBJ	0.000014	QBJ	0.00018	QBJ			0.00031	QB	0.0035	QB	0.00016	QB	9.7E-06	QBJ	4.7E-06	QBJ
PCB 7 (BZ)	mg/Kg	1	0.0004	OBJ	0.00057	OBJ	0.00065	U	5.2E-06	OBJ	0.00059	U			0.000044	OBJ	0.00032	OJ	0.000018	OBJ	1.6E-06	OJ	2.8E-06	OBJ
PCB 8	mg/Kg	1	0.0055	QB	0.014	В	0.001	QBJ	0.000046	QBJ	0.00078	QBJ			0.001	В	0.0095	В	0.00045	В	0.000031	QB	9.4E-06	QBJ
PCB 9 (BZ)	mg/Kg	1	0.0013	QB	0.00098	QB	0.00065	U	5.2E-06	OBJ	0.00059	U			0.000065	QBJ	0.0015	0	0.000036	QBJ	3.1E-06	QJ	2.5E-06	QBJ
PCB 10 (BZ)	mg/Kg	1	0.00012	QJ	0.0004	QJ	0.00065	U	0.000035	U	0.00059	IJ			0.000026	QJ	0.00015	QJ	0.000015	QJ	1.4E-06	QJ	2.5E-06	QJ
PCB 11 (BZ)	mg/Kg	1	0.0026	QB	0.0079	В	0.0014	QB	0.000045	BJ	0.0012	QB			0.00071	В	0.0054	В	0.00027	В	0.000052	QB	0.000024	BJ
PCB 12 (BZ)	mg/Kg	1	0.0022	QBC	0.0027	QBC	0.00029	QCJ		QBCJ	0.00035	QCJ				QBC	0.0047	C	0.00016	BC		QC		QBCJ
PCB 13 (BZ)	mg/Kg	1	0.0022	QBC	0.0027	QBC	0.00029	QCJ		QBCJ	0.00035	QCJ				QBC	0.0047	C	0.00016	BC		QC		QBCJ
PCB 14 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	II.	0.000035	II	0.00059	II			0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000003	QJ
PCB 15	mg/Kg	1	0.0068	В	0.012	В	0.0017	В	0.000069	QB	0.0025	QB			0.0011	В	0.0069	В	0.00038	В	0.000077	QB	6.3E-06	QBJ
PCB 16	mg/Kg	1	0.004	В	0.024	В	0.0017	B	0.000042	QB	0.0007	В			0.0014	В	0.011	В	0.00051	В	0.000077	QB	4.6E-06	QBJ
PCB 17 (BZ)	mg/Kg	1	0.0043	В	0.028	В	0.0018	В	0.000063	В	0.00099	В			0.0019	В	0.012	В	0.00069	В	0.000033	В	0.000008	_
PCB-18	mg/Kg	1	0.0043	В	0.026	В	0.0018	R	0.00003	QB	0.0024	В			0.0019	В	0.012	В	0.0007	В	0.000074	В	0.000019	BJ
PCB 19 (BZ)	mg/Kg	1	0.00084	I	0.0051	ט	0.00037	رر آ	0.000013	QJ	0.0024	<u> </u>			0.00042	ם	0.0016		0.00017	ע	6.8E-06	QJ	0.000013	U
PCB 20 (BZ)	mg/Kg	1	0.0004	BC	0.084	BC	0.0073	BC	0.000012	BC	0.0053	ВС			0.00042	ВС	0.04	BC	0.00012	ВС	0.0002	BC	0.000022	BCJ
PCB 21 (BZ)	mg/Kg	1	0.0064	BC	0.033	BC	0.0073	BC	0.000022	BC	0.0033	QBC			0.0001	BC	0.04	BC	0.0022	BC	0.0002	BC	7.2E-06	BCJ
PCB 22	mg/Kg	1	0.0054	B	0.035	В	0.0017	R	0.000057	В	0.0011	В			0.0015	В	0.013	В	0.00053	В	0.000038	В	5.2E-06	BJ
PCB 23 (BZ)	mg/Kg	1	0.0034	U	0.00064	QJ	0.0018	II	0.000037	II	0.0012	U			4.9E-06	OJ	0.0012	QJ	4.3E-06	QJ	0.000013	U	0.000022	U
		1 /	0.001	U	0.000004	٨,	0.00003	U	0.000033		0.00033	U				∠,		Α,		Α,				
PCB 24 (BZ)	mg/Kg	1	0.00024	OJ	0.00075	OJ	0.000053	OJ	0.000035	ŢΤ	0.00059	11			0.000049	OJ	0.00045	I	0.000017	I	0.000013	U	0.000022	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	HRW0 05/09/	08	HRW(05/09/	08	HRW0 05/02/	08	HRW(05/02/	'08	HRW(05/02/	08	HRWC-7 05/02/08	HRW 05/07/	/08	HRW(05/02/	08	HRW 05/02	/08	HRW0 04/24/	08	HRWC 04/24/	'08
Interest			0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0		0.0-1.0		0.0-1.0 ft ⁽²⁾	2.0-3.0		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0	
Polychlorinated Biphenyls (Congener	ms/Uamalagua	g) (Continued)	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Duplicate	Prima	ıry	Prima	ry	Prima	ıry	Prima	ry	Prima	ry
PCB 26 (BZ)	mg/Kg	l 1	0.0046	BC	0.012	BC	0.00096	ВС	0.000031	QBCJ	0.00062	ВС	T	0.0012	BC	0.0064	BC	0.00032	QBC	0.00003	BC	4.9E-06	QBCJ
PCB 27 (BZ)	mg/Kg	1	0.0046	QJ	0.0038	ВС	0.00031	I	0.000031	I I	0.00037	QJ		0.00012	I DC	0.0004	0	0.000072	0	0.00003	I	0.000022	U
PCB 28	mg/Kg	1	0.021	BC	0.084	BC	0.0073	BC	0.000012	BC	0.0053	BC		0.0061	BC	0.04	BC	0.0022	BC	0.0002	BC	0.000019	BCJ
PCB 29 (BZ)	mg/Kg	1	0.0046	BC	0.012	BC	0.00096	BC	0.000031	OBCJ		BC		0.0012	BC	0.0064	BC	0.00032	0	0.00003	BC	4.9E-06	QBCJ
PCB 30 (BZ)	mg/Kg	1	0.0021	U	0.0016	U	0.0013	U	0.000069	U	0.0012	U		0.00015	U	0.0016	U	0.00014	IJ	0.000026	U	0.000045	U
PCB 31	mg/Kg	1	0.017	В	0.075	В	0.0053	В	0.00017	В	0.0032	В		0.0048	В	0.036	В	0.0018	В	0.00013	В	0.000013	BJ
PCB 32 (BZ)	mg/Kg	1	0.0031	В	0.019	В	0.0013	В	0.000049	В	0.0013	В		0.0013	В	0.007	В	0.00042	В	0.000037	В	4.6E-06	QBJ
PCB 33	mg/Kg	1	0.0064	BC	0.033	BC	0.0017	BC	0.000054	BC	0.0011	QBC		0.0019	BC	0.015	BC	0.00064	BC	0.000037	BC	7.2E-06	BCJ
PCB 34 (BZ)	mg/Kg	1	0.00036	QJ	0.00037	QJ	0.00065	U	0.000035	U	0.00059	U		0.000039	QJ	0.0003	OJ	0.000023	OJ	0.000013	U	0.000022	U
PCB 35 (BZ)	mg/Kg	1	0.00074	QJ	0.0017	0	0.0002	J	9.1E-06	J	0.00021	J		0.00011		0.00093	0	0.000042	OJ	4.5E-06	J	3.2E-06	QJ
PCB 36 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	4.3E-06	QJ	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 37	mg/Kg	1	0.0058	В	0.018	В	0.0019	,	0.000055	QB	0.002			0.00011	В	0.0085		0.00038	В	0.00007		5.8E-06	BJ
PCB 38 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000002	QJ
PCB 39 (BZ)	mg/Kg	1	0.00025	J	0.00059	J	0.00065	U	0.000035	U	0.00059	U		0.000031	J	0.00031	OJ	0.000021	J	1.6E-06	QJ	0.000022	U
PCB 40 (BZ)	mg/Kg	1	0.0085	BC	0.041	BC	0.0037	BC	0.000089	QBC	0.0049	BC		0.0033	BC	0.019	BC	0.00007	U	0.00018	BC	6.6E-06	QBCJ
PCB 41	mg/Kg	1	0.00061	QJ	0.0077		0.00065	U	0.000035	U	0.00017	QBJ		0.0002	0	0.0014	QB	0.000065	OJ	0.000013	U	4.5E-06	QJ
PCB 42 (BZ)	mg/Kg	1	0.0054	В	0.025	В	0.0024	В	0.000066	В	0.0032	В		0.0023	В	0.012	В	0.00069	В	0.00011	В	3.4E-06	BJ
PCB 43 (BZ)	mg/Kg	1	0.0007	CJ	0.0043	С	0.00021	QCJ	0.000035	U	0.0002	QCJ		0.00031	С	0.0016	QC	0.00009	С	7.4E-06	QCJ	2.7E-06	CJ
PCB 44	mg/Kg	1	0.019	BC	0.087	BC	0.0077	BC	0.0002	BC	0.0087	BC		0.0074	BC	0.04	BC	0.0022	BC	0.00037	BC	0.000022	BCJ
PCB 45 (BZ)	mg/Kg	1	0.0036	BC	0.018	BC	0.0013	BC	0.000041	BC	0.0041	BC		0.0016	BC	0.0073	BC	0.00041	BC	0.000081	BC	3.3E-06	QBCJ
PCB 46 (BZ)	mg/Kg	1	0.00095	QJ	0.0066	_	0.00037	J	0.000014	QJ	0.0014	_		0.00061		0.0023		0.00015		0.000021		0.000022	U
PCB 47 (BZ)	mg/Kg	1	0.019	BC	0.087	ВС	0.0077	BC	0.0002	BC	0.0087	BC		0.0074	ВС	0.04	ВС	0.0022	ВС	0.00037	BC	0.000022	BCJ
PCB 48 (BZ)	mg/Kg	1	0.0031	В	0.022	В	0.0013		0.000039	OB	0.00086			0.0013	В	0.009		0.00047	В	0.000028		0.000022	U
PCB 49	mg/Kg	1	0.015	В	0.058	В	0.0058	В	0.00015	В	0.0057	В		0.0049	В	0.029	В	0.0016	В	0.00021	В	0.000015	BJ
PCB 50 (BZ)	mg/Kg	1	0.0026	BC	0.013	BC	0.00096	ВС	0.000029	BCJ	0.0035	BC		0.0013	ВС	0.0057	BC	0.00032	ВС	0.000071	BC	3.7E-06	BCJ
PCB 51 (BZ)	mg/Kg	1	0.0036	BC	0.018	BC	0.0013	BC	0.000041	ВС	0.0041	BC		0.0016	ВС	0.0073	ВС	0.00041	ВС	0.000081	BC	3.3E-06	QBCJ
PCB 52	mg/Kg	1	0.02	В	0.1	В	0.0092	В	0.00023	В	0.011	В		0.0093	В	0.046	В	0.0025	В	0.00048	В	0.000045	В
PCB 53 (BZ)	mg/Kg	1	0.0026	BC	0.013	BC	0.00096	BC	0.000029	BCJ	0.0035	BC		0.0013	ВС	0.0057	BC	0.00032	ВС	0.000071	BC	3.7E-06	BCJ
PCB 54 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000016	QJ	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 55 (BZ)	mg/Kg	1	0.00039	QJ	0.0013	Q	0.000095	QJ	4.9E-06	J	0.00059	U		0.0001	Q	0.00078	U	0.000039	J	0.000013	U	0.000022	U
PCB 56 (BZ)	mg/Kg	1	0.0094	,	0.039		0.0035	В	0.000088		0.0032	В		0.0026		0.021	В	0.00096		0.00013	В	0.000022	U
PCB 57 (BZ)	mg/Kg	1	0.00024	QJ	0.00055	J	0.00065	U	0.000035	U	0.00059	U		0.000041	J	0.00078	U	8.9E-06	J	0.000013	U	0.000022	U
PCB 58 (BZ)	mg/Kg	1	0.00047	QJ	0.0015		0.00065	U	5.5E-06	QJ	0.0005	J		0.00021		0.00053	QJ	0.000045	J	0.000021		0.000022	U
PCB 59 (BZ)	mg/Kg	1	0.0017	С	0.0085	С	0.00062	QCJ	0.000025	CJ	0.0015	С		0.00073	С	0.0038	С	0.00021	С	0.000043	С	3.7E-06	QCJ
PCB 60 (BZ)	mg/Kg	1	0.0028		0.02		0.0011	В	0.000029	J	0.0012	В		0.00089		0.0048	В	0.00023		0.000038	В	2.5E-06	QJ
PCB 61 (BZ)	mg/Kg	1	0.0021	U	0.0016	U	0.0013	U	0.000069	U	0.0012	U		0.00015	U	0.0016	U	0.00014	U	0.000026	U	0.000045	U
PCB 62 (BZ)	mg/Kg	1	0.0017	С	0.0085	С	0.00062	QCJ	0.000025	CJ	0.0015	С		0.00073	С	0.0038	С	0.00021	С	0.000043	С	3.7E-06	QCJ
PCB 63 (BZ)	mg/Kg	1	0.00073	J	0.0034		0.00065	U	7.9E-06	J	0.00014	QJ		0.00024		0.0015		0.000079		5.8E-06	J	0.000022	U
PCB 64	mg/Kg	1	0.0075	В	0.038	В	0.0034	В	0.000087	В	0.0039	В		0.0028	В	0.018	В	0.00094	В	0.00012	В	5.8E-06	QBJ
PCB 65 (BZ)	mg/Kg	1	0.019	BC	0.087	BC	0.0077	BC	0.0002	BC	0.0087	BC		0.0074	BC	0.04	BC	0.0022	BC	0.00037	BC	0.000022	BCJ
PCB 66 (BZ)	mg/Kg	1	0.019	В	0.079	В	0.0078	В	0.00019	В	0.0071	В		0.0059	В	0.041	В	0.0021	В	0.00026	В	0.000017	BJ
PCB 67 (BZ)	mg/Kg	1	0.00082	J	0.0026		0.00065	U	4.2E-06	QJ	0.00059	U		0.00015		0.00093		0.000058	QJ	7.8E-06	J	0.000022	U
PCB 68 (BZ)	mg/Kg	1	0.00017	QJ	0.0003	QJ	0.00065	U	0.000035	U	0.00059	U		0.000035	QJ	0.00024	J	0.000023	J	4.9E-06	J	0.000022	U
PCB 69 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 70	mg/Kg	1	0.028	BC	0.14	BC	0.012	BC	0.00028	BC	0.0081	BC		0.0086	BC	0.067	BC	0.0033	ВС	0.0003	BC	0.000035	BCJ
PCB 71 (BZ)	mg/Kg	1	0.0085	BC	0.041	BC	0.0037	BC	0.000089	QBC	0.0049	BC		0.0033	ВС	0.019	BC	0.00007	U	0.00018	BC	6.6E-06	QBCJ
PCB 72 (BZ)	mg/Kg	1	0.00053	J	0.00068	J	0.00065	U	0.000035	U	0.00059	U		0.000064	J	0.00054	J	0.000039	J	5.8E-06	J	0.000022	U
PCB 73 (BZ)	mg/Kg	1	0.0007	CJ	0.0043	С	0.00021	QCJ	0.000035	U	0.0002	QCJ		0.00031	С	0.0016	QC	0.00009	C	7.4E-06	QCJ	2.7E-06	CJ
PCB 74	mg/Kg	1	0.028	BC	0.14	BC	0.012	BC	0.00028	BC	0.0081	BC		0.0086	ВС	0.067	BC	0.0033	BC	0.0003	BC	0.000035	BCJ

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent	Units	Criterion ⁽¹⁾	HRW(05/09/	'08	HRW(05/09/	'08	HRW(05/02/	08	HRW 05/02	/08	HRW(05/02/	08	HRWC-7 05/02/08	HRW0 05/07/	'08	HRW 05/02	/08	HRW(05/02/	08	HRW(04/24/	'08	HRW(04/24/	/08
Interest		0110011011	0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		0.0-1.0 ft ⁽²⁾ Duplicate	2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima		0.0-1.0 Prima		2.0-3.0 Prima	
Polychlorinated Biphenyls (Congeners/Ho	omoloques	s) (Continued)																					
PCB 75	mg/Kg	1	0.0017	С	0.0085	C	0.00062	QCJ	0.000025	CJ	0.0015	С		0.00073	C	0.0038	C	0.00021	C	0.000043	C	3.7E-06	QCJ
PCB 76 (BZ)	mg/Kg	1	0.028	BC	0.14	BC	0.012	BC	0.00028	BC	0.0081	BC		0.0086	BC	0.067	BC	0.0033	BC	0.0003	BC	0.000035	BCJ
PCB 77	mg/Kg	1	0.0033	Q	0.0086		0.00082		0.000023	QJ	0.0017			0.00058		0.0045		0.00021	Q	0.000053		3.8E-06	J
PCB 78 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 79 (BZ)	mg/Kg	1	0.00044	QJ	0.00052	J	0.00065	U	0.000035	U	0.00015	QJ		0.000068	J	0.00021	J	0.000019	QJ	6.5E-06	J	0.000022	U
PCB 80 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	3.6E-06	J
PCB 81	mg/Kg	1	0.001	U	0.00039	QJ	0.00065	U	0.000035	U	0.00059	U		0.000017	QJ	0.00078	U	9.2E-06	Q	0.000013	U	0.000022	U
PCB 82 (BZ)	mg/Kg	1	0.0028		0.013		0.001	В	0.000033	J	0.003	В		0.0014		0.0055	В	0.00029		0.00013	В	0.000022	U
PCB 83 (BZ)	mg/Kg	1	0.013	С	0.038	С	0.0052	BC	0.00014	С	0.01	BC		0.0048	С	0.021	BC	0.0013	С	0.00046	BC	0.000041	С
PCB 84	mg/Kg	1	0.0052		0.021		0.0021	В	0.000061		0.0063	В		0.0026		0.01	В	0.00058		0.00026	В	0.000019	J
PCB 85 (BZ)	mg/Kg	1	0.0037	С	0.013	С	0.00085	BC	0.000038	QC	0.0028	BC		0.0014	С	0.0057	BQC	0.00034	С	0.00012	BQC	0.000012	CJ
PCB 86 (BZ)	mg/Kg	1	0.011	QC	0.043	С	0.0041	BC	0.00012	QC	0.009	BC		0.0045	С	0.019	BC	0.0011	С	0.00045	BC	0.000044	С
PCB 87	mg/Kg	1	0.011	QC	0.043	С	0.0041	BC	0.00012	QC	0.009	BC		0.0045	С	0.019	BC	0.0011	С	0.00045	BC	0.000044	С
PCB 88 (BZ)	mg/Kg	1	0.001	Ù	0.00081	U	0.00065	U	0.000035	Ù	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 89 (BZ)	mg/Kg	1	0.001	U	0.0017	0	0.00065	U	0.000035	U	0.00045	J		0.0002	0	0.00069	J	0.000052	QJ	0.000011	J	0.000022	U
PCB 90 (BZ)	mg/Kg	1	0.016	ВС	0.055	BC	0.0072	BC	0.00016	QBC	0.012	BC		0.0062	BC	0.027	BC	0.0016	BC	0.00064	BC	0.000073	BC
PCB 91 (BZ)	mg/Kg	1	0.0033		0.01		0.001	В	0.000037		0.0034	В		0.0013		0.0047	В	0.00031		0.00016	В	8.3E-06	QJ
PCB 92 (BZ)	mg/Kg	1	0.0034		0.011		0.00099		0.000036		0.0031			0.0014		0.0056		0.00033		0.00015		0.000012	J
PCB 93 (BZ)	mg/Kg	1	0.00032	QJ	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 94 (BZ)	mg/Kg	1	0.00025	QJ	0.00047	J	0.00065	U	0.000035	U	0.00059	U		0.000062	OJ	0.00043	J	0.00007	U	6.9E-06	QJ	0.000022	U
PCB 95 (BZ)	mg/Kg	1	0.012	C	0.045	C	0.0055	BC	0.00014	C	0.016	BC		0.0059	C	0.022	BC	0.0013	C	0.00073	BC	0.00005	QC
PCB 96 (BZ)	mg/Kg	1	0.0003	ī	0.00087		0.00065	II	0.000035	II	0.00019	I		0.000098	0	0.00056	QJ	0.00003	I	7.8E-06	QJ	0.000022	U
PCB 97	mg/Kg	1	0.011	QC	0.043	С	0.0041	BC	0.00012	QC	0.009	BC		0.0045	Č	0.019	BC	0.0011	C	0.00045	BC	0.000044	C
PCB 98 (BZ)	mg/Kg	1	0.00085	CJ	0.0037	QC	0.00027	CJ	8.9E-06	OCJ	0.00088	QC		0.0004	QC	0.0016	QC	0.00012	C	0.000037	QC	0.000022	U
PCB 99	mg/Kg	1	0.013	C	0.038	C	0.0052	BC	0.00014	C	0.01	BC		0.0048	C	0.0010	BC	0.0012	C	0.00046	BC	0.000041	C
PCB 100 (BZ)	mg/Kg	1	0.013	C	0.045	C	0.0055	BC	0.00014	C	0.016	BC		0.0059	C	0.022	BC	0.0013	C	0.00073	BC	0.00005	QC
PCB 101	mg/Kg	1	0.012	BC	0.055	BC	0.0072	BC	0.00014	OBC	0.010	BC		0.0062	BC	0.027	BC	0.0015	BC	0.00064	BC	0.00003	BC
PCB 102 (BZ)	mg/Kg	1	0.00085	CJ	0.0037	QC	0.00072	CJ	8.9E-06	OCJ	0.00088	QC		0.0004	0	0.0016	QC	0.00010	С	0.000037	QC	0.000073	U
PCB 102 (BZ)	mg/Kg	1	0.00056	I	0.00057	Ţ	0.00027	II	0.000035	II	0.00059	II		0.000078	<u> </u>	0.0018	U	0.00012	I	0.000037	Ţ	0.000022	U
PCB 104 (BZ)	mg/Kg	1	0.00030	U	0.00038	U	0.00065	II	0.000035	II.	0.00059	II		0.000078	II	0.00078	U	0.000037	II	0.000011	U	0.000022	U
PCB 105	mg/Kg	1	0.001	Q	0.00081	U	0.0003	QB	0.000033	0	0.003	QB		0.000077	Q	0.00078	QB		Q	0.000013	QB		_
PCB 106 (BZ)	mg/Kg	1	0.00019	QJ	0.00081	U	0.0022	U	0.000001	U	0.00059	U U		0.00014	U	0.0078	U	0.00034	U		U U	0.000028	
PCB 100 (BZ)	mg/Kg	1	0.00019	U	0.00081	0	0.00042	I	0.000033	Ī	0.00055	QJ		0.00038	U	0.00078		0.00007	U	0.000013	U	3.1E-06	QJ
PCB 107 (BZ)		1	0.0001	CJ	0.0032	C	0.00042	QCJ	0.000011	IJ	0.00033	QCJ		0.00038	С		CJ	0.00013	QCJ		С	0.000022	
PCB 108 (BZ)	mg/Kg	1 1			0.002	C	0.00014	BC	0.000033	QC				0.00017	C		BC	0.0004	C	0.000018	BC	0.000022	_
	mg/Kg	1 1	0.011	QC			0.0041			BC	0.009	BC			BC	0.019						0.000044	
PCB 110	mg/Kg	1 1	0.019	BC	0.064	BC		BC	0.00022	BC		BC		0.0079	ВС	0.032	BC	0.0018	BC	0.0011	BC		_
PCB 111 (BZ)	mg/Kg	1	0.00015	QJ	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.000016	QJ	0.000013	U	0.000022	U
PCB 112 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	O	0.000035	ODI	0.00059	U		0.000077	D.C.	0.00078	U	0.00007	U		U	0.000022	U
PCB 113 (BZ)	mg/Kg	1	0.016	BC	0.055	ВС	0.0072	BC	0.00016	QBJ	0.012	BC		0.0062	BC	0.027	BC	0.0016	BC		BC	0.000073	
PCB 114	mg/Kg	1	0.00055	QJ	0.0015	D.C.	0.00065	D.C.	0.000035	U	0.00012	QJ		0.00021	D.C.	0.00069	QJ	0.00004	J DC	0.000014	Q	0.000022	
PCB 115	mg/Kg	l	0.019	BC	0.064	BC	0.0083	BC	0.00022	BC	0.02	BC		0.0079	BC	0.032	BC	0.0018	BC	0.0011	BC	0.000078	_
PCB 116 (BZ)	mg/Kg	1	0.0037	C	0.013	C	0.00085	BC	0.000038	QC	0.0028	BC		0.0014	C	0.0057	QB	0.00034	C	0.00012	QBC	0.000012	CJ
PCB 117 (BZ)	mg/Kg	1	0.0037	С	0.013	C	0.00085	BC	0.000038	QC	0.0028	BC		0.0014	C	0.0057	QB	0.00034	С	0.00012	QBC	0.000012	CJ
PCB 118	mg/Kg	l	0.014		0.043		0.0057	В	0.00014		0.006	В		0.0038		0.023	В	0.0013	,	0.00035	В	0.000047	
PCB 119	mg/Kg	1	0.011	QC	0.043	C	0.0041	BC	0.00012	QC	0.009	BC		0.0045	C	0.019	BC	0.0011	C	0.00045	BC	0.000044	_
PCB 120 (BZ)	mg/Kg	1	0.001	U	0.00017	QJ	0.00065	U	0.000035	U	0.00059	U		0.000021	QJ	0.00078	U	0.000038	J	4.2E-06	QJ	0.000022	U
PCB 121 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	
PCB 122 (BZ)	mg/Kg	1	0.00027	J	0.0008	QJ	0.00065	U	0.000035	U	0.00022	QJ		0.000085		0.00033	J	0.000025	J	7.2E-06	J	0.000022	
PCB 123	mg/Kg	1	0.0014		0.0012	Q	0.0001	J	4.9E-06	QJ	0.00013	QJ		0.0001	<u> </u>	0.00029	QJ	0.000022	J	0.000015		0.000022	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent		(1)	HRW0 05/09/		HRW(05/09/		HRW0 05/02/		HRW(05/02/		HRW(05/02/		HRWC-7 05/02/08	HRW(05/07/		HRW 05/02		HRW(05/02/		HRW(04/24/		HRW(04/24/	
of Interest	Units	Criterion ⁽¹⁾	0.0-1.0 Prima		2.0-3.0 Prima) ft	0.0-1.0 Prima	ft ⁽²⁾	2.0-3.0 Prima	0 ft	0.0-1.0 Prima	ft ⁽²⁾	0.0-1.0 ft ⁽²⁾ Duplicate	2.0-3.0 Prima) ft	0.0-1.0 Prima	ft ⁽²⁾	2.0-3.0 Prima) ft	0.0-1.0 Prima	ft ⁽²⁾	2.0-3.0 Prima	0 ft
Polychlorinated Biphenyls (Congeners/	Homoloques	s) (Continued)		•		•		•		Ť		•			_				Ť		•		
PCB 124 (BZ)	mg/Kg	1	0.00056	С	0.002	С	0.00014	QCJ	0.000035	U	0.0002	QCJ		0.00017	С	0.00062	CJ	0.00004	QCJ	0.000018	С	0.000022	U
PCB 125 (BZ)	mg/Kg	1	0.011	Q	0.043	С	0.0041	BC	0.00012	QC	0.009	BC		0.0045	С	0.019	BC	0.0011	C	0.00045	BC	0.000044	С
PCB 126	mg/Kg	1	0.001	Ù	0.00028	QJ	0.00065	U	4.9E-06	QJ	0.00059	U		0.000035	QJ	0.00078	U	0.000025	QJ	4.6E-06	QJ	0.000022	U
PCB 127 (BZ)	mg/Kg	1	0.001	U	0.00081	Ù	0.00065	U	0.000035	Ù	0.00059	U		0.000012	J	0.00078	U	0.00007	Ù	0.000013	Ù	0.000022	U
PCB 128	mg/Kg	1	0.0026		0.0072		0.00082		0.000027	J	0.0025			0.0011		0.0026		0.00022		0.00019		0.000016	J
PCB 129 (BZ)	mg/Kg	1	0.016	BC	0.042	BC	0.0069	ВС	0.00015	BC	0.014	BC		0.006	ВС	0.016	BC	0.0012	ВС	0.0013	BC	0.00013	ВС
PCB 130 (BZ)	mg/Kg	1	0.0012		0.0027		0.0003	J	0.000014	OJ	0.00077			0.00043		0.00099	0	0.000096		0.000077		5.4E-06	QJ
PCB 131 (BZ)	mg/Kg	1	0.001	U	0.00079	J	0.00065	U	0.000035	Ū	0.00019	OJ		0.00013		0.00078	Ü	0.000027	QJ	0.00001	QJ	0.000022	U
PCB 132 (BZ)	mg/Kg	1	0.0051		0.015		0.0021	В	0.000052		0.0054	В		0.0022		0.0065	В	0.00043		0.00039	В	0.000043	
PCB 133 (BZ)	mg/Kg	1	0.00041	J	0.00081		0.00065	U	0.000035	IJ	0.00024	J		0.00011		0.00022	QJ	0.000026	QJ	0.000017		0.000022	U
PCB 134 (BZ)	mg/Kg	1	0.001	C	0.0029	С	0.00035	CJ	0.000011	CJ	0.00081	QC		0.00042	С	0.00081	QC		C	0.00007	С	0.000011	CJ
PCB 135	mg/Kg	1	0.0062	QC	0.014	C	0.0022	C	0.000067	C	0.0048	C		0.002	C	0.0058	QC	0.00042	QC	0.00047	C	0.000077	C
PCB 136	mg/Kg	1	0.0024	~~	0.006		0.0022		0.000007	OJ	0.0048			0.0002		0.0038	T ~~	0.00042	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.00047		0.000077	
PCB 137 (BZ)	mg/Kg	1	0.00085	ī	0.002		0.00074	ī	0.000024	II	0.00063			0.00034		0.0023	Ī	0.00016	ī	0.00010		0.000023	U
PCB 138	mg/Kg	1	0.00083	BC	0.002	ВС	0.0069	BC	0.000033	BC	0.0003	BC		0.00034	BC	0.00072	BC	0.00030	BC	0.000042	BC	0.000022	BC
PCB 139 (BZ)	mg/Kg	1	0.00039	QCJ	0.001	QC	0.0005	II	0.000035	II	0.00022	CJ		0.00014	C	0.00022	QCJ	0.00012	CJ	0.00013	C	0.000013	U
PCB 140 (BZ)	mg/Kg	1	0.00039	QCJ	0.001	QC	0.00065	II	0.000035	II	0.00022	CJ		0.00014	C	0.00022	QCJ	0.000034	CJ	0.000014	C	0.000022	U
PCB 141	mg/Kg	1	0.00037	QC3	0.0096	QC	0.0003		0.000033	OI	0.00022	<u>C3</u>		0.00014		0.00022	QC3	0.000034	- 03	0.000014		0.000039	
PCB 142 (BZ)	mg/Kg	1	0.0032	U	0.0090	ĪĪ	0.0014	ĪĪ	0.000020	II Gi	0.0029	II		0.00017	ĪI	0.0023	U	0.00021	II	0.00023	U	0.000039	U
PCB 143 (BZ)	mg/Kg	1	0.001	C	0.00081	C	0.00035	CJ	0.000033	CJ	0.00039	QC		0.000077	C	0.00078	QC	0.00007	C	0.000013	C	0.000022	CJ
PCB 144 (BZ)	mg/Kg	1	0.001	ī	0.0029		0.00033	I CJ	0.000011	II	0.00061	QC		0.00042		0.00054	I	0.000063	QJ	0.00007		0.000011	QJ
PCB 145 (BZ)	mg/Kg	1	0.00077	I I	0.0023	ŢŢ	0.0003	II	0.000035	11	0.00059	TI		0.00032	II	0.00034	U	0.00007	T1	0.000030	U	0.000014	U
PCB 146 (BZ)	mg/Kg	1	0.001	U	0.0058	U	0.00087	0	0.000033	OJ	0.00039	U		0.00084	U	0.0028	U	0.00007		0.000013	U	0.000022	 [
PCB 147 (BZ)	mg/Kg	1	0.003	BC	0.0038	ВС	0.00057	BC	0.000023	BC	0.0019	BC		0.00034	BC	0.0028	BC	0.00021	BC	0.00019	BC	0.00002	BC
PCB 148 (BZ)	mg/Kg	1	0.013	U	0.00081	IJ	0.00065	II	0.000014	II	0.00059	U		0.00047	II.	0.00078	U	0.00093	II	0.00011	U	0.000013	U
PCB 149	mg/Kg	1	0.001	BC	0.00081	BC	0.0005	BC	0.000033	BC	0.00039	BC		0.000077	BC	0.00078	BC	0.00007	BC	0.000013	BC	0.000022	BC
PCB 150 (BZ)	mg/Kg	1	0.013	U	0.00081	IJ	0.0033	II	0.00014	II	0.00059	U		0.00047	II	0.0078	U	0.00093	U	0.00011	U	0.000013	U
PCB 150 (BZ)	mg/Kg	1	0.001	QC	0.00081	C	0.0003	C	0.000067	C	0.00039	C		0.000077	C	0.0058	QC	0.00007	QC	0.000013	C	0.000022	C
PCB 151 PCB 152 (BZ)	mg/Kg	1	0.00038	Ţ	0.00081	IJ	0.0022	T I	0.000035	II	0.0048	U		0.002	II.	0.0038	U	0.00042	U	0.00047	U	0.000077	U
PCB 152 (BZ)	mg/Kg	1 1	0.00038	BC	0.00081	BC	0.00063	BC	0.000033	BC	0.00039	BC		0.000077	BC	0.00078	BC	0.00007	BC	0.000013	BC	0.000022	BC
	mg/Kg	1 1	0.0062	QC	0.033	С	0.0000	С	0.00014	C	0.012	C		0.0048	C C	0.0058		0.00097	QC	0.001	BC C	0.00013	- BC
PCB 154 (BZ) PCB 155 (BZ)		1 1		_		T T		L	0.000035	T I	0.0048	U		-	L L	0.0038	Q	0.00042	QC II		Ţ	0.000077	<u>U</u>
	mg/Kg	1 1	0.001	U	0.00081	C	0.00065	CI		OCI		C		0.000077	C		U	-	C	6.9E-06	J		U
PCB 156	mg/Kg	1	0.0021	C	0.0044	C	0.00059	CJ	0.000021	QCJ	0.00087	C		0.00066	C	0.0016	C	0.00013	C	0.000087	C	0.000012	QCJ
PCB 157	mg/Kg	1	0.0021	С	0.0044	C	0.00059	CJ	0.000021	QCJ	0.00087	C		0.00066	C	0.0016	С	0.00013	C	0.000087	C	0.000012	QCJ
PCB 158	mg/Kg	1	0.0016	O.I.	0.0045	O.I.	0.00058	J	0.000017	J	0.0015	TT		0.00061	OI	0.0014	7.7	0.00011	OI	0.00011	O.I.	0.000013	J
PCB 159 (BZ)	mg/Kg	1	0.00023	QJ	0.00042	QJ	0.00065	DC	0.000035	DC	0.00059	D.C.		0.00006	QJ	0.00078	U	0.000011	QJ	0.000011	QJ	4.6E-06	I DC
PCB 160 (BZ)	mg/Kg	1	0.016	BC	0.042	BC	0.0069	BC	0.00015	BC	0.014	BC		0.006	BC	0.016	BC	0.0012	BC	0.0013	BC	0.00013	BC
PCB 161 (BZ)	mg/Kg	l	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 162 (BZ)	mg/Kg	l	0.0017	Q	0.00083	Q	0.00065	U	5.3E-06	QJ	0.00018	QJ		0.000089	Q	0.0017	Q	0.00005	QJ	0.000035	Q	0.000022	U
PCB 163 (BZ)	mg/Kg	l	0.016	BC	0.042	BC	0.0069	BC	0.00015	BC	0.014	BC		0.006	BC	0.016	BC	0.0012	BC	0.0013	BC	0.00013	BC
PCB 164 (BZ)	mg/Kg	1	0.0015		0.003		0.00044	J	0.000011	QJ	0.001			0.00044		0.0011	Q	0.000099		0.000095		8.1E-06	QJ
PCB 165 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 166 (BZ)	mg/Kg	1	0.00051	QJ	0.00027	QJ	0.00065	U	0.000035	U	0.00012	QJ		0.000088		0.0002	J	0.000019	J -	0.000019		4.9E-06	QJ
PCB 167	mg/Kg	1	0.00078	J	0.0015		0.00021	J	5.8E-06	J	0.0004	QJ		0.00022		0.00058	QC	0.000043	J _ ~	0.000042		5.1E-06	QJ
PCB 168 (BZ)	mg/Kg	1	0.014	BC	0.033	BC	0.0066	BC	0.00014	BC	0.012	BC		0.0048	BC	0.013	BC	0.00097	BC	0.001	BC	0.00015	BC
PCB 169	mg/Kg	1	0.00024	QJ	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.000011	QJ	1.3E-06	QJ	0.000022	U
PCB 170	mg/Kg	1	0.0046		0.0094		0.0016		0.000039		0.0029			0.0016		0.0034		0.00026		0.00041		0.000064	
PCB 171	mg/Kg	1	0.0015	С	0.0031	С	0.00048	QCJ	0.000012	QCJ	0.00075	QC		0.00049	C	0.00073	QCJ		Q	0.00013	С	0.000022	CJ
PCB 172 (BZ)	mg/Kg	1	0.001	J	0.0018		0.00031	J	0.00001	QJ	0.00047	J		0.00031	<u> </u>	0.00038	QJ	0.000049	QJ	0.000087		0.000016	QJ

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent			HRW	C- 5	HRW	C- 5	HRWO	C-6	HRW	C-6	HRW	C- 7	HRWC-7	HRWO	C- 7	HRW	C-8	HRWO	C-8	HRWO	C-9	HRW	C-9
of	Units	Criterion ⁽¹⁾	05/09/	08	05/09/	08	05/02/	'08	05/02	/08	05/02/	08	05/02/08	05/07/	08	05/02/	/08	05/02/	08	04/24/	08	04/24/	/08
Interest	Units	Criterion	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft	0.0-1.0	ft ⁽²⁾	0.0-1.0 ft ⁽²⁾	2.0-3.0	ft (0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft
Interest			Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Duplicate	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ıry
Polychlorinated Biphenyls (Congeners/Ho		s) (Continued)																					
PCB 173 (BZ)	mg/Kg	1	0.0015	С	0.0031	С	0.00048	QCJ	0.000012	QCJ	0.00075	QC		0.00049	С	0.00073	QCJ		QC	0.00013	С	0.000022	CJ
PCB 174	mg/Kg	1	0.0042		0.01		0.0016		0.000037		0.0033			0.0015		0.0032		0.00024		0.00043		0.000092	Ь—
PCB 175 (BZ)	mg/Kg	1	0.00026	J	0.00052	J	0.00065	U	0.000035	U	0.00059	U		0.000069	QJ	0.00078	U	0.000019	QJ	0.000017		0.000022	U
PCB 176 (BZ)	mg/Kg	1	0.00062	J	0.0015		0.00021	J	0.000035	U	0.00037	QJ		0.00021		0.00033	QJ	0.000037	QJ	0.00005		0.000013	J
PCB 177 (BZ)	mg/Kg	1	0.0028		0.0061		0.00094		0.000021	QJ	0.0019			0.00088		0.0016	Q	0.00017		0.00026		0.000048	<u> </u>
PCB 178 (BZ)	mg/Kg	1	0.0012		0.0022		0.00029	J	0.000014	QJ	0.00058	J		0.00034		0.00062	QJ	0.000073		0.000095		0.000027	
PCB 179 (BZ)	mg/Kg	1	0.0023		0.005		0.00066	Q	0.000023	QJ	0.0015			0.00068		0.0018		0.00014		0.00018		0.000044	
PCB 180	mg/Kg	1	0.0095	С	0.02	С	0.004	С	0.000094	С	0.0071	C		0.0033	C	0.0067	C	0.00053	С	0.001	C	0.00021	C
PCB 181 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000023	J	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 182 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.000024	QJ	0.000013	U	0.000022	U
PCB 183	mg/Kg	1	0.0025	Q	0.0065		0.001	Q	0.000024	QJ	0.0022			0.001		0.002		0.00017	Q	0.00027		0.000066	
PCB 184	mg/Kg	1	0.00012	J	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000006	QJ	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 185 (BZ)	mg/Kg	1	0.0007	J	0.0013		0.00065	U	0.000035	U	0.00033	J		0.00018	Q	0.00024	QJ	0.000033	J	0.000056		0.000013	QJ
PCB 186 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 187	mg/Kg	1	0.0065		0.014		0.0026		0.000058		0.0045			0.002		0.0045		0.00039		0.00061		0.00015	
PCB 188 (BZ)	mg/Kg	1	0.001	U	0.00081	U	0.00065	U	0.000035	U	0.00059	U		0.000077	U	0.00078	U	0.00007	U	0.000013	U	0.000022	U
PCB 189	mg/Kg	1	0.00025	QJ	0.00037	QJ	0.00065	U	0.000035	U	0.000083	QJ		0.00012		0.00078	U	0.000018	QJ	0.000018		3.3E-06	J
PCB 190 (BZ)	mg/Kg	1	0.0011		0.0021		0.00027	J	0.000035	U	0.00065	,		0.00036		0.00061	J	0.00006	QJ	0.000095		0.000026	
PCB 191 (BZ)	mg/Kg	1	0.00016	QJ	0.00048	J	0.00065	U	0.000035	U	0.00012	QJ		0.0001		0.00078	U	0.000021	QJ	0.000021		0.000022	U
PCB 192 (BZ)	mg/Kg	1	0.00016	J	0.00081	U	0.00065	U	0.000035	U	0.00059	Ü		0.000077	U	0.00078	U	0.00007	Ù	0.000013	U	0.000022	U
PCB 193 (BZ)	mg/Kg	1	0.0095	С	0.02	С	0.004	С	0.000094	С	0.0071	С		0.0033	С	0.0067	С	0.00053	С	0.001	С	0.00021	С
PCB 194	mg/Kg	1	0.0025	0	0.0053		0.00064	OJ	0.000022	OJ	0.0015			0.001		0.0013	0	0.00016		0.00026		0.000095	
PCB 195	mg/Kg	1	0.0012		0.0022		0.00035	OJ	0.000011	OJ	0.00052	J		0.00043		0.00058	J	0.000067	J	0.000094		0.000023	
PCB 196 (BZ)	mg/Kg	1	0.0015		0.0029		0.00052	j	0.000035	Ü	0.00092			0.0005		0.0008		0.000095		0.00013		0.00007	
PCB 197 (BZ)	mg/Kg	1	0.00021	0	0.0002	OJ	0.00065	U	0.000035	U	0.00059	U		0.000048	J	0.00078	U	0.000014	QJ	9.2E-06	J	0.000007	J
PCB 198 (BZ)	mg/Kg	1	0.004	C	0.0063	C	0.0012	C	0.000027	CJ	0.0022	C		0.0011	C	0.0021	C	0.00023	C	0.00032	C	0.00031	C
PCB 199 (BZ)	mg/Kg	1	0.00048	OJ	0.00072	J	0.00065	U	0.000035	U	0.00018	QJ		0.00013		0.00027	J	0.000028	J	0.000032		0.000013	J
PCB 201	mg/Kg	1	0.00047	OJ	0.00084		0.00065	U	0.000035	U	0.00019	OJ		0.00016		0.00023	OJ	0.000031	OJ	0.000034		0.000032	
PCB 201 (BZ)	mg/Kg	1	0.004	C	0.0063	С	0.0012	C	0.000027	C	0.0022	C		0.0011	С	0.0021	C	0.00023	C	0.00032	С	0.00031	С
PCB 202 (BZ)	mg/Kg	1	0.00097	J	0.0017	0	0.00035	J	0.000035	U	0.00042	OJ		0.00026		0.00049	J	0.000067	J	0.000076	-	0.00014	
PCB 203 (BZ)	mg/Kg	1	0.0021		0.0037		0.00058	QJ	0.000015	QJ	0.0013	χ,		0.00061		0.00083	Q	0.00015		0.00019		0.00014	1
PCB 204 (BZ)	mg/Kg	1	0.001	U	0.00081	IJ	0.00065	U	0.000035	II	0.00059	U		0.000077	IJ	0.00078	Ü		U	0.000013	U	0.000022	U
PCB 205 (BZ)	mg/Kg	1	0.00031	I	0.00026	QJ	0.00065	U	0.000035	U	0.000045	QJ		0.0001		0.00078	U		QJ			0.000004	
PCB 206	mg/Kg	1	0.0032	· ·	0.0037	٧,	0.00066	Ü	0.000018	OJ	0.0013	Α,		0.00083		0.0015	0	0.00015	٧,	0.00017		0.00042	1
PCB 207	mg/Kg	1	0.00072	ī	0.00041	ī	0.00065	IJ	0.000035	II	0.00011	QJ		0.00011		0.00019	I	0.000031	QJ	0.00002		0.000041	<u> </u>
PCB 208 (BZ)	mg/Kg	1	0.00072	3	0.0012	3	0.00065	IJ	0.000035	II	0.00037	QJ		0.00024		0.00051	QJ	0.000074	Ų,	0.000062		0.00022	
Monochlorobiphenyl (total)	mg/Kg	1	0.0022	QB	0.0012	BJQ	0.00025	OJ	0.000035	QBJ	0.00015	I		0.00021	BQ	0.0016	QJ	0.000095	QBJ	9.3E-06	QJ	0.000025	BJQ
Dichlorobiphenyl (total)	mg/Kg	1	0.024	QB	0.049	BQ	0.0052	QB	0.00023	QB	0.0055	QB		0.0041	QB	0.036	QB	0.0017	BQ	0.0002	QB	0.000069	QBJ
Trichlorobiphenyl (total)	mg/Kg	1	0.089	BQ	0.41	BQ	0.028	BQ	0.00023	QB	0.0033	BQ		0.028	BQ	0.19	BQ	0.0017	BQ	0.00071	QB	0.000099	BJQ
Tetrachlorobiphenyl (total)	mg/Kg	1	0.16	BQ	0.73	BQ	0.062	BQ	0.0016	BQ	0.021	BQ		0.026	QB	0.17	BQ	0.0077	BQ	0.00071	BQ	0.000033	BQ
Pentachlorobiphenyl (total)	mg/Kg	1	0.10	QB	0.73	QB	0.002	BQ	0.0010	QB	0.071	BQ		0.036	QB	0.34	QB	0.017	QB	0.0023	QB	0.00018	QB
Hexachlorobiphenyl (total)	mg/Kg	1	0.12	QВ	0.4	BQ	0.043	BQ	0.0012	QB	0.065	BQ		0.043	BQ	0.2	QB	0.0056	QВ	0.0049	BQ	0.00042	QB
Heptachlorobiphenyl (total)	mg/Kg	1	0.08	<u>Qв</u>	0.19	<u>в</u> Q	0.03	0	0.00073	<u>дь</u> О	0.003	<u>в</u> Q		0.028	<u>в</u> Q	0.073	QB	0.0036	О	0.0037	שע	0.0007	QB
Octachlorobiphenyl (total)	mg/Kg	1	0.04	0	0.034	0	0.0037	0	0.00033	JO	0.027	0		0.013	<u> </u>	0.026	Q	0.0023	0	0.0037		0.00079	0
Nonachlorobiphenyl (total)	mg/Kg	1	0.014	Υ	0.0053	Υ	0.0037	Ų	0.000073	QJ	0.0073	0		0.0044		0.0000	0	0.00086	0	0.0012		0.00084	
Decachlorobiphenyl		1	0.003		0.0033	 	0.00053	OJ	0.000018	T V	0.0018	Ų		0.0012		0.0022	<u> </u>	0.00023	0	0.00026		0.0008	\vdash
Pesticides/Herbicides	mg/Kg	1	0.0040		0.0030		0.00033	L Á1	0.000034		0.0013			0.0013		0.002		0.00023	Ų	0.0001/		0.00040	
2,4,5-T	mg/Kg		0.0082	TT	0.0064	IJ	0.0051	ΤT	0.011	U	0.0046	ΤT	I	0.0048	TT	0.0061	U	0.022	ΤT	0.0041	U	0.0071	U
				U II		Ŭ		U TT		_		U			U				U				
2,4-D	mg/Kg		0.052	U	0.041	U	0.033	U	0.07	U	0.029	U		0.031	U	0.039	U	0.14	U	0.026	U	0.045	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent			HRWO		HRWO		HRWO		HRW		HRWO		HRWO		HRW		HRW		HRWO		HRWO		HRW	
of Interest	Units	Criterion ⁽¹⁾	05/09/ 0.0-1.0		05/09/ 2.0-3.0		05/02/ 0.0-1.0		05/02/ 2.0-3.0		05/02/ 0.0-1.0		05/02/ 0.0-1.0		05/07/ 2.0-3.0		05/02/ 0.0-1.0		05/02/ 2.0-3.0		04/24/ 0.0-1.0		04/24/ 2.0-3.0	
			Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Duplica	ate	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ıry
Pesticides/Herbicides (Continued)																								
2,4-DB	mg/Kg		0.047	U	0.037	U	0.029	U	0.062	U	0.026	U			0.028	U	0.035	U	0.13	U	0.023	U	0.04	U
4,4'-DDD	mg/Kg	13	0.0095	JP	0.0015	U	0.0019	JP	0.00051	U	0.008	JP			0.0047		0.003	J	0.001	U	0.0006	JP	0.00033	U
4,4'-DDE	mg/Kg	9	0.025		0.067		0.0055	JP	0.00034	U	0.0088	JP			0.0027	P	0.014	J	0.00091	J	0.00052	JP	0.00022	U
4,4'-DDT	mg/Kg	8	0.003	U	0.0023	U	0.0018	U	0.00078	U	0.0017	U			0.00035	U	0.0022	U	0.0016	U	0.00029	U	0.00051	U
Aldrin	mg/Kg	0.2	0.0023	U	0.0018	U	0.0014	U	0.00061	U	0.0013	U			0.00027	U	0.0017	U	0.0012	U	0.00023	U	0.00039	U
alpha-BHC	mg/Kg	0.5	0.0033	U	0.0026	U	0.0021	U	0.00087	U	0.0019	U			0.00039	U	0.0025	U	0.0018	U	0.00033	U	0.00057	U
alpha-Chlordane	mg/Kg	1	0.0013	U	0.0011	U	0.00084	U	0.00036	U	0.0077	J			0.00067	JP	0.001	U	0.00073	U	0.0011	J	0.00023	U
beta-BHC	mg/Kg	2	0.0025	U	0.002	U	0.0016	U	0.00067	U	0.0014	U			0.0003	U	0.0019	U	0.0014	U	0.00025	U	0.00044	U
delta-BHC	mg/Kg		0.0083	J	0.022		0.0031	JP	0.0006	U	0.0051	J			0.0012	JP	0.0074	J	0.0014	JP	0.0003	JP	0.00039	U
Dieldrin	mg/Kg	0.2	0.0016	U	0.0013	U	0.001	U	0.00043	U	0.002	JP			0.00019	U	0.0012	U	0.00087	U	0.00016	U	0.00028	U
Endosulfan I	mg/Kg	6800	0.0023	U	0.0018	U	0.0014	U	0.0006	U	0.0013	U			0.00027	U	0.0017	U	0.0012	U	0.00022	U	0.00039	U
Endosulfan II	mg/Kg	6800	0.01	JP	0.0039	U	0.0031	U	0.0039	JP	0.0028	U			0.00059	U	0.0037	U	0.0027	U	0.0005	U	0.00086	U
Endosulfan sulfate	mg/Kg	6800	0.0035	U	0.0028	U	0.0022	U	0.00093	U	0.0029	J			0.00041	U	0.0026	U	0.0019	U	0.00035	U	0.0006	U
Endrin	mg/Kg	340	0.0017	U	0.0014	U	0.0011	U	0.00046	U	0.00097	U			0.0002	U	0.0013	U	0.00094	U	0.00017	U	0.0003	U
Endrin aldehyde	mg/Kg	-	0.0027	U	0.0022	U	0.0017	U	0.00072	U	0.0015	U			0.00032	U	0.0021	U	0.0015	U	0.00027	U	0.00047	U
Endrin ketone	mg/Kg	-	0.0033	JP	0.0059	JP	0.0016	U	0.00067	U	0.0016	JP			0.00039	JP	0.0019	U	0.0014	U	0.00025	U	0.00043	U
gamma-Chlordane	mg/Kg	1	0.0022	U	0.0017	U	0.0014	U	0.00059	U	0.01	JP			0.0016	JP	0.0017	U	0.0012	U	0.0015	J	0.00038	U
Heptachlor	mg/Kg	0.7	0.0028	U	0.016	JP	0.0017	U	0.00073	U	0.0016	U			0.00074	JP	0.012	J	0.0015	U	0.00027	U	0.00047	U
Heptachlor epoxide	mg/Kg	0.3	0.0041	JP	0.019	P	0.0044	JP	0.00057	U	0.0019	JP			0.00026	U	0.0039	J	0.0012	U	0.00022	U	0.00037	U
Lindane	mg/Kg	2	0.0079	J	0.0073	JP	0.0061	J	0.00079	U	0.0069	J			0.0055		0.0073	J	0.0016	U	0.00043	JP	0.00052	JP
Methoxychlor	mg/Kg	5700	0.009	U	0.0071	U	0.0056	U	0.0024	U	0.0051	U			0.0011	U	0.0067	U	0.0049	U	0.00089	U	0.0015	U
Silvex	mg/Kg		0.0064	U	0.0051	U	0.004	U	0.0086	U	0.0036	U			0.0038	U	0.0048	U	0.017	U	0.0032	U	0.0056	U
Toxaphene	mg/Kg	3	0.15	U	0.12	U	0.094	U	0.04	U	0.085	U			0.018	U	0.11	U	0.081	U	0.015	U	0.026	U
Metals																								
Aluminum	mg/Kg		15300		25700		12200	J	7170	J	17400	J	16800	J	22200		17200	J	11700	J	23500		11500	<u> </u>
Antimony	mg/Kg	450	2.5	В	17.9		3.5		0.87	В	7.6		6.3		1.4	U	9.2		1.2	В	6.3	BJ	1.2	BJ
Arsenic	mg/Kg	19	14.5		12.9		50.3		33.4		13.1		9.6		13.7	В	52.5		7.4		3	U	13.4	<u> </u>
Barium	mg/Kg	59000	112		92.6		140		43.5	В	74.1		67		56		125		34.8	В	49.9		41.4	В
Beryllium	mg/Kg	140	1.1		1.5		0.75		0.39	В	0.26	В	0.26	В	0.047	U	0.75	В	0.54	В	0.04	U	0.78	BJ
Cadmium	mg/Kg	78	0.94	В	1.3		1		0.16	U	0.6	В	0.13	U	2.7		1.3		0.33	U	0.12	U	0.11	U
Calcium	mg/Kg		7240		59900		8460		5460		40200		54400		103000		26400		6170		90300		5680	<u> </u>
Chromium ⁽⁴⁾	mg/Kg		589	J	6310	J	1360	J	149	J	4410	J	3680	J	11600		4750	J	295	J	14800	J	1400	J
Chromium (Hexavalent) ⁽⁴⁾	mg/Kg	20	8.1		27.9		4.1		0.4	IJ	8.3		10.8		83.2		0.4	U	0.4	IJ	60.2		38.7	
Cobalt	mg/Kg	590	15.6		128		16.3		5.9	В	75.2		100		103		53.1	Ü	5	В	84.7	Ţ	11.9	<u> </u>
Copper	mg/Kg	45000	121		91.8		180		68		815		60.2		43.5		201		15.9	В	51.3	, and the second	16.5	ٺ
Iron	mg/Kg		38300	Ī	87400	Ţ	34000	Ţ	16500	ī	68000	I	88400	ī	81900		56700	Ī	18100	Ī	75800		31900	\vdash
Lead	mg/Kg	800	127		128		206		80.7		98.3		63	-	91.7		232		37.9		72		26.6	\vdash
Magnesium	mg/Kg		9670		37900		8390		6690		24700		24000		41900		16800		9230		66400		5180	\vdash
Manganese	mg/Kg	5900	729		919		418		205		1180		1030		994		611		174		958		167	\vdash
Mercury	mg/Kg	65	2.7		6.8		7.7		2.9		1.9		2.2		0.87		6.9		0.24		0.11		0.28	+
Nickel	mg/Kg	23000	49.5		482		57.8		19.9		264		351		376		215		15.8	В	288		28.4	t
Potassium	mg/Kg		2580		881	В	2040		1770		1090		1030		513	В	2050		2350	В	266	В	2440	t
Selenium	mg/Kg	5700	1.9		1.7		2.2		1.1	В	1.3		1.7		0.88	U	2.2		2.1	В	0.74	U	1.1	t
Silver	mg/Kg	5700	2.3	J	1.8	J	1.7		0.43	В	1.3		1.3		0.83	Ţ	1.7		0.45	В	0.47	В	0.33	В
Sodium	mg/Kg		5260		2460	<u> </u>	3300		11900	١Ť	2750		3030		2650		4810		27000	١	1880		4630	Ť
Thallium	mg/Kg	79	2.4	В	8.4		1.9		1.1	U	3.8		4.9		4.8		4.2		2.3	IJ	5.4		0.72	U
Vanadium	mg/Kg	1100	70.9	ט	1590		77.6		24.6		542		688		1080		473		24.1	В	522		42	\vdash
		1100	10.7		10//			i e	. # T.U														. (4	

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW(05/09/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(05/09/ 2.0-3.0 Prima	08 ft	HRW(05/02/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(05/02/ 2.0-3.0 Prima	/08) ft	HRW(05/02/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC-7 05/02/08 0.0-1.0 ft ⁽²⁾ Duplicate	HRW(05/07/ 2.0-3.0 Prima	/08) ft	HRW(05/02/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(05/02/ 2.0-3.0 Prima	08) ft	HRW(04/24/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	08) ft
Acid Volatile Sulfide/Simultaneously	Extracted Me	etals																					
Acid Volatile Sulfide	umole		48.2		30.7		16.2		1.7		16.6			0.57	В	27.7		1.1	U	0.2	U	3.4	
Cadmium (SEM)	umol/g		0.013		0.029		0.0078		0.0024	В	0.0061			0.017		0.013		0.00086	В	0.0024	В	0.0015	В
Copper (SEM)	umol/g		1.3	J	1.5	J	1.7		0.91		0.45			0.41	J	1.7		0.063	В	0.66		0.025	
Lead (SEM)	umol/g		0.5		0.67		0.83		0.51		0.25			0.3		1		0.072		0.13		0.097	
Mercury (SEM)	umol/g		0.000091	В	0.00021		0.00038		0.000023	U	0.00077			0.00029		0.00016		0.000046	U	0.00023	J	0.000015	U
Nickel (SEM)	umol/g		0.39		4.9		1.8		0.27		1.3			6		1.8		0.18		4.1		0.27	
Silver (SEM)	umol/g		0.007		0.0079		0.0043		0.0017	В	0.004			0.0049		0.0043		0.00095	U	0.003		0.0003	U
Zinc (SEM)	umol/g		3.2	J	6.3	J	4.6		2		2.8			4.7	J	6		0.66		3.6	J	0.83	J
Toxicity Characteristic Leaching Pro	ocedure ⁽⁵⁾	•	•		•		•		•				,	•		•			•				
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U		0.035	U	0.035	U	0.035	U	0.035	U	0.035	U
1,2-Dichloroethane	mg/L	0.5	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U		0.026	U	0.026	U	0.026	U	0.026	U	0.026	U
1,4-Dichlorobenzene	mg/L	7.5	0.0046	U	0.035	J	0.0046	U	0.0046	U	0.0046	U		0.0046	U	0.039	J	0.0046	U	0.0046	U	0.0046	U
2,4,5-Trichlorophenol	mg/L	400	0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U		0.0041	U	0.0041	U	0.0041	U	0.0041	U	0.0041	U
2,4,6-Trichlorophenol	mg/L	2	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U		0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U		0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U
2-Butanone	mg/L	200	0.033	U	0.033	U	0.029	U	0.029	IJ	0.029	U		0.029	IJ	0.029	U	0.029	IJ	0.029	U	0.029	U
Benzene	mg/L	0.5	0.037	U	0.037	U	0.033	U	0.033	II	0.033	U		0.033	II	0.033	U	0.033	IJ	0.033	П	0.033	U
Carbon Tetrachloride	mg/L	0.5	0.028	II	0.028	U	0.033	U	0.033	II	0.037	U		0.037	II	0.033	U	0.037	U	0.037	U	0.037	U
Chlorobenzene	mg/L	100	0.028	II	0.028	U	0.028	U	0.028	II	0.028	U		0.028	II	0.037	U	0.028	IJ	0.037	U	0.037	U
Chloroform	mg/L	6	0.031	U	0.031	U	0.028	U	0.028	U	0.028	U		0.028	II	0.028	U	0.028	IJ	0.028	U	0.028	U
Cresols	mg/L	200	0.0089	II.	0.0089	U	0.031	I	0.0089	II.	0.0089	U		0.0089	II	0.0089	U	0.0089	II.	0.0089	<u>I</u> I	0.0089	U
Hexachlorobenzene	mg/L	0.13	0.0089	11	0.0089	U	0.0049	U	0.0089	II	0.0039	IJ		0.0089	11	0.0039	U	0.0089	11	0.0089	11	0.0049	U
Hexachlorobutadiene	mg/L	0.13	0.0049	II	0.0049	U	0.0049	U	0.0049	II	0.0049	IJ		0.0049	II	0.0049	U	0.0049	II	0.0049	11	0.0043	U
Hexachloroethane	mg/L	3	0.0033	II	0.0033	U	0.0033	U	0.0033	II	0.0033	U		0.0033	II	0.0033	U	0.0033	II	0.0033	11	0.0033	U
Nitrobenzene	mg/L	2	0.0056	II	0.0056	U	0.0056	U	0.0056	II	0.0056	U		0.0056	II	0.0056	U	0.0056	II	0.0056	11	0.0056	U
Pentachlorophenol		100	0.005	U	0.005	U	0.0036	U	0.005	II	0.005	U		0.005	II	0.0036	U	0.005	IJ	0.0030	U	0.005	U
Pyridine	mg/L	5	0.003	U	0.003	U	0.003	U	0.003	II	0.003	U		0.003	II	0.003	U	0.003	IJ	0.003		0.003	U
Tetrachloroethene	mg/L	0.7	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U		0.011	U	0.011	U	0.011	U	0.011	U	0.011	U
	mg/L			T.I	0.025		0.035	U		T I		U			T I	0.023	U		II		T.I.	0.023	U
Trichloroethene	mg/L	0.5	0.035	T.I	0.035	U U	0.033	U	0.035	U	0.035	U		0.035	IJ	0.033	U	0.035	U	0.035	U	0.033	U
Vinyl chloride	mg/L	5	0.038	U	0.038									0.038	Ŭ	0.038	B	0.038	- T	0.038	U	0.038	U
Arsenic	mg/L	100	0.17	В	0.17	В	0.17	В	0.27 0.078	В	0.17 0.22	B BJ		0.12	В	0.16		0.18 0.026	В	0.13	D	0.18	
Barium	mg/L	100		В		В	0.36	BJ		BJ				0.023	В	0.0023	В		BJ		В		В
Cadmium	mg/L	1	0.0044	В	0.0012	U	0.0012	U	0.0012	D	0.0012	U		0.0012	D		В	0.0012	U	0.0012	U	0.0012	U
Chromium	mg/L	5	0.012	В	0.0011	U	0.0011	U	0.0093	В	0.0081	В		0.053	В	0.02	В	0.0025	В	0.19	В	0.16	В
Lead	mg/L	5	0.04	В	0.013	U	0.013	U	0.013	U	0.013	U		0.02	В	0.037	В	0.013	U	0.023	В	0.023	В
Mercury	mg/L	0.2	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U		0.000055	U	0.000055	U	0.000055	U	0.000055	<u>U</u>	0.000055	U
Selenium	mg/L	1 7	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U		0.015	U	0.015	U	0.015	U	0.026	В	0.015	U
Silver	mg/L	5	0.0025	LU	0.0025	U	0.0025	U	0.0025	LU	0.0025	U		0.0025	LU	0.0025	U	0.0025	U	0.0025	U	0.0025	U
RCRA Characteristics and Indicator		0 < 11 :10 7	7.75		0.20		0.05		7.00	_	7.01				ı	0.24		7.60	ı	(00		0.06	
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>7.75</td><td>ъ</td><td>8.29</td><td></td><td>8.05</td><td>т</td><td>7.28</td><td></td><td>7.81</td><td>т.</td><td></td><td></td><td></td><td>8.24</td><td>т</td><td>7.69</td><td>7</td><td>6.02</td><td>**</td><td>9.06</td><td></td></ph<12.5<>	7.75	ъ	8.29		8.05	т	7.28		7.81	т.				8.24	т	7.69	7	6.02	**	9.06	
Cyanide (Reactivity)	mg/Kg	23000	0.63	В	2.8		1.1	J	0.33	U	1.4	J		0.36	В	2.7	J	1.8	J	0.67	U	0.22	В
Total Sulfide (Reactivity)	mg/Kg		1100		2180		1050		333	<u> </u>	445				<u> </u>	184		2350		86.1	U	15.9	U
Ignitability	none		No		No		No		No		No					No		No		No		No	!
Total Organic Carbon	mg/Kg		63500		46300		23200		151000		18100					31100		58200		395000		6460	'
Oxidation Reduction Potential	mV		118		155		171		285	<u> </u>	293					313		273		317		269	'
Total Petroleum Hydrocarbons	mg/Kg		917		674		402		508		501					51.8		852		559		16.8	<u> </u>
Percent Solids	%		38.6		49.1		61.7		28.9		68.4			69.9	l	65.2		51.4		14.3		77.4	, ,

TABLE 4-16

ANALYTICAL RESULTS

HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW(07/29 0.0-1.0 Prima	/08 ft ⁽²⁾	HRW(07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(04/23/ 2.0-3.(Prima	/08 O ft	HRWC 04/24/ 0.0-1.0 Prima	'08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	/08) ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/23/ 2.0-3.0 Prima	/08) ft
Volatile Organics	/7.7	4200	0.00007	T.1	0.0020	7.7	0.0014		0.0021	1 77	0.0016		0.0010		0.002		0.002	T.
1,1,1-Trichloroethane	mg/Kg	4200	0.00097	U	0.0029	U	0.0014	U	0.0031	U	0.0016	U	0.0018	U	0.002	U	0.002	U
1,1,2,2-Tetrachloroethane	mg/Kg	3	0.0014	U	0.0043	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0022	U	0.0022	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.0017	U	0.005	U	0.0017	U	0.0037	U	0.002	U	0.0022	U	0.0024	U	0.0024	U
1,1,2-Trichloroethane	mg/Kg	6	0.0021	U	0.0064	U	0.0014	U	0.0032	U	0.0017	U	0.0019	U	0.0021	U	0.0021	U
1,1-Dichloroethane	mg/Kg	24	0.0011	U	0.0035	U	0.0013	U	0.0029	U	0.0016	U	0.0018	U	0.0019	U	0.0019	U
1,1-Dichloroethene	mg/Kg	150	0.0017	U	0.0051	U	0.0016	U	0.0035	U	0.0019	U	0.0021	U	0.0023	U	0.0023	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.0018	U	0.0053	U	0.0014	U	0.0031	U	0.0016	U	0.0019	U	0.002	U	0.002	U
1,2-Dibromoethane	mg/Kg	0.04	0.0017	U	0.0052	U	0.0014	U	0.0031	U	0.0017	U	0.0019	U	0.002	U	0.002	U
1,2-Dichlorobenzene	mg/Kg	59000	0.0016	U	0.0048	U	0.0015	U	0.0033	U	0.0018	U	0.002	U	0.0021	U	0.0021	U
1,2-Dichloroethane	mg/Kg	3	0.0012	U	0.0037	U	0.0015	U	0.0033	U	0.0017	U	0.002	U	0.0021	U	0.0021	U
1,2-Dichloropropane	mg/Kg	5	0.0011	U	0.0033	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0021	U	0.0021	U
1,3-Dichlorobenzene	mg/Kg	59000	0.0013	U	0.004	U	0.0014	U	0.0032	U	0.0017	U	0.0019	U	0.002	U	0.002	U
1,4-Dichlorobenzene	mg/Kg	13	0.0013	U	0.0038	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0021	U	0.0021	U
2-Butanone	mg/Kg	44000	0.0018	U	0.0053	U	0.0013	U	0.0029	U	0.0016	U	0.014		0.0035	J	0.054	<u> </u>
2-Hexanone	mg/Kg		0.0014	U	0.0042	U	0.0011	U	0.0024	U	0.0013	U	0.0014	U	0.0015	U	0.0015	U
4-Methyl-2-pentanone	mg/Kg		0.0013	U	0.0039	U	0.0012	U	0.0026	U	0.0014	U	0.0016	U	0.0017	U	0.0017	U
Acetone	mg/Kg		0.018	J	0.03	U	0.0082	J	0.015	U	0.012	J	0.051		0.16		0.19	<u> </u>
Benzene	mg/Kg	5	0.0013	U	0.0041	U	0.0014	U	0.0031	U	0.0017	U	0.0019	U	0.002	U	0.0025	J
Bromodichloromethane	mg/Kg	3	0.0011	U	0.0034	U	0.0013	U	0.0029	U	0.0016	U	0.0018	U	0.0019	U	0.0019	U
Bromoform	mg/Kg	280	0.00088	U	0.0027	U	0.0014	U	0.0031	U	0.0016	U	0.0018	U	0.002	U	0.002	U
Bromomethane	mg/Kg	59	0.0015	U	0.0045	U	0.0017	U	0.0038	U	0.002	U	0.0023	U	0.0024	U	0.0024	U
Carbon disulfide	mg/Kg	110000	0.001	U	0.0031	U	0.0017	U	0.0037	U	0.002	U	0.0026	J	0.0025	J	0.0053	J
Carbon tetrachloride	mg/Kg	2	0.00089	U	0.0027	U	0.0012	U	0.0027	U	0.0014	U	0.0016	U	0.0017	U	0.0017	U
Chlorobenzene	mg/Kg	7400	0.0015	U	0.0046	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0021	U	0.0021	U
Chloroethane	mg/Kg	1100	0.0031	U	0.0093	U	0.0019	U	0.0043	U	0.0023	U	0.0026	U	0.0028	U	0.0028	U
Chloroform	mg/Kg	2	0.0012	U	0.0035	U	0.0014	U	0.0032	U	0.0017	U	0.0019	U	0.002	U	0.002	U
Chloromethane	mg/Kg	12	0.0017	U	0.0051	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0021	U	0.0021	U
cis-1,2-Dichloroethene	mg/Kg	560	0.0014	U	0.0042	U	0.0015	U	0.0033	U	0.0017	U	0.0019	U	0.0021	U	0.0021	U
cis-1,3-Dichloropropene	mg/Kg	7	0.0014	U	0.0041	U	0.0012	U	0.0027	U	0.0014	U	0.0016	U	0.0017	U	0.0017	U
Cyclohexane	mg/Kg		0.00074	U	0.0022	U	0.0013	U	0.003	U	0.0016	U	0.0018	U	0.0019	U	0.0019	U
Dibromochloromethane	mg/Kg	8	0.0014	U	0.0043	U	0.0013	U	0.0028	U	0.0015	U	0.0017	U	0.0018	U	0.0018	U
Dibromochloropropane	mg/Kg		0.0015	U	0.0045	U	0.0011	U	0.0025	U	0.0013	U	0.0015	U	0.0016	U	0.0016	U
Dichlorodifluoromethane	mg/Kg	230000	0.0013	U	0.004	U	0.0017	U	0.0039	U	0.002	U	0.0023	U	0.0025	U	0.0025	U
Ethylbenzene	mg/Kg	110000	0.0013	U	0.0039	U	0.0016	U	0.0036	U	0.0019	U	0.0021	U	0.0023	U	0.0023	U
Isopropylbenzene	mg/Kg		0.0014	U	0.0041	U	0.0014	U	0.0032	U	0.0017	U	0.0058	J	0.0021	U	0.011	
Methyl acetate	mg/Kg		0.0018	U	0.0054	U	0.0014	U	0.0032	U	0.0017	U	0.0019	U	0.002	U	0.002	U
Methylcyclohexane	mg/Kg		0.0014	U	0.0044	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0022	U	0.0022	U
Methylene chloride	mg/Kg	97	0.0086	J	0.023	J	0.001	U	0.0023	U	0.0012	U	0.0014	U	0.0015	U	0.0019	J
Methyltert-butylether	mg/Kg	320	0.0015	U	0.0045	U	0.0012	U	0.0028	U	0.0015	U	0.0017	U	0.0018	U	0.0018	U
Styrene	mg/Kg	260	0.0011	U	0.0032	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0022	U	0.0021	U
Tetrachloroethene	mg/Kg	5	0.0014	U	0.0041	U	0.0018	U	0.0039	U	0.0021	U	0.0023	U	0.0025	U	0.0025	U
Toluene	mg/Kg	91000	0.0015	U	0.0044	U	0.0011	U	0.0024	U	0.0013	U	0.0014	U	0.0015	U	0.0015	U
trans-1,2-Dichloroethene	mg/Kg	720	0.0012	U	0.0036	U	0.0016	U	0.0035	U	0.0019	U	0.0021	U	0.0022	U	0.0022	U
trans-1,3-Dichloropropene	mg/Kg	7	0.0012	U	0.0036	U	0.0012	U	0.0026	U	0.0014	U	0.0016	U	0.0017	U	0.0017	U
Trichloroethene	mg/Kg	20	0.0013	U	0.004	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0022	U	0.0022	U
Trichlorofluoromethane	mg/Kg	340000	0.0018	U	0.0055	U	0.0022	U	0.0049	U	0.0026	U	0.0029	U	0.0031	U	0.0031	U
Vinyl chloride	mg/Kg	2	0.00094	U	0.0028	U	0.0015	U	0.0034	U	0.0018	U	0.002	U	0.0022	U	0.0021	U
Xylene (total)	mg/Kg	170000	0.0045	U	0.013	U	0.0048	U	0.011	U	0.0056	U	0.0084	J	0.0068	U	0.012	J

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW(07/29 0.0-1.0 Prima	/08 ft ⁽²⁾	HRW(07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	'08 ft ⁽²⁾	HRWC 04/23/ 2.0-3.0 Prima	/08) ft	HRWC 04/24/ 0.0-1.0 Prima	'08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	/08) ft	HRWC 04/23/ 0.0-1.0 Prima	/08 ft ⁽²⁾	HRWC 04/23. 2.0-3. Prima	3/08 .0 ft
Semivolatile Organics	/17	24000	0.01		0.12	7.7	0.021	7.7	0.055	7.7	0.17	T T	0.01	ı	0.17	T 7	0.27	T .
1,1'-Biphenyl	mg/Kg	34000	0.81	* *	0.12	U	0.031	U	0.055	U	0.17	J	0.81	**	0.17	J	0.27	
2,2'-oxybis(1-chloropropane)	mg/Kg		0.041	U	0.14	U	0.033	U	0.06	U	0.026	U	0.04	U	0.035	U	0.04	U
2,4,5-Trichlorophenol	mg/Kg	68000	0.056	U	0.19	U	0.046	U	0.083	U	0.035	U	0.056	U	0.048	U	0.054	U
2,4,6-Trichlorophenol	mg/Kg	74	0.055	U	0.18	U	0.045	U	0.081	U	0.034	U	0.054	U	0.047	U	0.053	U
2,4-Dichlorophenol	mg/Kg	2100	0.02	U	0.067	U	0.017	U	0.03	U	0.013	U	0.02	U	0.017	U	0.02	U
2,4-Dimethylphenol	mg/Kg	14000	0.029	U	10		0.024	U	0.043	U	0.023	J	0.029	U	0.025	U	0.028	U
2,4-Dinitrophenol	mg/Kg	1400	0.81	U	2.7	U	0.66	U	1.2	U	0.5	U	0.8	U	0.69	U	0.78	U
2,4-Dinitrotoluene	mg/Kg	3	0.035	U	0.12	U	0.029	U	0.052	U	0.022	U	0.035	U	0.03	U	0.034	U
2,6-Dinitrotoluene	mg/Kg	3	0.044	U	0.15	U	0.036	U	0.065	U	0.027	U	0.043	U	0.038	U	0.042	U
2-Chloronaphthalene	mg/Kg		0.039	U	0.13	U	0.032	U	0.058	U	0.025	U	0.039	U	0.034	U	0.038	U
2-Chlorophenol	mg/Kg	2200	0.034	U	0.11	U	0.028	U	0.05	U	0.021	U	0.034	U	0.029	U	0.033	U
2-Methylnaphthalene	mg/Kg	2400	1.8		0.22	J	0.031	J	0.055	U	0.44		11		0.29	J	3.3	<u> </u>
2-Methylphenol	mg/Kg	3400	0.043	U	37		0.035	U	0.063	U	0.027	U	0.042	U	0.037	U	0.041	U
2-Nitroaniline	mg/Kg	23000	0.041	U	0.14	U	0.033	U	0.06	U	0.026	U	0.041	U	0.035	U	0.04	U
2-Nitrophenol	mg/Kg		0.054	U	0.18	U	0.044	U	0.08	U	0.034	U	0.054	U	0.047	U	0.052	U
3,3'-Dichlorobenzidine	mg/Kg	4	0.15	U	0.51	U	0.13	U	0.23	U	0.096	U	0.15	U	0.13	U	0.15	U
3-Nitroaniline	mg/Kg		0.058	U	0.19	U	0.048	U	0.086	U	0.037	U	0.058	U	0.05	U	0.057	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.48	U	1.6	U	0.39	U	0.71	U	0.3	U	0.48	U	0.41	U	0.47	U
4-Bromophenylphenyl ether	mg/Kg		0.031	U	0.1	U	0.025	U	0.045	U	0.019	U	0.03	U	0.026	U	0.03	U
4-Chloro-3-methylphenol	mg/Kg		0.042	U	0.14	U	0.034	U	0.061	U	0.026	U	0.041	U	0.036	U	0.04	U
4-Chloroaniline	mg/Kg		0.059	U	0.19	U	0.048	U	0.086	U	0.037	U	0.058	U	0.05	U	0.057	U
4-Chlorophenyl phenyl ether	mg/Kg		0.034	U	0.11	U	0.028	U	0.05	U	0.021	U	0.033	U	0.029	U	0.033	U
4-Methylphenol	mg/Kg	340	0.16	J	200		0.035	U	0.063	U	0.13	J	0.31	J	0.084	J	0.18	J
4-Nitroaniline	mg/Kg		0.029	U	0.095	U	0.023	U	0.042	U	0.018	U	0.028	U	0.025	U	0.028	U
4-Nitrophenol	mg/Kg		0.053	U	0.18	U	0.043	U	0.078	U	0.033	U	0.053	U	0.046	U	0.051	U
Acenaphthene	mg/Kg	37000	2.8		0.47	J	0.029	U	0.052	U	2.3		9.8		1.3		4.5	
Acenaphthylene	mg/Kg	300000	10		1.7	J	0.051	J	0.058	J	0.31	J	5.2		3.6		3.1	
Acetophenone	mg/Kg	5	0.041	U	0.14	U	0.034	U	0.061	U	0.026	U	0.041	U	0.036	U	0.04	U
Anthracene	mg/Kg	30000	19		1.9	J	0.044	J	0.057	U	5.7		17		4.5		9.1	
Atrazine	mg/Kg	2400	0.047	U	0.16	U	0.038	U	0.069	U	0.029	U	0.046	U	0.04	U	0.045	U
Benzaldehyde	mg/Kg	68000	0.072	U	0.24	U	0.059	U	0.11	U	0.045	U	0.072	U	0.074	J	0.07	U
Benzo(a)anthracene	mg/Kg	2	73		5.2		0.039	J	0.078	J	9.4		19		14		13	
Benzo(a)pyrene	mg/Kg	0.2	55		4.3		0.017	U	0.041	J	8.5		15		12		9.9	
Benzo(b)fluoranthene	mg/Kg	2	72		4.9		0.021	U	0.047	J	11		16		14		12	
Benzo(ghi)perylene	mg/Kg	30000	20		2.1	J	0.019	U	0.034	U	5.3		7.1		8.1		4.6	
Benzo(k)fluoranthene	mg/Kg	23	0.022	U	0.072	U	0.018	U	0.032	U	0.014	U	0.022	U	6.2		0.021	U
Bis(2-chloroethoxy)methane	mg/Kg		0.032	U	0.11	U	0.026	U	0.047	U	0.02	U	0.031	U	0.027	U	0.031	U
Bis(2-chloroethyl)ether	mg/Kg	2	0.015	U	0.051	U	0.013	U	0.023	U	0.0096	U	0.015	U	0.013	U	0.015	U
Bis(2-ethylhexyl)phthalate	mg/Kg	140	0.052	U	0.17	U	0.043	U	0.077	U	0.21	J	0.052	U	1.6		0.37	J
Butyl benzyl phthalate	mg/Kg	14000	0.055	U	0.18	U	0.045	U	0.08	U	0.034	U	0.054	U	0.047	U	0.053	U
Caprolactam	mg/Kg	340000	0.13	U	0.43	U	0.11	U	0.19	U	0.081	U	0.13	U	0.11	U	0.12	U
Carbazole	mg/Kg	96	0.89	_	0.15	J	0.023	U	0.041	Ü	1.4		0.4	J	0.68		0.22	J
Chrysene	mg/Kg	230	67		4.8		0.028	J	0.069	J	8.3		17		12		11	1
Dibenzo(a,h)anthracene	mg/Kg	0.2	5.7		0.31	J	0.035	U	0.064	U	1.3		1.5		2.5		1.3	
Dibenzofuran	mg/Kg		2.5		0.33	J	0.031	U	0.055	U	1.1		1.6		0.82		1.2	
Diethyl phthalate	mg/Kg	550000	0.061	U	0.2	U	0.05	U	0.09	U	0.038	U	0.06	U	0.052	U	0.059	U
Dimethyl phthalate	mg/Kg		0.039	U	0.13	U	0.032	U	0.057	U	0.024	U	0.038	U	0.033	U	0.037	U
Di-n-butyl phthalate	mg/Kg	68000	0.039	U	0.13	U	0.032	U	0.037	U	0.024	U	0.038	U	0.033	U	0.037	U
Di-n-octyl phthalate	mg/Kg	27000	0.048	U	0.16	U	0.032	U	0.17	U	0.071	U	0.11	U	0.041	U	0.11	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW0 07/29 0.0-1.0 Prima	/08 oft ⁽²⁾	HRW0 07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(04/23/ 2.0-3.0 Prima	/08 0 ft	HRWC 04/24/ 0.0-1.0 Prima	/08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	/08) ft	HRWC 04/23/ 0.0-1.0 Prima	'08 ft ⁽²⁾	HRW(04/23/ 2.0-3.0 Prima	/08 0 ft
Semivolatile Organics (Continued)					•					·		·						
Fluoranthene	mg/Kg	24000	150		12		0.06	J	0.15	J	23		31		43		20	
Fluorene	mg/Kg	24000	2.5		0.46	J	0.027	U	0.049	U	2		10		1.7		4.8	
Hexachlorobenzene	mg/Kg	1	0.041	U	0.14	U	0.033	U	0.06	U	0.026	U	0.041	U	0.035	U	0.04	U
Hexachlorobutadiene	mg/Kg	25	0.042	U	0.14	U	0.034	U	0.061	U	0.026	U	0.041	U	0.036	U	0.04	U
Hexachlorocyclopentadiene	mg/Kg	110	0.031	U	0.1	U	0.026	U	0.046	U	0.02	U	0.031	U	0.027	U	0.03	U
Hexachloroethane	mg/Kg	140	0.03	U	0.1	U	0.025	U	0.045	U	0.019	U	0.03	U	0.026	U	0.029	U
Indeno(1,2,3-cd)pyrene	mg/Kg	2	20		1.8	J	0.02	U	0.036	U	4.6		5.8		8		4.2	
Isophorone	mg/Kg	2000	0.038	U	0.13	U	0.031	U	0.056	U	0.024	U	0.038	U	0.033	U	0.037	U
Naphthalene	mg/Kg	17	7.6		0.86	J	0.11	J	0.088	J	1.1		10		2.4		3.9	
Nitrobenzene	mg/Kg	340	0.017	U	0.056	U	0.014	U	0.025	U	0.011	U	0.017	U	0.015	U	0.016	U
N-Nitrosodiphenylamine	mg/Kg	390	0.037	U	0.12	U	0.03	U	0.054	U	0.023	U	0.037	U	0.032	U	0.036	U
N-Nitrosodipropylamine	mg/Kg	0.3	0.017	U	0.055	U	0.014	U	0.025	U	0.01	U	0.016	U	0.014	U	0.016	U
Pentachlorophenol	mg/Kg	10	0.051	U	0.17	U	0.041	U	0.075	U	0.032	U	0.05	U	0.044	U	0.049	U
Phenanthrene	mg/Kg	300000	15		1.8	J	0.048	J	0.077	J	16		35		11		18	
Phenol	mg/Kg	210000	0.15	J	290		0.034	U	0.061	U	0.04	J	0.041	U	0.14	J	0.08	J
Pyrene	mg/Kg	18000	120	-	10		0.05	J	0.11	J	16		30		19		17	
Polychlorinated Dioxins and Furans	188	10000	120		10		0.00	-	0.11		10		20				- 7	
1,2,3,4,6,7,8-HpCDD	ug/Kg		0.052	J	0.34	U	0.0011	OJ	0.011	J	0.018	OJ	0.049	J	0.12		0.023	QJ
1,2,3,4,6,7,8-HpCDF	ug/Kg		0.65		0.077	J	0.037	В	0.0037	BJ	0.54		0.12		4.7	В	0.11	В
1,2,3,4,7,8,9-HpCDF	ug/Kg		0.029	J	0.34	U	0.0013	J	0.015	U	0.024	J	0.0088	J	0.16		0.0041	QJ
1,2,3,4,7,8-HxCDD	ug/Kg		0.1	U	0.34	U	0.0084	U	0.015	U	0.064	U	0.1	U	0.088	U	0.099	U
1,2,3,4,7,8-HxCDF	ug/Kg		0.22		0.022	QJ	0.013	В	0.0013	BJ	0.17		0.045	Ī	1.4	QB	0.04	BJ
1,2,3,6,7,8-HxCDD	ug/Kg		0.0055	QJ	0.34	U	0.0084	U	0.015	U	0.064	U	0.1	U	0.015	OJ	0.099	IJ
1,2,3,6,7,8-HxCDF	ug/Kg		0.032	J	0.34	U	0.0021	J	0.015	U	0.029	OJ	0.01	OJ	0.22		0.0085	J
1,2,3,7,8,9-HxCDD	ug/Kg		0.0047	J	0.34	U	0.0084	U	0.015	U	0.064	Ü	0.0069	J	0.005	J	0.099	U
1,2,3,7,8,9-HxCDF	ug/Kg		0.1	U	0.34	U	0.0084	U	0.015	U	0.064	U	0.1	U	0.088	U	0.099	U
1,2,3,7,8-PCDD	ug/Kg		0.1	U	0.34	U	0.0084	U	0.015	U	0.064	U	0.0049	J	0.0036	OJ	0.099	U
1,2,3,7,8-PCDF	ug/Kg		0.0063	QJ	0.34	U	0.00022	QJ	0.015	U	0.003	OJ	0.0065	J	0.035	J	0.099	U
2,3,4,6,7,8-HxCDF	ug/Kg		0.011	J	0.34	U	0.00027	OJ	0.015	U	0.0086	OJ	0.0059	QJ	0.077	QJ	0.0034	QJ
2,3,4,7,8-PCDF	ug/Kg		0.02	QJ	0.34	U	0.001	QJ	0.015	U	0.013	QJ	0.0099	QJ	0.1	0	0.0032	QJ
2,3,7,8-TCDD	ug/Kg		0.021	U	0.068	U	0.0017	U	0.003	U	0.013	U	0.02	U	0.093	Q	0.019	QJ
2,3,7,8-TCDF	ug/Kg		0.02	QJ	0.068	U	0.00045	QJ	0.003	U	0.013	U	0.017	I	0.0084	OJ	0.0085	QJ
OCDD	ug/Kg		1.7	В	0.34	BJ	0.013	BJ	0.36	В	1.3	В	2.1	В	1.6	В	0.76	В
OCDF	ug/Kg		1.1	В	0.13	QBJ	0.075	В	0.0069	BJ	0.79	В	0.19	BJ	6.8	В	0.15	BJ
Total HpCDD	ug/Kg		0.14	J	0.021	QJ	0.0026	QJ	0.032	Bu	0.045	QJ	0.14	I	0.34		0.051	QJ
Total HpCDF	ug/Kg		0.74	J	0.077	J	0.042	QB	0.0037	BJ	0.63	Α,	0.14		5.3	В	0.12	QJ
Total HxCDD	ug/Kg		0.06	QJ	0.34	U	0.0084	U	0.0062	QJ	0.021	QJB	0.06	QJ	0.13	QJ	0.014	QJ
Total HxCDF	ug/Kg		0.45	Q	0.04	QJ	0.028	QB	0.0023	QJB	0.38	O	0.1	QJ	3.2	QB	0.077	QJB
Total PeCDD	ug/Kg		0.019	QJ	0.34	U	0.002	QJ	0.0013	QJ	0.0049	J	0.019	QJ	0.16	QJ	0.099	U
Total PeCDF	ug/Kg		0.01)	QJ	0.34	U	0.002	QJ	0.00013	QJ	0.004)	QJ	0.079	QJ	1.3	SQ	0.034	QJS
Total TCDD	ug/Kg		0.013	J	0.068	U	0.0013	I	0.00003	QJ	0.0048	J	0.011	QJ	0.21	0	0.019	QJ
Total TCDF	ug/Kg		0.013	0	0.068	U	0.0011	O	0.00023	U	0.0048	0	0.011	Q	1	SQ	0.019	QJ
Polychlorinated Dioxins/Furans (2,3,7,			0.12		0.000		0.0000	Y	0.003		0.000		0.1		1	20	0.037	1 43
1,2,3,4,6,7,8-HpCDD	0.01		5.2E-04						1.1E-04			I	4.9E-04	I	1.2E-03	I	l	$\overline{}$
1,2,3,4,6,7,8-HpCDF	0.01		6.5E-03		7.7E-04		3.7E-04		3.7E-05	1	5.4E-03	 	1.2E-03	 	4.7E-02	 	1.1E-03	+
1,2,3,4,0,7,8-HpCDF	0.01		2.9E-04		7.7E-04		1.3E-05		3.7E-03	1	2.4E-04	 	8.8E-05	 	1.6E-03	 	1.11-03	+
1,2,3,4,7,8-HxCDD	0.01		2.7E-04				1.315-03				2.4E-04	1	0.0L-03		1.0E-03	 		+
1,2,3,4,7,8-HxCDF	0.10		2.2E-02				1.3E-03		1.3E-04		1.7E-02		4.5E-03				4.0E-03	+
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	0.10		2.2E-02				1.3E-03		1.3E-04	1	1./E-02		4.3E-03			-	4.0E-03	+

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW0 07/29 0.0-1.0 Prima	/08) ft ⁽²⁾	HRW(07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(04/23/ 2.0-3.0 Prima	/08 0 ft	HRWC 04/24/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	08) ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRW(04/23/ 2.0-3.0 Prima	3/08 .0 ft
1,2,3,6,7,8-HxCDF	0.10		3.2E-03	11 y		•• y	2.1E-04	<u> </u>		l		<u> </u>		J	2.2E-02	<u>, , , , , , , , , , , , , , , , , , , </u>	8.5E-04	T
Polychlorinated Dioxins/Furans (2,3,7,8 E		ts) (Continued					2.1E 04								2.21.02		0.3L 04	
1,2,3,7,8,9-HxCDD	0.10		4.7E-04	I	l			Π				Π	6.9E-04		5.0E-04			$\overline{}$
1,2,3,7,8,9-HxCDF	0.10		4.7L-04										0.912-04		3.0E-04			+
1,2,3,7,8-PCDD	1.00												4.9E-03					+
1,2,3,7,8-PCDF	0.05												3.3E-04		1.8E-03			+
2,3,4,6,7,8-HxCDF	0.03		1.1E-03										3.3E-04		1.0E-03			+
2,3,4,0,7,8-PCDF	0.10																	+
2,3,7,8-TCDD	1.00																	
2,3,7,8-TCDF	0.10												1.7E-03					\vdash
OCDD	0.0001		1.7E-04		3.4E-05		1.3E-06		3.6E-05		1.3E-04		2.1E-04		1.6E-04		7.6E-05	+
OCDF	0.0001		1.7E-04 1.1E-04		3.4E-03		7.5E-06		6.9E-03		7.9E-05		1.9E-05		6.8E-04		1.5E-05	\vdash
		 1			9.0E.04				1									+
Total 2,3,7,8-TCDD Equivalents ⁽³⁾	ug/Kg	<u> </u>	3.4E-02		8.0E-04		1.9E-03		3.1E-04		2.3E-02		1.4E-02		7.5E-02		6.0E-03	Щ_
Polychlorinated Biphenyls (Aroclors)		T																
Aroclor 1016	mg/Kg	1	0.0051	U	0.017	U	0.0042	U	0.0075	U	0.0032	U	0.005	U	0.0043	U	0.0049	U
Aroclor 1221	mg/Kg	1	0.0065	U	0.022	U	0.0053	U	0.0096	U	0.0041	U	0.0065	U	0.0056	U	0.0063	U
Aroclor 1232	mg/Kg	1	0.1	PG	0.019	U	0.0048	U	0.0086	U	0.056		0.0058	U	1		0.32	
Aroclor 1242	mg/Kg	1	0.0056	U	0.018	U	0.0046	U	0.0082	U	0.0035	U	0.0055	U	0.0047	U	0.0054	U
Aroclor 1248	mg/Kg	1	0.0032	U	0.011	U	0.0026	U	0.0048	U	0.002	U	0.0032	U	0.0028	U	0.0031	U
Aroclor 1254	mg/Kg	1	0.0049	U	0.016	U	0.004	U	0.0072	U	0.014	J	0.0048	U	0.2		0.056	
Aroclor 1260	mg/Kg	1	0.0049	U	0.016	U	0.004	U	0.0072	U	0.0072	J	0.0048	U	0.1		0.031	J
Aroclor 1262	mg/Kg	1	0.0075	U	0.025	U	0.0061	U	0.011	U	0.0047	U	0.0074	U	0.0064	U	0.0073	U
Aroclor 1268	mg/Kg	1	0.0044	U	0.015	U	0.0036	U	0.0065	U	0.0028	U	0.0044	U	0.0037	U	0.0043	U
Polychlorinated Biphenyls (Congeners/Ho	moloques	s)																
PCB 1	mg/Kg	1	0.00014	В	2.5E-05	QBJ	0.000011	BJ	0.000011	BJ	0.000024	QJ	0.00011	BJ	0.00018	J	0.0008	U
PCB 2 (BZ)	mg/Kg	1	0.00006	QBJ	2.1E-05	BJ	7.5E-06	BJ	0.000014	BJ	0.000064	U	0.000095	BJ	0.00071	U	0.0008	U
PCB 3 (BZ)	mg/Kg	1	0.00013		2.8E-05	J	9.4E-06	J	0.00001	J	0.000064	U	0.00019	J	0.00071	U	0.0008	U
PCB 4	mg/Kg	1	6.8E-05	QBJ	4.5E-05	QBJ	0.000017	QBJ	0.00001	QBJ	0.000095	QBJ	0.000022	QBJ	0.0012	QBJ	0.00013	QBJ
PCB 5 (BZ)	mg/Kg	1	1.8E-05	QJ	5.9E-06	QJ	6.9E-06	QJ	2.2E-06	QJ	0.000064	U	0.0002	U	0.000072	QJ	0.0008	U
PCB 6	mg/Kg	1	5.4E-05	QBJ	3.2E-05	QBJ	0.000015	QBJ	5.7E-06	QBJ	0.000058	QBJ	0.000031	QBJ	0.00056	QBJ	0.0008	U
PCB 7 (BZ)	mg/Kg	1	1.6E-05	QBJ	6.5E-06	QBJ	4.3E-06	QBJ	4.6E-06	QBJ	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 8	mg/Kg	1	0.00012	QBJ	8.7E-05	BJ	0.000037	QB	8.8E-06	QBJ	0.00016	QB	0.00003	QBJ	0.0026	QB	0.00022	QBJ
PCB 9 (BZ)	mg/Kg	1	3.7E-05	QBJ	1.4E-05	QBJ	0.000011	QBJ	5.9E-06	QBJ	0.000035	QJ	0.000019	QBJ	0.00026	QJ	0.0008	U
PCB 10 (BZ)	mg/Kg	1	1.8E-05	QJ	9.2E-06	QJ	0.000004	QJ	5.6E-06	QJ	8.7E-06	QJ	0.00002	QJ	0.00071	U	0.0008	U
PCB 11 (BZ)	mg/Kg	1	0.00017	QBJ	8.3E-05	QBJ	0.000034	QBJ	0.000016	QBJ	0.00016	QB	0.000098	QBJ	0.0019	QB	0.00089	QBJ
PCB 12 (BZ)	mg/Kg	1	0.0001	QBCJ	3.7E-05	QBCJ	0.000025	QBC	7.3E-06	QBCJ	0.000071	QC	0.000057	QBCJ	0.00063	QCJ	0.0008	U
PCB 13 (BZ)	mg/Kg	1	0.0001	QBCJ	3.7E-05	QBCJ	0.000025	QBC	7.3E-06	QBCJ	0.000071	QC	0.000057	QBCJ	0.00063	QCJ	0.0008	U
PCB 14 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	3.5E-06	QJ	4.5E-06	QJ	0.000064	U	0.000018	QJ	0.00071	U	0.0008	U
PCB 15	mg/Kg	1	0.00032	QB	0.00012	QB	0.000048	QB	9.6E-06	QBJ	0.00023	QB	0.0002	QBJ	0.0022	QB	0.00025	QBJ
PCB 16	mg/Kg	1	0.00013	В	8.6E-05	В	0.000034	В	0.000009	QBJ	0.00012	В	0.0002	U	0.0032	В	0.0008	U
PCB 17 (BZ)	mg/Kg	1	0.00013	В	9.9E-05	В	0.000023	В	8.5E-06	QBJ	0.00017	В	0.0002	U	0.0043	В	0.00036	BJ
PCB-18	mg/Kg	1	0.00028	В	0.00023	QB	0.000074	В	0.000017	BJ	0.00041	В	0.000065	QBJ	0.011	В	0.00092	BJ
PCB 19 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	Ù	9.3E-06	QJ	0.00003	U	0.000064	U	0.0002	U	0.00062	J	0.0008	U
PCB 20 (BZ)	mg/Kg	1	0.00053	BC	0.00037	BC	0.00012	BC	0.000023	BCJ	0.00072	BC	0.0001	QBCJ	0.015	BC	0.0014	BCJ
PCB 21 (BZ)	mg/Kg	1	0.00014	BC	8.3E-05	QBC	0.000053	BC	8.1E-06	BCJ	0.00016	BC	0.000053	QBCJ	0.0057	BC	0.00043	QBCJ
PCB 22	mg/Kg	1	0.00014	В	8.9E-05	В	0.00005	В	5.5E-06	BJ	0.00017	В	0.000033	QBJ	0.0042	В	0.00031	QBJ
PCB 23 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	2.4E-06	J	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 24 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	5.9E-06	QJ	3.6E-06	QJ	0.000064	U	0.0002	U	0.000071	QJ	0.0008	Ü
														_				

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent	T T •	~ · · (1)	HRW0 07/29		HRW(07/29		HRWC 04/23/		HRW0 04/23		HRWC 04/24/		HRWC 04/24/		HRWC 04/23/		HRW(04/23/	
of Interest	Units	Criterion ⁽¹⁾	0.0-1.0	ft ⁽²⁾	2.0-3.	0 ft	0.0-1.0	ft ⁽²⁾	2.0-3.	0 ft	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft
interest			Prima	ary	Prima	ıry	Prima	ry	Prima	ıry	Prima	ry	Prima	ry	Prima	ry	Prima	ıry
Polychlorinated Biphenyls (Congeners/Ho		s) (Continued)																
PCB 26 (BZ)	mg/Kg	1	0.00013	QBC	8.3E-05	BC	0.000029	BC	7.6E-06	QBCJ	0.00014	BC	0.000049	QBCJ	0.0018	BC	0.00018	QBC.
PCB 27 (BZ)	mg/Kg	1	3.4E-05	QJ	2.1E-05	J	6.4E-06	QJ	0.00003	U	0.000024	QJ	0.0002	U	0.00054	J	0.0008	U
PCB 28	mg/Kg	1	0.00053	BC	0.00037	BC	0.00012	BC	0.000023	BCJ	0.00072	BC	0.0001	QBJ	0.015	BC	0.0014	BCJ
PCB 29 (BZ)	mg/Kg	1	0.00013	QBC	8.3E-05	BC	0.000029	BC	7.6E-06	QBCJ	0.00014	BC	0.000049	QBCJ	0.0018	BC	0.00018	QBC.
PCB 30 (BZ)	mg/Kg	1	0.00021	U	0.00014	U	2.2E-06	QJ	0.000061	U	0.00013	U	0.00041	U	0.0014	U	0.0016	U
PCB 31	mg/Kg	1	0.00046	В	0.00029	В	0.00014	В	0.000015	BJ	0.00056	В	0.00009	QBJ	0.012	В	0.0013	BJ
PCB 32 (BZ)	mg/Kg	1	0.00011	В	7.4E-05	QB	0.000022	В	6.4E-06	QBJ	0.00012	В	0.0002	U	0.0026	В	0.00021	QBJ
PCB 33	mg/Kg	1	0.00014	BC	8.3E-05	QBC	0.000053	BC	8.1E-06	BCJ	0.00016	BC	0.000053	QBCJ	0.0057	BC	0.00043	QBC.
PCB 34 (BZ)	mg/Kg	1	1.5E-05	QJ	6.5E-06	QJ	4.3E-06	J	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 35 (BZ)	mg/Kg	1	3.7E-05	QJ	1.7E-05	QJ	9.5E-06	J	0.00003	U	0.000018	J	0.000044	QJ	0.00017	QJ	0.0008	U
PCB 36 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 37	mg/Kg	1	0.00019	В	0.00011	В	0.000063	В	7.9E-06	QBJ	0.0002		0.000061	BJ	0.0029		0.00026	QJ
PCB 38 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 39 (BZ)	mg/Kg	1	1.1E-05	QJ	6.8E-05	U	3.9E-06	QJ	0.000002	QJ	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 40 (BZ)	mg/Kg	1	0.00022	QBC	0.00016	QBC	0.000056	BC	9.3E-06	QBCJ	0.00029	BC	0.000054	BCJ	0.0069	BC	0.00093	QBC
PCB 41	mg/Kg	1	2.8E-05	J	6.8E-05	U	4.4E-06	J	0.00003	U	7.6E-06	QBJ	0.0002	U	0.00067	QBJ	0.0008	U
PCB 42 (BZ)	mg/Kg	1	0.00017	В	0.00011	В	0.000031	QB	0.00003	U	0.0002	В	0.0002	U	0.0046	В	0.00054	BJ
PCB 43 (BZ)	mg/Kg	1	0.00064	С	8.7E-06	CJ	4.4E-06	QCJ	0.00003	U	0.000019	QCJ	0.00015	QCJ	0.00039	QCJ	0.0008	U
PCB 44	mg/Kg	1	0.00052	BC	0.00035	BC	0.00012	BC	0.000021	BCJ	0.00072	BC	0.000089	QBCJ	0.015	BC	0.0019	BC
PCB 45 (BZ)	mg/Kg	1	9.8E-05	BCJ	7.1E-05	BC	0.000027	BC	5.6E-06	QBCJ	0.00012	BC	0.0002	U	0.0025	BC	0.00022	QBC.
PCB 46 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000009	QJ	0.00003	U	0.00002	QJ	0.0002	U	0.00078		0.0008	U
PCB 47 (BZ)	mg/Kg	1	0.00052	ВС	0.00035	BC	0.00012	BC	0.000021	BCJ	0.00072	BC	0.000089	QBCJ	0.015	ВС	0.0019	BC
PCB 48 (BZ)	mg/Kg	1	0.0001	BJ	6.4E-05	BJ	0.000018	В	0.00003	U	0.0001		0.0002	U	0.0033		0.00031	QJ
PCB 49	mg/Kg	1	0.00042	В	0.00027	В	0.000083	В	0.000012	OBJ	0.00054	В	0.000083	QBJ	0.011	В	0.0012	QB
PCB 50 (BZ)	mg/Kg	1	6.8E-05	BCJ	4.7E-05	OBCJ	0.000022	ВС	4.9E-06	OBCJ	0.00008	QBC	0.0002	U	0.0018	ВС	0.0008	Ü
PCB 51 (BZ)	mg/Kg	1	9.8E-05	BCJ	7.1E-05	BC	0.000027	BC	5.6E-06	OBCJ	0.00012	BC	0.0002	U	0.0025	BC	0.00022	QBC.
PCB 52	mg/Kg	1	0.0001	U	0.0004	В	0.00014	В	0.000027	BJ	0.00078	В	0.0002	U	0.018	В	0.0026	В
PCB 53 (BZ)	mg/Kg	1	6.8E-05	BCJ	4.7E-05	QBCJ	0.000022	BC	4.9E-06	QBCJ	0.00008	QB	0.0002	U	0.0018	BC	0.0008	U
PCB 54 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	IJ	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 55 (BZ)	mg/Kg	1	0.00061		6.8E-05	U	3.7E-06	J	0.00003	U	0.000015	J	0.0002	U	0.00012	OJ	0.0008	Ü
PCB 56 (BZ)	mg/Kg	1	0.00028		0.00017		0.000077	Ť	6.8E-06	QJ	0.0003	В	0.0002	U	0.0067	В	0.0011	В
PCB 57 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 58 (BZ)	mg/Kg	1	0.0001	U	8E-06	J	5.1E-06	QJ	0.00003	U	0.000064	U	0.0002	U	0.00026	QJ	0.0008	U
PCB 59 (BZ)	mg/Kg	1	5.4E-05	QCJ	3.1E-05	CJ	0.000012	QCJ	0.00003	U	0.000051	QCJ	0.000019	QCJ	0.0012	C	0.00012	QCJ
PCB 60 (BZ)	mg/Kg	1	0.00009	QJ	5.9E-05	QJ	0.000012	0	3.1E-06	QJ	0.000087	QB	0.0002	U	0.0023	В	0.00054	BJ
PCB 61 (BZ)	mg/Kg	1	0.00003	U	0.00014	U	0.000013	U	0.000061	U	0.00013	U	0.0002	U	0.0023	U	0.00054	U
PCB 62 (BZ)	mg/Kg	1	5.4E-05	QCJ	3.1E-05	CJ	0.000034	QCJ	0.00003	U	0.00013	QCJ	0.000011	QCJ	0.0014	C	0.0010	QCJ
PCB 63 (BZ)	mg/Kg	1	3.1E-05	1	6.8E-05	U	5.8E-06	1	0.00003	U	0.000031	QJ	0.00001	U	0.00012	I	0.00012	U
PCB 64	mg/Kg	1	0.00021	В	0.00013	В	0.000043	В	6.4E-06	QBJ	0.00029	B	0.0002	QBJ	0.0064	В	0.00087	В
PCB 65 (BZ)	mg/Kg	1	0.00021	BC	0.00013	BC	0.00012	BC	0.000021	BCJ	0.00029	BC	0.000041	QBCJ	0.0004	BC	0.00087	BC
PCB 66 (BZ)	mg/Kg	1	0.00032	U	0.00033	В	0.00012	В	0.000021	BJ	0.00072	В	0.000089	QBU	0.015	В	0.0019	В
PCB 67 (BZ)	mg/Kg	1	0.0001	U	0.00001	QJ	3.9E-06	I D	0.000017	U	0.00003	QJ	0.0003	U	0.00032	I D	0.0020	U
PCB 68 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	2.5E-06	QJ	4.3E-06	QJ	0.000014	U	0.0002	U	0.00032	U	0.0008	U
PCB 69 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 70	mg/Kg	1	0.0001	BC	0.00053	BC	0.00017	BC	0.00003	BCJ	0.00004	BC	0.0002	BCJ	0.00071	BC	0.0008	BC
PCB 70 PCB 71 (BZ)	mg/Kg	1	0.00088	QBC	0.00033	QBC	0.00016	BC	9.3E-06	QBCJ	0.001	BC	0.00012	BCJ	0.023	BC	0.0043	QBC
PCB 71 (BZ) PCB 72 (BZ)	mg/Kg	1	0.00022	U	8.9E-06	ДВС	4.4E-06	I DC	0.00003	U	0.00029	U	0.000034	U	0.0009	QJ	0.00093	U
` /		1	0.0001	C	8.9E-06 8.7E-06	CJ		QCJ	0.00003	U	0.000004	QCJ	0.0002	QCJ	0.00011	QCJ	0.0008	U
PCB 73 (BZ) PCB 74	mg/Kg mg/Kg	1	0.00088	BC	0.00053	BC	4.4E-06 0.00016	BC	0.00003	BCJ	0.00019	BC	0.00013	BCJ	0.00039	BC	0.0008	BC

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of	Units	Criterion ⁽¹⁾	HRW0 07/29	/08	HRW(07/29	/08	HRWC 04/23/	08	HRW(04/23/	'08	HRWC 04/24/	08	HRWC 04/24/	08	HRW(04/23/	/08	HRW(04/23/	6/08
Interest		011011011	0.0-1.0		2.0-3.		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0	
Delevable wire 4 ed Direk en ule (Conseque		(Continued)	Prima	ary	Prima	ıry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima	ıry
Polychlorinated Biphenyls (Congene PCB 75	mg/Kg	<u> </u>	5.4E-05	QCJ	3.1E-05	CJ	0.000012	QCJ	0.00003	U	0.000051	QCJ	0.000019	QCJ	0.0012	С	0.00012	QCJ
PCB 76 (BZ)	mg/Kg	1	0.00088	BC	0.00053	BC	0.00012	BC	0.00003	BCJ	0.000031	BC	0.000019	BCJ	0.0012	BC	0.00012	BC
PCB 77	mg/Kg	1	0.00088	0	5.7E-05	J	0.00010	ьс	0.000023	U	0.0001	ьс	0.00012	QJ	0.023	ВС	0.0043	QJ
PCB 78 (BZ)	mg/Kg	1	0.00011	U	6.8E-05	U	0.000029	U	0.00003	U	0.000082	U	0.000039	II Qi	0.0013	U	0.0002	U
PCB 79 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	4.2E-06	OJ	0.00003	U	0.000064	U	0.0002	U	0.00071	J	0.0008	U
PCB 80 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	IJ	0.0001	U	0.0008	U
PCB 81	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	IJ	0.00071	U	0.0008	U
PCB 82 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	Q	0.000017	U	0.00003	U	0.000004	QB	0.0002	U	0.00071	В	0.0008	U
PCB 83 (BZ)	mg/Kg	1	0.00044	С	0.00026	C	0.000032	С	0.00003	CJ	0.00052	BC	0.0002	QCJ	0.002	BC	0.0003	BC
PCB 84	mg/Kg	1	0.00044	Q	0.00020		0.000049		7.8E-06	I	0.00032	В	0.00007	U	0.0034	В	0.002	QBJ
PCB 85 (BZ)	mg/Kg	1	0.00017	QC	8.3E-05	С	0.000049	QC	5.3E-06	QCJ	0.00010	QBC	0.0002	U	0.0043	BQC	0.00047	QBC.
PCB 86 (BZ)	mg/Kg	1	0.00013	C	0.00024	C	0.00003	QC	0.000018	QCJ	0.00012	BC	0.0002	U	0.0024	BC	0.00047	BC.
PCB 87	mg/Kg	1	0.00042	C	0.00024	C	0.0001	QC	0.000018	QCJ	0.0004	BC	0.0002	U	0.0086	BC	0.0019	BC
PCB 88 (BZ)	mg/Kg	1	0.00042	U	6.8E-05	U	0.00017	U	0.000018	U	0.00004	U	0.0002	IJ	0.00071	U	0.0019	U
PCB 89 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	IJ	0.00071	QJ	0.0008	U
PCB 90 (BZ)	mg/Kg	1	0.00054	BC	0.00036	BC	0.00017	BC	0.000034	BC	0.00065	BC	0.0002	BCJ	0.013	BC	0.0031	BC
PCB 91 (BZ)	mg/Kg	1	0.00034	ВС	7.1E-05	ВС	0.000034	ВС	0.000034	U	0.00009	QB	0.0000	U	0.002	В	0.00034	BJ
PCB 92 (BZ)	mg/Kg	1	0.00012		0.00008		0.000034		7.4E-06	ī	0.00003	0	0.0002	IJ	0.0021	B	0.00034	I
PCB 93 (BZ)	mg/Kg	1	0.00012	U	6.8E-05	U	0.000033	U	0.00003	U	0.000011	U	0.0002	II.	0.0021	U	0.0008	U
PCB 94 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	QJ	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 95 (BZ)	mg/Kg	1	0.00044	C	0.00023	QC	0.00013	C	0.00003	QCJ	0.00052	BC	0.0002	U	0.00071	BC	0.0016	BC
PCB 96 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	4.6E-06	OJ	0.000022	U	0.000064	IJ	0.0002	IJ	0.00071	U	0.0008	U
PCB 97	mg/Kg	1	0.00042	C	0.00024	C	0.0001	QC	0.000018	QCJ	0.0004	BC	0.0002	U	0.0086	BC	0.0019	BC
PCB 98 (BZ)	mg/Kg	1	0.00012	U	2.7E-05	QCJ	0.000013	QCJ	0.00003	U	0.000037	CJ	0.0002	U	0.00051	QCJ	0.0008	U
PCB 99	mg/Kg	1	0.00044	C	0.00026	C	0.000099	C	0.000017	CJ	0.00052	BC	0.00007	QCJ	0.0094	BC	0.002	BC
PCB 100 (BZ)	mg/Kg	1	0.00044	C	0.00023	QC	0.00013	C	0.000022	QCJ	0.00052	BC	0.0002	U	0.011	BC	0.0016	BC
PCB 101	mg/Kg	1	0.00054	BC	0.00036	BC	0.00013	BC	0.000034	В	0.00065	BC	0.000095	BCJ	0.013	BC	0.0031	BC
PCB 102 (BZ)	mg/Kg	1	0.0001	U	2.7E-05	QCJ	0.000013	QCJ	0.00003	U	0.000037	CJ	0.0002	U	0.00051	QCJ	0.0008	U
PCB 103 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	IJ	0.00071	U	0.0008	U
PCB 104 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 105	mg/Kg	1	0.00037	Q	0.00017	Q	0.00024	0	0.00001	J	0.00026	QB	0.000057	QJ	0.0041	QB	0.0011	QB
PCB 106 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	Ü	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 107 (BZ)	mg/Kg	1	4.5E-05	QJ	3.2E-05	J	0.000012	J	0.00003	U	0.000038	J	0.0002	U	0.00093		0.00023	J
PCB 108 (BZ)	mg/Kg	1	2.3E-05	QCJ	1.4E-05	CJ	5.4E-06	CJ	0.00003	U	0.000015	QCJ	0.0002	U	0.00041	CJ	0.0008	U
PCB 109 (BZ)	mg/Kg	1	0.00042	C	0.00024	С	0.0001	QC	0.000018	QCJ	0.0004	BC	0.0002	U	0.0086	BC	0.0019	ВС
PCB 110	mg/Kg	1	0.00062	BC	0.0004	BC	0.00019	BC	0.000032	BC	0.00074	BC	0.00012	BCJ	0.015	BC	0.0036	ВС
PCB 111 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 112 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 113 (BZ)	mg/Kg	1	0.00054	ВС	0.00036	ВС	0.00013	ВС	0.000034	BC	0.00065	ВС	0.000095	BCJ	0.013	BC	0.0031	ВС
PCB 114	mg/Kg	1	0.00005	J	0.00001	QJ	0.000012	QJ	0.00003	U	0.000064	U	0.0002	U	0.00018	QJ	0.0008	U
PCB 115	mg/Kg	1	0.00062	BC	0.0004	BC	0.00019	BC	0.000032	BC	0.00074	BC	0.00012	BCJ	0.015	BC	0.0036	ВС
PCB 116 (BZ)	mg/Kg	1	0.00015	QC	8.3E-05	С	0.00003	QC	5.3E-06	QCJ	0.00012	QB	0.0002	U	0.0024	QBC	0.00047	QBC.
PCB 117 (BZ)	mg/Kg	1	0.00015	QC	8.3E-05	С	0.00003	QC	5.3E-06	QCJ	0.00012	QB	0.0002	U	0.0024	QBC	0.00047	QBC.
PCB 118	mg/Kg	1	0.0005		0.0003		0.000096		0.000023	J	0.00055	В	0.000068	J	0.01	В	0.003	В
PCB 119	mg/Kg	1	0.00042	С	0.00024	С	0.0001	QC	0.000018	QCJ	0.0004	ВС	0.0002	U	0.0086	BC	0.0019	ВС
PCB 120 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	2.3E-06	J	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 121 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 122 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000002	QJ	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 123	mg/Kg	1	9.4E-06	QJ	1.2E-05	J	2.6E-06	QJ	0.00003	U	9.7E-06	QJ	0.0002	U	0.00012	QJ	0.0008	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent		(1)	HRW0 07/29		HRW(07/29		HRWC 04/23/		HRWC 04/23/		HRWC 04/24/		HRW(04/24/		HRW(04/23/		HRW(04/23)	
of	Units	Criterion ⁽¹⁾	0.0-1.0		2.0-3.		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0	
Interest			Prima		Prima		Prima		Prima		Prima		Prima		Prima		Prima	
Polychlorinated Biphenyls (Congeners/Ho	mologues	s) (Continued)		ar y	1 111116	ıı y	1111114	<u>1 y</u>	111114	.1 y	111114	<u>1 y</u>	111114	1 у	1111114	1 y	1 111114	ii y
PCB 124 (BZ)	mg/Kg	1	2.3E-05	QCJ	1.4E-05	CJ	5.4E-06	CJ	0.00003	U	0.000015	QCJ	0.0002	IJ	0.00041	СЈ	0.0008	U
PCB 125 (BZ)	mg/Kg	1	0.00042	C	0.00024	C	0.0001	OC	0.000018	QCJ	0.0004	BC	0.0002	U	0.0086	BC	0.0019	BC
PCB 126 (BE)	mg/Kg	1	2.6E-05	QJ	6.8E-05	U	4.2E-06	QJ	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 127 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 128	mg/Kg	1	9.7E-05	QJ	7.5E-05		0.000031	U	0.00003	U	0.00007	0	0.0002	U	0.0014		0.00033	QJ
PCB 129 (BZ)	mg/Kg	1	0.00057	BC	0.00035	BC	0.00018	BC	0.00003	BC	0.0006	BC	0.00002	QBCJ	0.0014	BC	0.0029	BC
PCB 130 (BZ)	mg/Kg	1	4.2E-05	Ī	2.1E-05	QJ	0.000013	Ī	0.00003	U	0.000027	ī	0.00003	U QBC3	0.00048	QJ	0.0029	U
PCB 131 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	4.1E-06	QJ	0.00003	U	0.000027	U	0.0002	U	0.00048	U	0.0008	U
PCB 132 (BZ)	mg/Kg	1	0.0001	0	0.00011		0.000066	Q3	0.00003	ī	0.00005	В	0.0002	U	0.0034	В	0.0003	QBJ
PCB 133 (BZ)	mg/Kg	1	0.00021	U	6.8E-05	U	6.3E-06	Ţ	0.000013	U	8.4E-06	OJ	0.0002	U	0.0034	QJ	0.00072	U
PCB 134 (BZ)	mg/Kg	1	5.1E-05	CJ	1.7E-05	QCJ	0.000011	QCJ	0.00003	U	0.000022	CJ	0.0002	IJ	0.00019	CJ	0.0008	U
PCB 135	mg/Kg	1	0.00022	C	0.00014	C	0.000011	QC	0.00003	QCJ	0.000022	QC	0.0002	U	0.00031	QC	0.0008	U
PCB 136	mg/Kg	1	0.00022	J	5.3E-05	J	0.000081	QC	6.5E-06	QU	0.0002	J	0.0002	U	0.0033	QC	0.0008	I
PCB 130 PCB 137 (BZ)	mg/Kg	1	2.7E-05	QJ	1.5E-05	J	7.5E-06	QJ	0.00003	U	0.000004	OJ	0.0002	U	0.0014	J	0.00027	U
PCB 138	mg/Kg	1	0.00057	BC	0.00035	BC	0.00018	BC	0.00003	BC	0.000014	BC	0.0002	QBCJ	0.00037	BC	0.0008	BC
PCB 138 (BZ)	,	1	0.00037	U		U		QСJ		U	0.00064	U		U U	0.0011	QCJ	0.0029	U
· /	mg/Kg	1 1		U	6.8E-05		4.1E-06	QCJ	0.00003	U		_	0.0002	U		-		
PCB 140 (BZ)	mg/Kg	1	0.0001		6.8E-05	U	4.1E-06	QCJ			0.000064	U	0.0002	Ŭ	0.00017	QCJ	0.0008	U
PCB 141	mg/Kg	l	0.00011	Q	7.3E-05	T T	0.000033	T T	9.8E-06	QJ	0.000081	Q	0.0002	U	0.0019	Q	0.00043	QJ
PCB 142 (BZ)	mg/Kg	<u>l</u>	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 143 (BZ)	mg/Kg	l	5.1E-05	CJ	1.7E-05	QJ	0.000011	QCJ	0.00003	U	0.000022	CJ	0.0002	U	0.00051	CJ	0.0008	U
PCB 144 (BZ)	mg/Kg	<u>l</u>	0.00006	QJ	3.4E-05	J	9.8E-06	J	0.00003	U	0.000021	J	0.0002	U	0.00037	J	0.0008	U
PCB 145 (BZ)	mg/Kg	<u>l</u>	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 146 (BZ)	mg/Kg	l	0.00011	D.C.	6.3E-05	J	0.000032	D.C.	5.9E-06	QJ	0.000085	D.C.	0.0002	U	0.0016	D.C.	0.00035	J
PCB 147 (BZ)	mg/Kg	l	0.00049	BC	0.00026	BC	0.00015	BC	0.00004	BC	0.00051	BC	0.000067	QBCJ	0.0094	BC	0.0015	QBC
PCB 148 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 149	mg/Kg	1	0.00049	BC	0.00026	BC	0.00015	BC	0.00004	BC	0.00051	BC	0.000067	QBCJ	0.0094	BC	0.0015	QBC
PCB 150 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 151	mg/Kg	1	0.00022	C	0.00014	С	0.000081	QC	0.000023	QCJ	0.0002	QC	0.0002	U	0.0033	QC	0.0008	U
PCB 152 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 153	mg/Kg	1	0.00051	BC	0.00029	BC	0.00014	BC	0.000045	BC	0.00057	BC	0.000065	BCJ	0.01	BC	0.0022	BC
PCB 154 (BZ)	mg/Kg	1	0.00022	С	0.00014	С	0.000081	QC	0.000023		0.0002	QC	0.0002	U	0.0033	QC	0.0008	U
PCB 155 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 156	mg/Kg	1	9.9E-05	CJ	4.2E-05	_	0.000018	C	0.00003	U	0.000034	QCJ	0.0002	U	0.00087	C	0.00033	QCJ
PCB 157	mg/Kg	1	9.9E-05	CJ	4.2E-05	QCJ	0.000018	С	0.00003	U	0.000034	QCJ	0.0002	U	0.00087	С	0.00033	QCJ
PCB 158	mg/Kg	1	6.8E-05	J	3.8E-05	J	0.000018		4.5E-06	QJ	0.000043	J	0.0002	U	0.00099		0.00021	QJ
PCB 159 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 160 (BZ)	mg/Kg	1	0.00057	BC	0.00035	BC	0.00018	BC	0.000044	BC	0.0006	BC	0.000083	QBCJ	0.011	BC	0.0029	BC
PCB 161 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 162 (BZ)	mg/Kg	1	5.9E-05	QJ	4.4E-05	QJ	0.000082	Q	0.00003	U	9.3E-06	QJ	0.0002	U	0.00074	Q	0.0008	U
PCB 163 (BZ)	mg/Kg	1	0.00057	BC	0.00035	BC	0.00018	BC	0.000044	BC	0.0006	BC	0.000083	QBCJ	0.011	BC	0.0029	BC
PCB 164 (BZ)	mg/Kg	1	0.00004	QJ	2.8E-05	J	0.000018		4.2E-06	J	0.000038	J	0.0002	U	0.00066	J	0.00014	QJ
PCB 165 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 166 (BZ)	mg/Kg	1	2.5E-05	J	6.8E-05	U	4.8E-06	J	0.00003	U	7.3E-06	QJ	0.0002	U	0.00013	QJ	0.0008	U
PCB 167	mg/Kg	1	3.1E-05	QJ	2.1E-05	J	9.2E-06	J	0.00003	U	0.000019	J	0.0002	U	0.00023	J	0.0008	U
PCB 168 (BZ)	mg/Kg	1	0.00051	BC	0.00029	ВС	0.00014	BC	0.000045	BC	0.00057	BC	0.000065	BCJ	0.01	BC	0.0022	ВС
PCB 169	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 170	mg/Kg	1	0.00021		0.00011	Q	0.000053		0.00002	J	0.00013		0.0002	U	0.0028		0.00041	QJ
PCB 171	mg/Kg	1	6.4E-05	CJ	3.6E-05	QCJ	0.000016	QCJ	5.7E-06	Q	0.000026	QCJ	0.0002	U	0.00065	QCJ	0.0008	Ü
PCB 172 (BZ)	mg/Kg	1	0.0001	U	2.2E-05	QJ	0.000013	QJ	0.00003	Ü	0.000019	QJ	0.0002	U	0.00052	QJ	0.0008	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent	TI24	G ** · (1)	HRW0 07/29		HRW(07/29		HRWC 04/23/		HRW(04/23/		HRWC 04/24/		HRW(04/24/		HRW(04/23/		HRWC 04/23/	
of	Units	Criterion ⁽¹⁾	0.0-1.0	ft ⁽²⁾	2.0-3.	0 ft	0.0-1.0	ft ⁽²⁾	2.0-3.0) ft	0.0-1.0	ft ⁽²⁾	2.0-3.0	0 ft	0.0-1.0	$\mathbf{ft}^{(2)}$	2.0-3.0	0 ft
Interest			Prima		Prima	ary	Prima	ry	Prima	ry	Prima	ry	Prima	ry	Prima		Prima	ry
Polychlorinated Biphenyls (Congeners/Ho	omoloque	s) (Continued)																
PCB 173 (BZ)	mg/Kg	1	6.4E-05	CJ	3.6E-05	QCJ	0.000016	QCJ	5.7E-06	QCJ	0.000026	QCJ	0.0002	U	0.00065	QCJ	0.0008	U
PCB 174	mg/Kg	1	0.00015		0.0001		0.000059		0.000021	J	0.00012		0.0002	U	0.0031		0.0005	QJ
PCB 175 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	3.2E-06	QJ	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 176 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	8.4E-06	J	3.8E-06	J	0.000013	QJ	0.0002	U	0.00037	QJ	0.0008	U
PCB 177 (BZ)	mg/Kg	1	0.0001	QJ	4.8E-05	J	0.000034		9.1E-06	QJ	0.000069		0.0002	U	0.0016		0.00025	QJ
PCB 178 (BZ)	mg/Kg	1	4.7E-05	J	3.3E-05	QJ	0.000015	J	5.5E-06	QJ	0.000029	J	0.0002	U	0.00057	QJ	0.0008	U
PCB 179 (BZ)	mg/Kg	1	7.4E-05	QJ	4.1E-05	QJ	0.000041		0.000012	J	0.000066		0.0002	U	0.0015		0.00021	J
PCB 180	mg/Kg	1	0.0004	Ĉ	0.0002	Ĉ	0.0001	С	0.000052	QC	0.0003	С	0.0002	U	0.0066	С	0.0014	С
PCB 181 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	Ü	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 182 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 183	mg/Kg	1	0.00012		5.9E-05	QJ	0.000034		0.000018	J	0.00008		0.0002	U	0.002		0.00028	QJ
PCB 184	mg/Kg	1	0.0001	U	6.8E-05	Ù	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	Ù
PCB 185 (BZ)	mg/Kg	1	0.0001	U	1.6E-05	QJ	9.6E-06	J	0.00003	U	8.5E-06	QJ	0.0002	U	0.00027	QJ	0.0008	U
PCB 186 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	Ü	0.00003	U	0.000064	Ü	0.0002	U	0.00071	Ü	0.0008	U
PCB 187	mg/Kg	1	0.00026	_	0.00015	Q	0.000089		0.000031		0.00023		0.0002	U	0.0049		0.00075	J
PCB 188 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	Ü	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 189	mg/Kg	1	0.0001	U	6.8E-05	U	4.2E-06	QJ	0.00003	U	0.000064	Ü	0.0002	U	0.00071	Ü	0.0008	U
PCB 190 (BZ)	mg/Kg	1	6.7E-05	QJ	3.5E-05	OJ	8.9E-06	QJ	0.00003	U	0.000023	J	0.0002	U	0.00048	J	0.0008	U
PCB 191 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	3.5E-06	1	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 192 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000017	U	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 193 (BZ)	mg/Kg	1	0.0004	C	0.0002	C	0.00017	C	0.000052	QC	0.0003	C	0.0002	U	0.0066	C	0.0014	C
PCB 194	mg/Kg	1	0.00012	0	6.9E-05	0	0.00001		0.000032	J	0.00005	OJ	0.00026	QJ	0.0022		0.00044	I
PCB 195	mg/Kg	1	5.6E-05	QJ	3.6E-05	Ī	0.000023	ī	6.1E-06	ī	0.000027	OJ	0.0002	U	0.0022	ī	0.0008	U
PCB 196 (BZ)	mg/Kg	1	6.9E-05	OJ	3.6E-05	OJ	0.000012	QJ	0.000013	QJ	0.000027	OJ	0.0002	U	0.00011	,	0.0008	U
PCB 197 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U U	0.000017	IJ	0.00003	U	0.000023	T)	0.0002	U	0.00071	U	0.0008	U
PCB 198 (BZ)	mg/Kg	1	0.00016	C	0.00009	C	0.000017	C	0.000034	C	0.000096	C	0.0002	U	0.0042	C	0.0005	QC.
PCB 199 (BZ)	mg/Kg	1	0.00010	U	1.8E-05	Ī	6.7E-06	ī	0.000034	U	0.000064	U	0.0002	U	0.00022	I	0.0008	U
PCB 201	mg/Kg	1	0.0001	U	6.8E-05	U	6.3E-06	QJ	3.4E-06	QJ	0.000004	OJ	0.0002	U	0.00022	OJ	0.0008	U
PCB 201 (BZ)	mg/Kg	1	0.0001	C	0.00009	C	0.000047	C	0.000034	C	0.000012	C	0.0002	U	0.00023	C	0.0005	QJ
PCB 202 (BZ)	mg/Kg	1	4.4E-05	ī	2.4E-05	OJ	0.000047		0.000034	ī	0.000038	ī	0.0002	U	0.0042		0.0003	U
PCB 203 (BZ)	mg/Kg	1	9.1E-05	QJ	0.00006	Ţ	0.000019	 	0.000017	QJ	0.000028	ī	0.0002	U	0.0018		0.0008	U
PCB 204 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	0.000028	IJ	0.000017	U	0.000030	U	0.0002	U	0.002	U	0.0008	U
PCB 205 (BZ)	mg/Kg	1	0.0001	U	6.8E-05	U	3.6E-06	ī	0.00003	U	0.000064	U	0.0002	U	0.00071	U	0.0008	U
PCB 206	mg/Kg	1	0.0001	QJ	5.4E-05	QJ	0.000029	J	0.000035	U	0.00006	QJ	0.00027	J	0.0064	U	0.00044	QJ
PCB 207	mg/Kg	1	0.0001	U	1.8E-05	QJ	5.8E-06	ī	4.7E-06	QJ	0.000012	Ţ	0.000027	U	0.0004	QJ	0.00044	U
PCB 208 (BZ)	mg/Kg	1	4.7E-05	J	2.5E-05	QJ	0.000013	J	0.000022	Ţ.	0.000012	J	0.0002	U	0.0003	QJ	0.0008	U
Monochlorobiphenyl (total)	mg/Kg	1	0.00033	BQ	7.4E-05	QBJ	0.000013	BJ	0.000022	BJ	0.000032	OJ	0.0002	BJ	0.0003	J	0.0008	U
Dichlorobiphenyl (total)	mg/Kg	1	0.00033	QB	0.00044	QBJ	0.000028	QB	0.000030	QBJ	0.000024	QB	0.0004	QBJ	0.00018	QB	0.0008	QB.
		1	0.00092	BQ	0.00044	QB	0.00021	QB	0.000081	BJQ	0.0008	BQ	0.00049	QBJ	0.0093	BQ	0.0013	BJC
Trichlorobiphenyl (total) Tetrachlorobiphenyl (total)	mg/Kg	1	0.0024	BQ	0.0018	QB	0.00067	BQ	0.00011	QBJ	0.0029	QB	0.00049	QBJ	0.065	BQ	0.0053	1
Pentachlorobiphenyl (total)	mg/Kg	1 1	0.0043	QB	0.0028	QB	0.001	<u>ву</u> О	0.00014	QBJ	0.0034	BQ	0.00069	BJQ	0.13	BQ	0.018	QB BQ
Hexachlorobiphenyl (total)	mg/Kg mg/Kg	1 1	0.0041	QB	0.0023	BQ	0.0012	QB	0.00018	QB	0.0043	QB	0.00041	QBJ	0.086	QB	0.018	QB
Heptachlorobiphenyl (total)		1	0.0029	QB O	0.0017	<u>в</u> Q	0.00095	QB O	0.0002	_	0.0026	QB O	0.00021	_	0.049	QB O	0.0093	O
	mg/Kg	1 1				_		0		Q		_		U		_		_
Octachlorobiphenyl (total)	mg/Kg	1 1	0.00054	Q	0.00033	Q	0.00017	Ų	0.00011	Q	0.00031	Q	0.000026	QJ	0.012	Q	0.00094	QJ
Nonachlorobiphenyl (total)	mg/Kg	1 1	0.00015	JQ	9.8E-05	QJ	0.000047		0.000062	Q	0.0001	JQ	0.000027	J	0.01	Q	0.00044	QJ
Decachlorobiphenyl	mg/Kg	1	0.00025		0.00011		0.000028		0.000046		0.000087	Q	0.000086	QJ	0.0092		0.0008	U
Pesticides/Herbicides	/TZ -		0.0065	ŢŢ	0.021	7.7	0.0052	TT	0.0005	7.7	0.0041	7.7	0.0064	ŢŢ	0.0056	T T	0.0062	11
2,4,5-T	mg/Kg		0.0065	U	0.021	U	0.0053	U	0.0095	U	0.0041	U	0.0064	U	0.0056	U	0.0063	U
2,4-D	mg/Kg		0.042	U	0.14	U	0.034	U	0.061	U	0.026	U	0.041	U	0.036	U	0.04	U

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW(07/29 0.0-1.0 Prima	/08) ft ⁽²⁾	HRW(07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/23/ 2.0-3.0 Prima	'08) ft	HRWC-12 04/24/08 0.0-1.0 ft ⁽²⁾ Primary		HRWC-12 04/24/08 2.0-3.0 ft Primary		HRWC-13 04/23/08 0.0-1.0 ft ⁽²⁾ Primary		HRWC-13 04/23/08 2.0-3.0 ft Primary	
Pesticides/Herbicides (Continued)	1						1											
2,4-DB	mg/Kg		0.037	U	0.12	U	0.03	U	0.054	U	0.023	U	0.036	U	0.032	U	0.036	U
4,4'-DDD	mg/Kg	13	0.0015	U	0.001	U	0.00025	U	0.00045	U	0.00072	JP	0.0015	U	0.011		0.0031	JP
4,4'-DDE	mg/Kg	9	0.001	U	0.00068	U	0.00017	U	0.0003	U	0.00013	U	0.001	U	0.027		0.0043	JP
4,4'-DDT	mg/Kg	8	0.031	P	0.0016	U	0.00038	U	0.00069	U	0.00029	U	0.011	P	0.0004	U	0.0023	U
Aldrin	mg/Kg	0.2	0.0018	U	0.0012	U	0.0003	U	0.00054	U	0.00023	U	0.0018	U	0.00031	U	0.0018	U
alpha-BHC	mg/Kg	0.5	0.0026	U	0.0017	U	0.00043	U	0.00077	U	0.00033	U	0.0026	U	0.00044	U	0.0025	U
alpha-Chlordane	mg/Kg	1	0.0011	U	0.0095	J	0.00017	U	0.00031	U	0.00013	U	0.0011	U	0.00018	U	0.001	U
beta-BHC	mg/Kg	2	0.002	U	0.0013	U	0.00033	U	0.00059	U	0.00025	U	0.002	U	0.00034	U	0.002	U
delta-BHC	mg/Kg		0.0018	U	0.0036	JP	0.0003	U	0.00053	U	0.0015	J	0.012	J	0.014		0.0084	
Dieldrin	mg/Kg	0.2	0.0013	U	0.00084	U	0.00021	U	0.00038	U	0.00016	U	0.0039	JP	0.00022	U	0.0012	U
Endosulfan I	mg/Kg	6800	0.0018	U	0.0012	U	0.00029	U	0.00053	U	0.00022	U	0.0018	U	0.0003	U	0.0017	U
Endosulfan II	mg/Kg	6800	0.004	U	0.0026	U	0.00065	U	0.0012	U	0.00074	JP	0.0039	U	0.0038	P	0.0038	U
Endosulfan sulfate	mg/Kg	6800	0.0028	U	0.0018	U	0.00045	U	0.00082	U	0.00035	U	0.0027	U	0.00047	U	0.0027	U
Endrin	mg/Kg	340	0.0014	U	0.00091	U	0.00022	U	0.0004	U	0.00017	U	0.0014	U	0.00023	U	0.0013	U
Endrin aldehyde	mg/Kg	-	0.011	JP	0.0014	U	0.00036	U	0.00064	U	0.00045	JP	0.0032	JP	0.00037	U	0.0021	JP
Endrin ketone	mg/Kg		0.002	U	0.0013	U	0.00033	U	0.00059	U	0.00025	U	0.002	U	0.0043	P	0.0019	U
gamma-Chlordane	mg/Kg	1	0.0018	U	0.0012	U	0.00029	U	0.00052	U	0.00022	U	0.0017	U	0.0003	U	0.0017	U
Heptachlor	mg/Kg	0.7	0.0022	U	0.0014	U	0.00036	U	0.00064	U	0.00035	JP	0.0022	U	0.0052	P	0.0021	U
Heptachlor epoxide	mg/Kg	0.3	0.0017	U	0.0011	U	0.00028	U	0.00051	U	0.00036	JP	0.0017	U	0.0051	P	0.0017	U
Lindane	mg/Kg	2	0.027		0.0046	JP	0.00039	U	0.0007	U	0.0025	P	0.016	J	0.034		0.0072	JP
Methoxychlor	mg/Kg	5700	0.11		0.0047	U	0.0012	U	0.0021	U	0.00089	U	0.036		0.0012	U	0.0069	U
Silvex	mg/Kg		0.0052	U	0.017	U	0.0042	U	0.0075	U	0.0032	U	0.0051	U	0.0044	U	0.0049	U
Toxaphene	mg/Kg	3	0.12	Ü	0.079	Ü	0.019	Ü	0.035	Ü	0.015	Ü	0.12	Ü	0.02	Ü	0.12	Ü
Metals	, , ,							•										
Aluminum	mg/Kg		15700	J	9780	J	36200		18900		6700		13600		19800		14600	
Antimony	mg/Kg	450	8.1		2.4	В	8.2	BJ	1.6	BJ	1.6	J	3.4	J	14.9	J	2.5	J
Arsenic	mg/Kg	19	101		22.6		3.8	U	15.9		6.1		96.3		36		91.9	
Barium	mg/Kg	59000	173		39.5	В	29.5	В	48.5	В	98.2		211		143		176	
Beryllium	mg/Kg	140	0.87		0.73	В	0.1	U	1.2	J	0.55	J	11	J	0.59	BJ	1	J
Cadmium	mg/Kg	78	0.94	В	0.32	U	0.16	U	0.14	U	0.06	U	1.2		1.1	20	1.2	
Calcium	mg/Kg		18200		9190		163000	Ŭ	16300		28600		8820		48000		4550	
Chromium ⁽⁴⁾	mg/Kg		3620	т	499	т	31100	т	2200	т	121	т	393	т	9590	T	471	т
				J		J		J		J		J		J		J		J
Chromium (Hexavalent) ⁽⁴⁾	mg/Kg	20	4.8		0.4	U	1030		10.6		0.4	U	0.4	U	15.2		13.7	
Cobalt	mg/Kg	590	22.1		5	В	123	J	21.9	J	5.2	BJ	11.6	J	41.1	J	12.5	J
Copper	mg/Kg	45000	251		40.9		9		19.6		47.8		278		141		261	
Iron	mg/Kg		42500	J	38300	J	91900		58100		18800		36300		53500		35600	
Lead	mg/Kg	800	316		56.5		4.4		28.7		158		359		262		298	
Magnesium	mg/Kg		12200		5460		105000		11200		6310		7350		15900		6900	
Manganese	mg/Kg	5900	562		260		853		368		433		470		626		426	
Mercury	mg/Kg	65	5		0.66		0.015	В	0.13		0.51		5.8		5.4		6.3	
Nickel	mg/Kg	23000	87.9		22.5	В	395		59.8		31.4		51.6		130		53.9	
Potassium	mg/Kg		2490		1950	В	151	В	3440		1090		2340		2130		2560	
Selenium	mg/Kg	5700	3.3		3.4		0.97	U	1.7		0.37	U	2.9		2		2.7	
Silver	mg/Kg	5700	2.1		0.48	В	0.39	В	0.17	В	0.28	В	2.6		1.5		2.2	
Sodium	mg/Kg		4210		17400		3090		11200		1420		4280		3410		4580	
		79	4.5		5.4	В	10.9		+	В	0.41	IJ	0.95	В			1.3	В
Thallium	mg/Kg	19	4.5		3.4	D	10.9		1.7	В	0.41	U	0.93	В	4.3		1.5	ם ן
Thallium Vanadium	mg/Kg mg/Kg	1100	106		21.5	В	719		102	В	17	U	38.5	В	155		40.5	ь

TABLE 4-16

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
STANDARD CHLORINE SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Constituent of Interest	Units	Criterion ⁽¹⁾	HRW(07/29 0.0-1.0 Prima	/08 oft ⁽²⁾	HRW(07/29 2.0-3. Prima	/08 0 ft	HRWC 04/23/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/23/ 2.0-3.0 Prima	08) ft	HRWC 04/24/ 0.0-1.0 Prima	08 ft ⁽²⁾	HRWC 04/24/ 2.0-3.0 Prima	08) ft	04/23/ 0.0-1.0	HRWC-13 04/23/08 0.0-1.0 ft ⁽²⁾ Primary		C-13 /08 0 ft ary
Acid Volatile Sulfide/Simultaneously E	Extracted Me	tals																
Acid Volatile Sulfide	umole		2.9		2.5	В	0.26	U	0.75	В	7.4		51.5		25.8		17.4	
Cadmium (SEM)	umol/g		0.0096	Е	0.002	В	0.0011	В	0.02		0.0077		0.004		0.0081		0.0044	
Copper (SEM)	umol/g		2.8	Е	0.31		0.0092	В	4.5		1.5		0.73		1.2		0.087	
Lead (SEM)	umol/g		1.4		0.23		0.066		1.7		0.92		1.9		1.2		0.0038	
Mercury (SEM)	umol/g		4.1E-05	В	4.4E-05	U	0.000011	U	0.000068	BJ	0.000013	BJ	0.000019	BJ	0.00011	J	0.000041	BJ
Nickel (SEM)	umol/g		0.86	Е	0.29		0.32		1.7		0.26		0.31		1.3		4.6	
Silver (SEM)	umol/g		0.0032		0.00092	U	0.00023	U	0.0031	В	0.00068	В	0.0028		0.0029		0.0014	В
Zinc (SEM)	umol/g		4.7	Е	1.2		0.68	J	7.2	J	3	J	1.8	J	3.6	J	2.6	J
Toxicity Characteristic Leaching Proce			,				0.00		,	-			1.0	-	2.0		2.0	
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U
1,2-Dichloroethane	mg/L	0.5	0.035	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U
1,4-Dichlorobenzene	mg/L	7.5	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U	0.0046	U
2,4,5-Trichlorophenol	mg/L	400	0.0041	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U
2,4,6-Trichlorophenol	mg/L	2	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U	0.0026	U
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	IJ
2-Butanone	mg/L	200	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U
Benzene	mg/L	0.5	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U
Carbon Tetrachloride	mg/L	0.5	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U
Chlorobenzene	mg/L	100	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U
Chloroform	mg/L	6	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U
		200	0.0089	U	1.3	U		U	0.0089	U		U		U		U		U
Cresols	mg/L					T T	0.0089				0.0089 0.0049		0.0089		0.0089	_	0.0089	U
Hexachlorobenzene	mg/L	0.13	0.0049	U	0.0049	U	0.0049	U	0.0049	U		U	0.0049	U	0.0049	U	0.0049	U
Hexachlorobutadiene	mg/L	0.5	0.0033	U	0.0033	U	0.0033	U	0.0033	_	0.0033	_	0.0033	Ü	0.0033	_	0.0033	Ŭ
Hexachloroethane	mg/L	3	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U
Nitrobenzene	mg/L	2	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U	0.0056	U
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U
Pyridine	mg/L	5	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U
Arsenic	mg/L	5	0.34	В	0.22	В	0.19	В	0.21	В	0.21		0.49		0.17	В	0.35	В
Barium	mg/L	100	0.15	BJ	0.05	BJ	0.034	В	0.063	В	0.36	В	0.42	В	0.37	В	0.47	В
Cadmium	mg/L	1	0.0052	В	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0027	В	0.0012	U	0.0049	В
Chromium	mg/L	5	0.023	В	0.0082	В	14.9		0.14	В	0.0011	U	0.017	В	0.012	В	0.037	В
Lead	mg/L	5	0.21	В	0.013	U	0.013	U	0.019	В	0.22	В	0.19	В	0.052	В	0.17	В
Mercury	mg/L	0.2	5.5E-05	U	5.5E-05	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U	0.000055	U
Selenium	mg/L	1	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U
Silver	mg/L	5	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U
RCRA Characteristics and Indicators																		
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>9.02</td><td></td><td>7.33</td><td></td><td>4.36</td><td></td><td>11.92</td><td></td><td>9.38</td><td></td><td>7.89</td><td></td><td>7.77</td><td></td><td>8.17</td><td></td></ph<12.5<>	9.02		7.33		4.36		11.92		9.38		7.89		7.77		8.17	
Cyanide (Reactivity)	mg/Kg	23000	0.22	U	0.35	В	0.65	U	0.21	В	0.29	U	0.22	В	1.1		2.2	
Total Sulfide (Reactivity)	mg/Kg		27.6	U	216		490		20.6	U	37.1	U	464		1200		946	
Ignitability	none		No		No		No		No		No		No		No		No	
Total Organic Carbon	mg/Kg		91600		114000		405000		10100		116000		6870		41600		33900	
Oxidation Reduction Potential	mV		267		209		349		182		253		250		134		225	
Total Petroleum Hydrocarbons	mg/Kg		47.3		1720		1860		12		42.8		286		1040		1200	
Percent Solids	%		44.5		48.2		14.7		59.5		33.1		77.7		49.2		56.7	1

TABLE 4-16

ANALYTICAL RESULTS HACKENSACK RIVER SEDIMENT SAMPLES STANDARD CHLORINE SITE RIVER FRONTAGE KEARNY, NEW JERSEY

Notes

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs appendix1.pdf) unless noted otherwise.
- 2. The volatile organic fraction sample from the surficial interval was obtained from a depth of 0.5 to 1.0 feet below the sediment bed surface.
- 3. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.
- 4. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance). Criterion for residential exposure to trivalent chromium was used for total chromium.
- 5. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 available at electronic CFR website (ecfr.gpoaccess.gov).

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- C Presence of coeulting isomer is evident based on appearance of peak shoulder.
- E Organic results. Result is an estimated concentration. Outside linear calibration range.
- E Inorganic results. Serial dilution was outside quality control limits for this analyte.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- P Organic results. Percent difference between initial and confirmation column results is greater than 40%.
- Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
- S Organic results. Ion suppression.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

21 of 21

TABLE 4-17

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
FORMER DIAMOND SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

KEARNY, NEW JERSEY		·	•		1		1						•		,			
Constituent		Units Criterion ⁽¹⁾		C-1	HRWC 05/19/(HRW(05/19/		HRW(05/19/		HRWC 05/19/0		HRWC-3 05/19/08		HRW(05/09/		HRW(05/09/	
of	Units	Criterion ⁽¹⁾	05/19/0 0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0		0.0-1.0		2.0-3.0 ft		0.0-1.0 ft		2.0-3.0	
Interest			Primai	·y	Primar	y	Prima	ry	Primai	ry	Primar	·y	Primar	ry	Prima	ry	Prima	ry
Volatile Organics	/7Z	1200	0.002	T T	0.0024	T.	0.0000	T 7	0.0015	1 77	0.00071	T.	10,00052	1 7 7	0.0015	11	0.0012	177
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/Kg mg/Kg	4200 3	0.002	U	0.0034 0.0051	U	0.0008	U	0.0015	U	0.00071	U	0.00052	U	0.0015	U	0.0013	U
1,1,2-Trichloroethane	mg/Kg	6	0.003	U	0.0076	U	0.0012	U	0.0022	U	0.0011	U	0.00077	U	0.0017	U	0.0014	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg		0.0034	U	0.0059	U	0.0014	U	0.0025	U	0.0012	U	0.0009	U	0.0016	U	0.0013	U
1,1-Dichloroethane	mg/Kg	24	0.0024	U	0.0041	U	0.00095	U	0.0017	U	0.00084	U	0.00062	U	0.0014	U	0.0012	U
1,1-Dichloroethene	mg/Kg	150	0.0035	U	0.006	U	0.0014	U	0.0025	U	0.0012	U	0.00091	U	0.0017	U	0.0015	U
1,2,4-Trichlorobenzene	mg/Kg	820	0.0036	U	0.0062	U U	0.0015	U	0.0026	U	0.0013	U	0.00095	U	0.0015	U	0.0013	U
1,2-Dibromoethane 1,2-Dichlorobenzene	mg/Kg mg/Kg	0.04 59000	0.0036	U	0.0061 0.0056	U	0.0014	U	0.0026 0.0024	U	0.0013	U	0.00093	U	0.0015	U	0.0013	U
1,2-Dichloroethane	mg/Kg	3	0.0033	U	0.0030	U	0.0013	U	0.0024	U	0.0012	U	0.00066	U	0.0016	U	0.0014	U
1,2-Dichloropropane	mg/Kg	5	0.0022	U	0.0038	U	0.0009	U	0.0016	U	0.00079	U	0.00059	U	0.0016	U	0.0014	U
1,3-Dichlorobenzene	mg/Kg	59000	0.0027	U	0.0046	U	0.0011	U	0.002	U	0.00096	U	0.00071	U	0.0016	U	0.0013	U
1,4-Dichlorobenzene	mg/Kg	13	0.0026	U	0.0045	U	0.0011	U	0.0019	U	0.00093	U	0.00069	U	0.0016	U	0.0014	U
2-Butanone	mg/Kg	44000	0.0036	U	0.0062	U	0.0015	U	0.0026	U	0.0013	U	0.00095	U	0.0014	U	0.0012	U
2-Hexanone 4-Methyl-2-pentanone	mg/Kg mg/Kg		0.0029	U	0.0049 0.0046	U	0.0011	U	0.0021	U	0.001	U	0.00074	U	0.0012	U	0.00099	U
Acetone	mg/Kg		0.0027	U	0.0040	U	0.0011	J	0.002	U	0.00093	U	0.0054	U	0.0013	U	0.0063	U
Benzene	mg/Kg	5	0.0028	U	0.0048	U	0.0011	U	0.002	U	0.00099	U	0.00073	U	0.0015	U	0.0013	U
Bromodichloromethane	mg/Kg	3	0.0023	U	0.004	U	0.00093	U	0.0017	U	0.00082	U	0.0006	U	0.0014	U	0.0012	U
Bromoform	mg/Kg	280	0.0018	U	0.0031	U	0.00073	U	0.0013	U	0.00065	U	0.00048	U	0.0015	U	0.0013	U
Bromomethane Carbon digulfida	mg/Kg	59	0.0031	U	0.0052	U	0.0012	U	0.0022	U	0.0011	U	0.0008	U	0.0019	U	0.0016	U
Carbon disulfide Carbon tetrachloride	mg/Kg mg/Kg	110000	0.009 0.0018	J U	0.0036 0.0032	U U	0.00084	U	0.0015	U	0.00075	U	0.00055	U	0.0084	U	0.0015	U
Chlorobenzene	mg/Kg	7400	0.0018	U	0.0054	U	0.00074	U	0.0013	U	0.00063	U	0.00048	U	0.0013	U	0.0011	U
Chloroethane	mg/Kg	1100	0.0064	U	0.011	U	0.0026	U	0.0046	U	0.0023	U	0.0017	U	0.0021	U	0.0018	U
Chloroform	mg/Kg	2	0.0024	U	0.0041	U	0.00097	U	0.0018	U	0.00086	U	0.00063	U	0.0016	U	0.0013	U
Chloromethane	mg/Kg	12	0.0035	U	0.006	U	0.0014	U	0.0026	U	0.0012	U	0.00092	U	0.0016	U	0.0014	U
cis-1,2-Dichloroethene	mg/Kg	560	0.0029	U	0.005	U	0.0012	U	0.0021	U	0.001	U	0.00076	U	0.0016	U	0.0014	U
cis-1,3-Dichloropropene Cyclohexane	mg/Kg mg/Kg	7	0.0028	U	0.0048 0.0026	U	0.0011	U	0.002	U	0.00099	U	0.00073	U	0.0013	U	0.0011	U
Dibromochloropropane	mg/Kg		0.0013	U	0.0020	U	0.00001	U	0.0011	U	0.00034	U	0.0004	U	0.0013	U	0.0013	U
Dibromochloromethane	mg/Kg	8	0.0029	U	0.005	U	0.0012	U	0.0021	U	0.001	U	0.00076	U	0.0012	U	0.0012	U
Dichlorodifluoromethane	mg/Kg	230000	0.0028	U	0.0047	U	0.0011	U	0.002	U	0.00097	U	0.00072	U	0.0019	U	0.0016	U
Ethylbenzene	mg/Kg	110000	0.0027	U	0.0046	U	0.0022	J	0.0019	U	0.00094	U	0.00069	U	0.0018	U	0.0015	U
Isopropylbenzene	mg/Kg		0.0028	U	0.0048	U	0.0019	J	0.002	U	0.00099	U	0.00073	U	0.0016	U	0.0013	U
Methyl acetate Methylcyclohexane	mg/Kg mg/Kg		0.0037	U	0.0064 0.0051	U U	0.0015	U	0.0027 0.0022	U	0.0013	U	0.00097	U	0.0016 0.0017	U	0.0013 0.0014	U
Methylene chloride	mg/Kg	97	0.003	U	0.0031	U	0.0012	U	0.0022	J	0.00011	U	0.00078	U	0.0017	J	0.0014	В
Methyltert-butylether	mg/Kg	320	0.0031	U	0.0053	U	0.0012	U	0.0022	U	0.0011	U	0.00081	U	0.0014	U	0.0012	U
Styrene	mg/Kg	260	0.0022	U	0.0038	U	0.00088	U	0.0016	U	0.00078	U	0.00057	U	0.0017	U	0.0014	U
Tetrachloroethene	mg/Kg	5	0.0028	U	0.0048	U	0.0011	U	0.002	U	0.00099	U	0.00073	U	0.0019	U	0.0016	U
Toluene	mg/Kg	91000	0.003	U	0.0052	U	0.0012	U	0.0022	U	0.0011	U	0.00079	U	0.0012	U	0.00099	U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/Kg mg/Kg	720 7	0.0025 0.0025	U	0.0042 0.0042	U U	0.00098	U	0.0018 0.0018	U	0.00087	U	0.00064	U	0.0017 0.0013	U	0.0015	U
Trichloroethene	mg/Kg	20	0.0023	U	0.0042	U	0.00033	U	0.0018	U	0.00087	U	0.00071	U	0.0013	U	0.0011	U
Trichlorofluoromethane	mg/Kg	340000	0.0038	U	0.0065	U	0.0015	U	0.0028	U	0.0013	U	0.00099	U	0.0024	U	0.002	U
Vinyl chloride	mg/Kg	2	0.0019	U	0.0033	U	0.00077	U	0.0014	U	0.00069	U	0.00051	U	0.0017	U	0.0014	U
Xylene (total)	mg/Kg	170000	0.0093	U	0.016	U	0.0037	U	0.0067	U	0.0033	U	0.0024	U	0.0052	U	0.0044	U
Semivolatile Organics	/TZ :	24000	0.052	T T	0.14	11	0.22	T 7	0.22	T T	0.022	7.7	0.022	TT	0.020	Тт	0.12	T
1,1'-Biphenyl 2,2'-oxybis(1-chloropropane)	mg/Kg mg/Kg	34000	0.052 0.057	U	0.14 0.16	U	0.33	U	0.22 0.24	U	0.022	U	0.023	U	0.038	J U	0.13	J U
2,4,5-Trichlorophenol	mg/Kg	68000	0.037	U	0.10	U	0.33	U	0.24	U	0.024	U	0.023	U	0.027	U	0.030	U
2,4,6-Trichlorophenol	mg/Kg	74	0.076	U	0.21	U	0.48	U	0.33	U	0.033	U	0.033	U	0.036	U	0.075	U
2,4-Dichlorophenol	mg/Kg	2100	0.028	U	0.078	U	0.18	U	0.12	U	0.012	U	0.012	U	0.013	U	0.028	U
2,4-Dimethylphenol	mg/Kg	14000	0.041	U	0.11	U	0.25	U	0.18	U	0.018	U	0.018	U	0.019	U	0.04	U
2,4-Dinitrophenol	mg/Kg	1400	1.1	U	3.1	U	7	U	4.8	U	0.48	U	0.48	U	0.52	U	1.1	U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	mg/Kg mg/Kg	3	0.049	U	0.14	U U	0.31	U	0.21	U	0.021	U	0.021	U	0.023	U	0.048	U
2-Chloronaphthalene	mg/Kg		0.055	U	0.17	U	0.34	U	0.24	U	0.020	U	0.024	U	0.029	U	0.054	U
2-Chlorophenol	mg/Kg	2200	0.047	U	0.13	U	0.3	U	0.21	U	0.021	U	0.021	U	0.022	U	0.047	U
2-Methylnaphthalene	mg/Kg	2400	0.052	U	0.14	U	0.33	U	0.23	U	0.034	J	0.027	J	0.088	J	0.3	J
2-Methylphenol	mg/Kg	3400	0.059	U	0.16	U	0.37	U	0.26	U	0.026	U	0.026	U	0.028	U	0.058	U
2-Nitroaniline	mg/Kg	23000	0.057	U	0.16	U	0.36	U	0.25	U	0.024	U	0.025	U	0.027	U	0.056	U
2-Nitrophenol 3,3'-Dichlorobenzidine	mg/Kg mg/Kg	4	0.075	U	0.21	U	0.47	U	0.32 0.92	U	0.032	U	0.033	U	0.035	U	0.074	U
3-Nitroaniline	mg/Kg		0.21	U	0.39	U	0.51	U	0.92	U	0.092	U	0.092	U	0.038	U	0.21	U
4,6-Dinitro-2-methylphenol	mg/Kg	68	0.67	U	1.8	U	4.2	U	2.9	U	0.29	U	0.033	U	0.31	U	0.66	U
4-Bromophenylphenyl ether	mg/Kg		0.042	U	0.12	U	0.27	U	0.18	U	0.018	U	0.018	U	0.02	U	0.042	U
4-Chloroaniline	mg/Kg		0.081	U	0.23	U	0.51	U	0.35	U	0.035	U	0.035	U	0.038	U	0.08	U
4-Chlorophenyl phenyl ether	mg/Kg		0.047	U	0.13	U	0.29	U	0.2	U	0.02	U	0.02	U	0.022	U	0.046	U
4-Chloro-3-methylphenol 4-Methylphenol	mg/Kg mg/Kg	340	0.058	U	0.16 0.16	U U	0.36	U	0.25 0.26	U	0.025	U J	0.025	U	0.027	U J	0.057	U
4-Nitroaniline	mg/Kg		0.039	U	0.10	U	0.37	U	0.20	U	0.042	U	0.020	U	0.03	U	0.038	U
4-Nitrophenol	mg/Kg		0.074	U	0.2	U	0.46	U	0.32	U	0.032	U	0.032	U	0.035	U	0.073	U
Acenaphthene	mg/Kg	37000	0.049	U	0.16	J	0.31	U	0.3	J	0.034	J	0.034	J	0.22	J	1.1	
Acenaphthylene	mg/Kg	300000	0.055	U	0.15	U	0.96	J	1.2	J	0.21	J	0.12	J	0.77		1.1	
Acetophenone	mg/Kg	5	0.057	U	0.16	U	0.36	U	0.25	U	0.025	U	0.025	U	0.027	U	0.057	U
Arrazina	mg/Kg	30000 2400	0.054	U	0.15 0.18	U	1.8 0.41	J U	0.28	J U	0.19 0.028	J U	0.26	J U	1.7 0.031	U	3.7 0.064	U
Atrazine Benzaldehyde	mg/Kg mg/Kg	68000	0.065	U	0.18	U	0.41	U	0.28	U	0.028	U	0.028	U	0.031	U	0.064	U
Benzo(a)anthracene	mg/Kg	2	0.092	J	0.28	U	5.7	J	7.5	۲	0.043		1.2		5.2		7.6	H
Benzo(a)pyrene	mg/Kg	0.2	0.081	J	0.18	J	5	J	5.9		1.1		1.1		4.5		5.9	
Benzo(b)fluoranthene	mg/Kg	2	0.14	J	0.2	J	6.9		7.9		1.6		1.6		7.5		8.7	
Benzo(ghi)perylene	mg/Kg	30000	0.032	U	0.089	U	2.4	J	2.8	J	0.5	<u> </u>	0.52	<u> </u>	2.6		3.4	<u> </u>
Benzo(k)fluoranthene	mg/Kg	23	0.03	U	0.084	U	0.19	U	0.13	U	0.013	U	0.013	U	0.014	U	0.03	U

TABLE 4-17

ANALYTICAL RESULTS
HACKENSACK RIVER SEDIMENT SAMPLES
FORMER DIAMOND SITE RIVER FRONTAGE
KEARNY, NEW JERSEY

Semination Progress Company Co	Constituent of Interest	Units	Criterion ⁽¹⁾	05/19/08 05/19/08 0.0-1.0 ft 2.0-3.0 ft		HRWC 05/19/0 0.0-1.0 Primar	08 ft	HRWC 05/19/0 2.0-3.0 Primar)8 ft	HRWC 05/19/0 0.0-1.0 Primar)8 ft	HRWC-3 05/19/08 2.0-3.0 ft Primary		HRWC 05/09/0 0.0-1.0 Prima	08 ft	HRWC 05/09/0 2.0-3.0 Primar	08) ft		
Bigs Chromosphalemen	Semivolatile Organics (Continued)			11111111	J	11111111	J	11111111	J	1111141	J	11111111	J	1111141	J	1111111	J	1111111	<u> </u>
Books Property P	• /						_		_									0.043	U
Image Person Pe	• • • • • • • • • • • • • • • • • • • •																	0.021	U
Companion							_						L-				_	0.071	U
Chameris	· · · · ·						_											0.075	U
Corposes						1	_	-									1	0.18	J
December 1968 1969 196							_		_		U		U		J		J	6.4	٠,
Debactorismin	·						_				Ţ		Ţ		T			1.1	
Debts pilabalizate	` ' /						_				_		<u> </u>		Ů		Ţ	0.65	J
Demokrafishelase							_						L-		ŭ			0.083	U
Developed plantable	V 1																	0.053	U
Denomphere	<u> </u>						_											0.15	U
Honorabers	• 1				U		_						U		U		U	0.065	U
Hoad-Inhontentering	Fluoranthene		24000	0.15	J	0.22	J					1.9		2.6		14		14	
Hoad-binduschere	Fluorene	mg/Kg	24000	0.046	U	0.13	U	0.29	U	0.3	J	0.02	U	0.05	J	0.21	J	0.94	
House-Derivative mg/Kg 10	Hexachlorobenzene	mg/Kg	1	0.057		0.16	U	0.36	U	0.25	U	0.025	U	0.025	U	0.027	U	0.056	U
International content							_		_		U		U				U	0.057	U
Indeed(1)_21-collyprene	· 1																	0.043	U
Sopheneene						1	_						U		U		U	0.042	U
Naphahalene							_										ļ .	3	4
Ninebannene	±						_										U	0.052	U
Nemonsplengehamine meKg 300 0.654 U 0.44 U 0.052 U 0.22 U 0.0022 U 0.0034 U 0.001 U 0.						1	_										ŢΤ	0.022	TT
Nemicrophopophamine mgKg 0.1 0.033 U 0.064 U 0.14 U 0.11 U 0.11 U 0.11 U 0.011						1	_		_									0.023	U
Pose	1 1						_											0.05	U
Penentheree																		0.023	U
Premeric mg/Kg 210000 0.187 U 0.16 U 0.36 U 0.25 U 0.19 J 0.022 U 0.027 U Polycemical Disorian and Furums U 0.26 U 0.25 U 0.18 U 0.21 U 0.22 U Polycemical Disorian and Furums U 0.025 U 0.021 U 0.025 U 0.025 U 0.027 U Polycemical Disorian and Furums U 0.025 U 1.2.3.46.78.HgCDP							_				_		_					4.7	
Pyenes						1			_				_				IJ	0.056	U
No.							_		Ť									12	٣
1.23.46.78.4HgCDP	•	<u> </u>														_		_	
12.34.7.8-HyCDF	1,2,3,4,6,7,8-HpCDD	ug/Kg		0.018		0.0027	QJ	0.013	Q	0.0056	J	0.0065		0.004	J	0.029		0.0038	QJ
1.3.34.78-HACDD	1,2,3,4,6,7,8-HpCDF	ug/Kg		0.59	QB	0.095	В	0.069	В	0.33	В		В	0.0029	BJ	0.5		0.005	J
12.33.48.HCCD ug/Kg 0.021 QB 0.037 BJ 0.031 B 0.13 QB 0.0005 QB 0.0005 QB 0.0005 QD 0.0015 QD 1.23.67.81.HCCD ug/Kg 0.0025 B 0.0042 QB 0.00014 BJ 0.0012 BJ 0.00048 DJ 0.0020 QD 1.23.67.81.HCCD ug/Kg 0.017 J 0.039 U 0.0007 J 0.012 U 0.00014 J 0.0002 DJ 0.00018 JJ 0.0003 J 1.23.78.91.HCCD ug/Kg 0.014 U 0.039 U 0.0007 U 0.012 U 0.00014 J 0.0002 U 0.0005 U 0.00014 J 0.0002 U 0.0005 U 0.	1,2,3,4,7,8,9-HpCDF	ug/Kg		0.022		0.004	QJ	0.0029	QJ	0.014		0.00079	J	0.00012	QJ	0.02		0.007	U
1.3.36.78-HACDD					J				QJ		·				_		QJ	0.007	U
1.3.36.78-HACDD					QB		_				QB				_			0.0018	QJ
12.33.78.9-HSCDD					J				_		J				_		QJ	0.007	U
12.37.8-PCDP					В		_		BJ						BJ			0.007	U
12.37.8 PCDD					J		_		J		ŭ		ĞΊ		J		J	0.007	U
12.37.8-PCDF							_				_		J		U		_	0.007	U
2.3.4.6.7.8-HxCDF					$\overline{}$		_		I		Ţ		Ţ		I		-	0.007	U
2.3.4.7.8PCDF					Ţ		_		OI.		J		J		J		QJ	0.007	U
2.37.8-TCDP							J		J		J		J		OI			0.00053	OJ
2.37.8.TCDF							U		Ť		U		OJ		_			0.0014	U
OCDF					J		_				QJ				QJ			0.00083	J
Total HpCDP	OCDD	ug/Kg		0.22	В	0.052	BJ	0.61	В	0.13	В	0.15	В	0.22	В	0.36		0.21	
Total HKCDF				1.1			_										В	0.011	QBJ
Total HxCDD	•					1	$\overline{}$		$\overline{}$				-					0.013	Q
Total PeCDF	•				_		-		$\overline{}$						_			0.005	J
Total PeCDD					$\overline{}$				_						_			0.0046	QJ
Total TCDD					_		_		_						_			0.0031	QJ
Total TCDD					_		_		$\overline{}$									0.0022	QJ QJ
Total TCDF					_		_		_		_				$\overline{}$		~	0.0047	QJ
Polychlorinated Dioxins/Furans (2,37,8 Equivalents)			1			1	_		$\overline{}$						_			0.0019	O ₃
1.2,3,4,6,7,8-HpCDD		-6 6			×	0.010		0.017	×	0.01r	×	0.017	×	5.5505	Χ.,		Αυ		<u> </u>
1,2,3,4,6,7,8-HpCDF			T	1.8E-04		L				5.6E-05		6.5E-05		4.0E-05		2.9E-04			
1,2,3,4,7,8+HxCDF	1,2,3,4,6,7,8-HpCDF					9.5E-04		6.9E-04				1.7E-04		2.9E-05				5.0E-05	
1,2,3,4,7,8-HxCDF	•															2.0E-04	1		Щ_
1,2,3,6,7,8-HxCDD 0.10 3.7E-03 3.1E-03							<u> </u>			1.4E-03		7.9E-05					1		₩
1,2,3,6,7,8-HxCDF														1.4E-05		1.9E-02			₩
1,2,3,7,8,9-HxCDD 0.10 1,7E-04 9,7E-05 3,1E-05 3,3E-04 1,23,78,9-HxCDF 0.10 -							<u> </u>							4.075.07			1		₩
1,2,3,7,8,9-HxCDF 0.10 1.4E-05 1.2,3,7,8-PCDD 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1.4E-03</td><td></td><td>1.2E-04</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td> </td></td<>							1			1.4E-03		1.2E-04					1		
1,2,3,7,8-PCDD 1.00 <												1 AE 05		5.1E-05		3.3E-04	1		
1,2,3,7,8-PCDF 0.05 1.3E-04 8.5E-05 3.8E-05 2.3E-05 2.34,46,7,8-HxCDF 0.10 8.1E-04 4.3E-04 4.3E-05 3.5E-05 7.2E-04 2.34,7,8-PCDF 0.50 7.5E-03 1.3E-03 1.8E-03 4.6E-03 5.5E-04 9.0E-03 2.37,8-PCDF 1.00 3.3E-03 1.5E-02 5.5E-04 9.0E-03 2.37,8-PCDF 1.00 3.3E-03 1.5E-02 5.1E-03 5.1E-03 1.5E-02 5.1E-03 2.9E-04 8 8 OCDD 0.0001 1.7E-04 4.4E-04 1.5E-05 1.5E-05 2.2E-05 3.6E-05 2.2E-05 3.6E-05 2.2E-05 0.0E-06 1.3E-04 2.6E-06 1.5E-05 7.9E-05 2.6E-06 7.6E-07 8.3E-05 1 4.2E-02 1 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>\vdash</td><td></td><td></td><td></td><td></td><td>1.4E-US</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>\vdash</td></t<>					-		\vdash					1.4E-US					1		\vdash
2,3,4,6,7,8-HxCDF 0.10 8.1E-04 4.3E-04 4.3E-05 3.5E-05 7.2E-04 2.2E-04 2.34,7,8-PCDF 0.50 7.5E-03 1.3E-03 1.8E-03 4.6E-03 5.5E-04 9.0E-03 2.23,7,8-PCDF 2.37,8-PCDF 1.00 3.3E-03 1.5E-02 5.1E-03 5.1E-03 2.2E-05 5.1E-03 1.5E-02 5.1E-03 5.1E-03 2.2E-05 3.6E-05 2.2E-05 1.3E-05 1.5E-05 1.5E-05 2.2E-05 3.6E-05 2.2E-05 3.6E-05 1.1E-02 1.1E-02 1.1E-03 2.4E-04 4.2E-02 1 Total 2,3,7,8-TCDD Equivalents(2) ug/Kg 1 </td <td></td> <td>3 8F_05</td> <td></td> <td>2.3E_05</td> <td></td> <td></td> <td>1</td> <td></td> <td> </td>												3 8F_05		2.3E_05			1		
2,3,4,7,8-PCDF 0.50 7.5E-03 1.3E-03 1.8E-03 4.6E-03 5.5E-04 9.0E-03 2 2,3,7,8-TCDD 1.00 3.3E-03 1.5E-02 5.1E-03 2,3,7,8-TCDF 0.10 1.7E-04 4.4E-04 2.9E-04 8 OCDD 0.0001 2.2E-05 5.2E-06 6.1E-05 1.3E-05 1.5E-05 2.2E-05 3.6E-05 2 OCDF 0.0001 1.1E-04 2.6E-05 1.5E-05 7.9E-05 2.6E-06 7.6E-07 8.3E-05 2 Total 2,3,7,8-TCDD Equivalents(2) ug/Kg 1 1.7E-02 5.9E-03 2.2E-02 1.1E-02 1.1E-03 2.4E-04 4.2E-02 1 Polychlorinated Biphenyls (Aroclors) Aroclor 1016 mg/Kg 1 0.0071 U 0.02 U 0.0061 U 0.003 U 0.0031 U 0.0033 U 0.003 U 0.0039 U 0.0039																7.2E-04			\vdash
2,3,7,8-TCDD 1.00 3,3E-03 1.5E-02 5.1E-03 2,37,8-TCDF 0.10 1.7E-04 4.4E-04 0.00 2.9E-04 8 OCDD 0.0001 2.2E-05 5.2E-06 6.1E-05 1.3E-05 1.5E-05 2.2E-05 3.6E-05 2 OCDF 0.0001 1.1E-04 2.6E-05 1.5E-05 7.9E-05 2.6E-06 7.6E-07 8.3E-05 1 Total 2,3,7,8-TCDD Equivalents(2) ug/Kg 1 1.7E-02 5.9E-03 2.2E-02 1.1E-02 1.1E-03 2.4E-04 4.2E-02 1 Polychlorinated Biphenyls (Aroclors) Aroclor 1016 mg/Kg 1 0.0071 U 0.02 U 0.0045 U 0.003 U 0.0031 U 0.0033 U 0.0033 U 0.0033 U 0.0039 U 0.0039 U 0.0035 U 0.0033 U 0.0033 U 0.0033						1.3E-03		1.8E-03											T
2,3,7,8-TCDF																			\Box
OCDD OCDF OCDF OCDF OCDF OCDF OCDF OCDF																		8.3E-05	
Total 2,3,7,8-TCDD Equivalents (2)	OCDD					5.2E-06				1.3E-05		1.5E-05		2.2E-05				2.1E-05	
Polychlorinated Biphenyls (Aroclors) Aroclor 1016 mg/Kg 1 0.0071 U 0.02 U 0.0045 U 0.0061 U 0.0031 U 0.0033 U 0.0043 U 0.0043 U 0.0075 U 0.0078 U 0.0039 U 0.0039 U 0.0043 U 0.0043 U 0.0043 U 0.0043 U 0.0039 U 0.0039 U 0.0039 U 0.0039 U 0.0039 U 0.0039 U 0.0035 U 0.0039 U 0.0035 U 0.0033 U 0.0033 U 0.0035 U 0.0035 U 0.0033		0.0001		1.1E-04		2.6E-05		1.5E-05		7.9E-05		2.6E-06		7.6E-07		8.3E-05			
Polychlorinated Biphenyls (Aroclors) Aroclor 1016 mg/Kg 1 0.0071 U 0.02 U 0.0045 U 0.0061 U 0.0031 U 0.0033 U 0.0043 U 0.0043 U 0.0075 U 0.0078 U 0.0039 U 0.0039 U 0.0043 U 0.0043 U 0.0043 U 0.0043 U 0.0039 U 0.0035 U 0.0039 U 0.0035	Total 2,3,7,8-TCDD Equivalents (2)	ug/Kg	1	1.7E-02	L	5.9E-03	L	2.2E-02	L	1.1E-02	L	1.1E-03		2.4E-04	L	4.2E-02		1.5E-04	\perp
Aroclor 1221 mg/Kg 1 0.0091 U 0.025 U 0.0057 U 0.0078 U 0.0039 U 0.0043 U 0.0043 U 0.0051 U 0.0078 U 0.0039 U 0.0043 U 0.0043 U 0.0043 U 0.0051 U 0.0075 U 0.0035 U 0.0035 U 0.0039 U 0.0039 U 0.0039 U 0.0035 U 0.0035 U 0.0039 U 0.0035 U	_																		
Aroclor 1232 mg/Kg 1 0.0081 U 0.023 U 0.0051 U 0.007 U 0.0035 U 0.0035 U 0.0039 U 0.0039 U Aroclor 1242 mg/Kg 1 0.0077 U 0.021 U 0.0049 U 0.0067 U 0.0033 U 0.0033 U 0.0037 U 0.0019 Aroclor 1248 mg/Kg 1 0.0045 U 0.0028 U 0.0039 U 0.0019 U 0.059 U		mg/Kg	1	0.0071			U		U		U		U		U		U	0.0035	U
Aroclor 1242 mg/Kg 1 0.0077 U 0.021 U 0.0049 U 0.0067 U 0.0033 U 0.0033 U 0.0037 U 0.0019 U 0.0019 U 0.0019 U 0.059 U			1												Ŭ		_	0.0045	U
Aroclor 1248 mg/Kg 1 0.0045 U 0.012 U 0.0028 U 0.0039 U 0.0019 U 0.0019 U 0.0059 U			1				_								_		_	0.004	U
			1												_		U	0.0038	U
Maroclor 1254 mg/Kg 1 0.0067 U 0.019 U 0.0043 U 0.0058 U 0.0029 U 0.0029 U 0.0032 U 0			1														1	0.0022	U
			1				_										Ū	0.0033	U
			1 1								_		Ť				J	0.0033	U
			1		_		_				_		Ť		_		_	0.0051	U

ANALYTICAL RESULTS HACKENSACK RIVER SEDIMENT SAMPLES FORMER DIAMOND SITE RIVER FRONTAGE KEARNY, NEW JERSEY

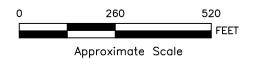
Constituent of	Units	Criterion ⁽¹⁾	HRWC 05/19/0) 8	HRWC 05/19/0	08	HRWC 05/19/0	08	HRWC 05/19/0) 8	HRWC 05/19/0	8	HRWC 05/19/0) 8	HRWC 05/09/0	08	HRWC 05/09/0	08
Interest		Criterion	0.0-1.0 Primar		2.0-3.0 Primai		0.0-1.0 Primaı		2.0-3.0 Primar		0.0-1.0 Primar		2.0-3.0 Primai		0.0-1.0 Primai		2.0-3.0 Primai	
Metals																		
Aluminum	mg/Kg		10400		2290		8890		10300		2870		2690		2770		4440	<u> </u>
Antimony	mg/Kg	450	0.34	BJ	0.72	U	0.49	BJ	1.6	BJ	1.2	J	1.1	В	1.4		1.8	—
Arsenic	mg/Kg	19	18.3	D	1.8	U	28.2		43.2		10.4		10.6		6		16.7	┢
Barium Beryllium	mg/Kg	59000	38 0.92	В	18.2 0.45	В	117 0.57	D	143	D	52 0.25	D	59.3	D	40.9	D	112	В
Cadmium	mg/Kg mg/Kg	140 78	0.92	B B	0.45	B U	0.83	B	0.79 1.1	B	0.23	B B	0.24	B B	0.25	B B	0.35	В
Calcium	mg/Kg		5810	ь	9370		10300	Ь.	4570	ь	1420	ъ	1830	ь	1780	ь	1920	1
Chromium ⁽³⁾	mg/Kg	120000	505		24		2400		538		1930		711		367	т	425	J
		20	7.43	**	0.4		47.8		0.4	**	159		17.3		10.3	J	6.1	۲
Chromium (Hexavalent) ⁽³⁾	mg/Kg			U		U				U								├
Copper	mg/Kg mg/Kg	590 45000	12.1 21.3	В	1.2 5.1	B B	11.1 104	-	8.6 161	В	34 39.4		35.5 38.7		7.7 29.8	-	29.8 66.2	┢
Copper Iron	mg/Kg	43000	30700		7810	D	27000		27800		14400		19800		8830	J	18200	J
Lead	mg/Kg	800	31.6	J	4.4	ī	125	J	176	Ţ	34.8	J	37.1	J	40.3	J	70	-
Magnesium	mg/Kg		6100	3	8490	,	5160	,	5790	J	4670	,	4180	J	8430		4030	┢
Manganese	mg/Kg	5900	242		206		386		424		183		348		138		485	
Mercury	mg/Kg	65	0.61		0.093	В	3		4.1		0.71		1.3		0.67		3.4	\Box
Nickel	mg/Kg	23000	37.6		4.4	В	44.8		35.2		290		357		142		252	
Potassium	mg/Kg		2140		1050	В	1650		2090		513	В	488	В	464	В	728	
Selenium	mg/Kg	5700	0.82	U	2.3	U	1.3		1.6		0.46	В	0.42	В	0.39	U	0.91	
Silver	mg/Kg	5700	0.33	BJ	0.49	BJ	0.97	J	1.5	J	0.43	BJ	0.36	BJ	0.53	BJ	0.65	BJ
Sodium	mg/Kg		7120		17400		2930		5000		905		1090		1200		1530	Ь.
Thallium	mg/Kg	79	0.91	U	2.5	U	1.1	В	0.79	U	0.87	В	0.56	В	0.63	В	2.1	Ь
Vanadium	mg/Kg	1100	70.2		8.7	В	51.5		27.9		22.3		12.5		19		16	—
Zinc	mg/Kg	110000	74.3		18		230		307		64.6		60.4		70		122	_
Toxicity Characteristic Leaching Pro		0.7	0.025	TT	0.025	TT	0.025	TT	0.025	TT	0.025	TT	0.025	TT	0.025	TT	0.025	TI
1,1-Dichloroethene	mg/L	0.7	0.035	U	0.035	U	0.035	U	0.035 0.026	U	0.035 0.026	U	0.035	U	0.035 0.026	U	0.035	U
1,2-Dichloroethane 1,4-Dichlorobenzene	mg/L mg/L	7.5	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U
2,4,5-Trichlorophenol	mg/L	400	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U
2,4,6-Trichlorophenol	mg/L	2	0.0026	U		U	0.0026	U	0.0026	U		U	0.0026	U	0.0026	U	0.0026	_
2,4-Dinitrotoluene	mg/L	0.13	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U	0.0028	U
2-Butanone	mg/L	200	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U
Benzene	mg/L	0.5	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	U	0.037	В
Carbon Tetrachloride	mg/L	0.5	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	0.028	В
Chlorobenzene	mg/L	100	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U
Chloroform	mg/L	6	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	В
Cresols	mg/L	200	0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U	0.0089	U
Hexachlorobenzene	mg/L	0.13	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U	0.0049	U
Hexachlorobutadiene Hexachloroethane	mg/L	0.5	0.0033	U	0.0033	U	0.0033	U	0.0033	U	0.0033 0.0036	U	0.0033	U	0.0033 0.0036	U	0.0033	U B
Nitrobenzene	mg/L mg/L	2	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0036	U	0.0056	U	0.0036	U	0.0056	U
Pentachlorophenol	mg/L	100	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U
Pyridine	mg/L	5	0.003	U	0.003	U	0.011	U	0.003	U	0.003	U	0.003	U	0.003	U	0.003	U
Tetrachloroethene	mg/L	0.7	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U	0.023	U
Trichloroethene	mg/L	0.5	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	U	0.035	В
Vinyl chloride	mg/L	0.2	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U	0.038	U
Arsenic	mg/L	5	0.18	В	0.16	В	0.19	В	0.23	В	0.17	В	0.2	В	0.18	В	0.21	U
Barium	mg/L	100	0.14	В	0.021	В	0.32	В	0.086	В	0.99	В	1.3	В	0.55	В	0.82	U
Cadmium	mg/L	1	0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0018	В	0.0029	В	0.0042	В	0.0036	U
Chromium	mg/L	5	0.026	В	0.0047	В	0.061	В	0.032	В	0.54		0.19	В	0.063	В	0.03	U
Lead	mg/L	5	0.74	**	0.013	U	0.059	В	0.014	В	1.6	* * *	0.081	В	4.6	7.7	0.062	U
Mercury	mg/L	0.2	5.5E-05	U	5.5E-05	U	5.5E-05	U	5.5E-05	U	5.5E-05	U	5.5E-05	U	5.5E-05	U	5.5E-05	U
Selenium Silver	mg/L mg/L	5	0.015 0.0025	U	0.015 0.0025	U U	0.015	U	0.015 0.0025	U	0.015 0.0025	U	0.015 0.0025	U	0.015 0.0025	U	0.015 0.0025	U
RCRA Characteristics and Indicators		<u> </u>	0.0023	U	0.0023		0.0023		0.0023		0.0023	U	0.0023	U	0.0023		0.0023	
Corrosivity (pH)	SU	2 <ph<12.5< td=""><td>7.71</td><td></td><td>7.41</td><td></td><td>7.8</td><td>I</td><td>7.51</td><td></td><td>7.89</td><td></td><td>9.01</td><td></td><td>7.99</td><td></td><td>8.23</td><td></td></ph<12.5<>	7.71		7.41		7.8	I	7.51		7.89		9.01		7.99		8.23	
Cyanide	mg/Kg	23000	0.27	U	0.75	U	2.5		0.84	В	1.1		1.1		0.13	U	0.45	В
Total Sulfide (Reactivity)	mg/Kg		433		126	В	1580		158		179		730		540		1190	Ť
Ignitability	none		No		No		No		No		No		No		No		No	
Total Organic Carbon	mg/Kg		76800		439000		42700		144000		18100		17700		10500		15600	
Oxidation Reduction Potential	mV		237		288		310		317		404		306		201		92	
Total Petroleum Hydrocarbons	mg/Kg																	
Percent Solids	%		35.1		12.7		55.6		40.6		80.6		81.1		74		71.1	

Notes:

- 1. Criteria are the NJDEP Non-Residential Direct Contact Soil Remediation Standards (online at www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf) unless noted otherwise.
- 2. The 1 ug/kg benchmark for 2,3,7,8-TCDD equivalents is the United States Environmental Protection Agency residential guideline per OSWER Directive 9200.4-26.

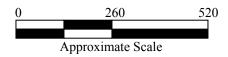
 3. Nonpromulgated criteria for total (trivalent) and hexavalent chromium determined by chromium workgroup (www.state.nj.us/dep/srp/guidance).
- Criterion for residential exposure to trivalent chromium was used for total chromium.

 4. Toxicity Characteristic Leaching Procedure limits as specified in 40 Code of Federal Regulations 261.24 available at electronic CFR website (ecfr.gpoaccess.gov).

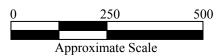

Exceedances are shown in bold, shaded typeface. Data qualifiers are as follows:

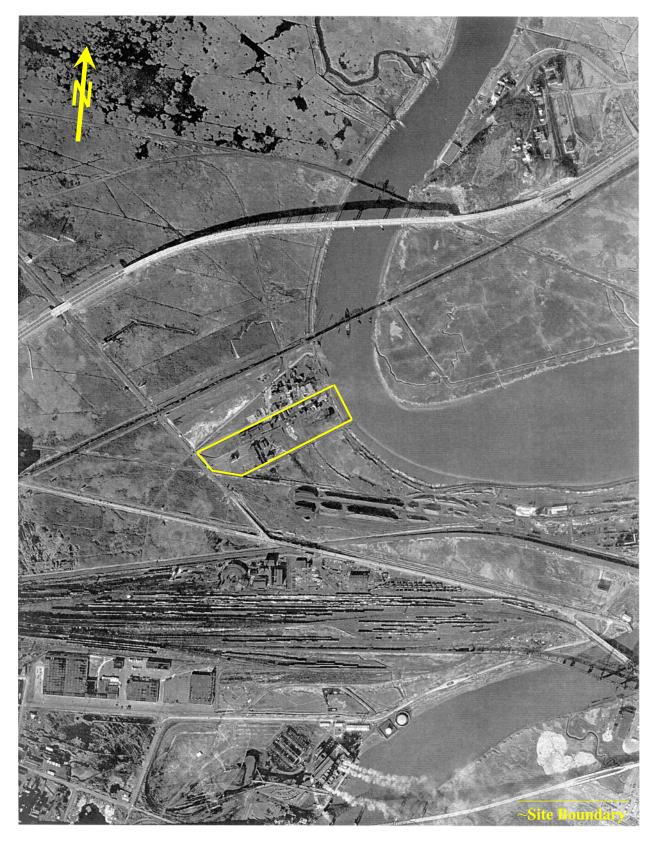
- B Organic results. Analyte detected in associated method blank
- B Inorganic results. Result is an estimate. Quantitation between the detection limit and the reporting limit.
- J Organic results. Result is an estimate. Quantitated between the detection limit and the reporting limit.
- J Inorganic results. Result is an estimated concentration. Quantitated below the reporting limit.
- Q One or more quality control criteria for identification not attained. Value is an Estimated Maximum Possible Concentration. Analyte may be present below the quantitation limit indicated.
- U Not detected at the detection limit indicated.
- -- Not analyzed or criteria unavailable.

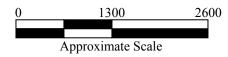
APPENDIX A HISTORIC AERIAL PHOTOGRAPHS

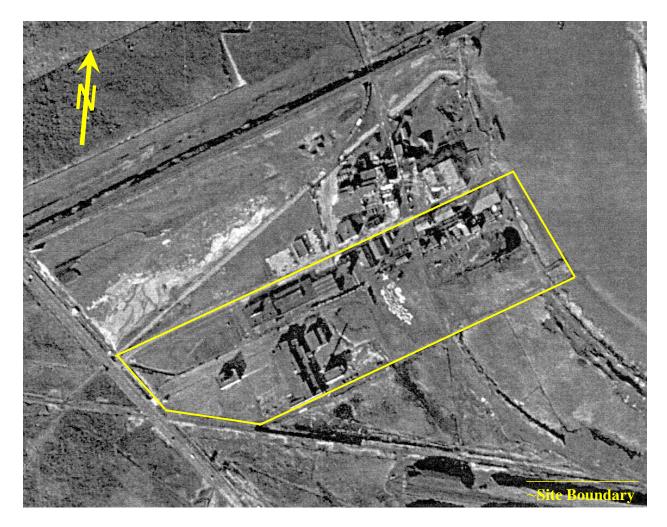


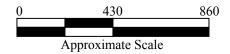
SCCC SITE AFTER INTERIM REMEDIAL MEASURES (2012)

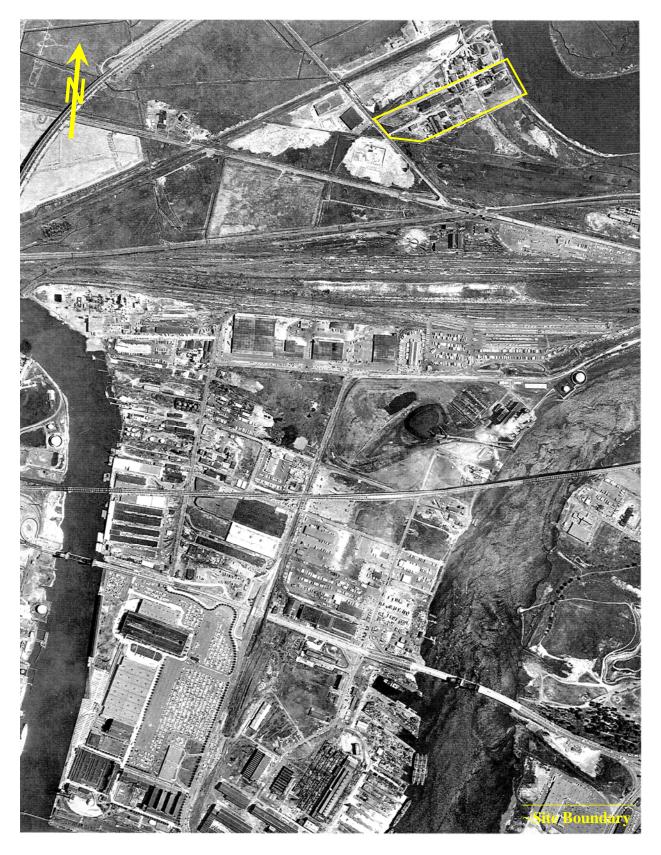


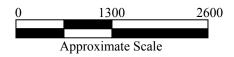

SCCC SITE PRIOR TO INTERIM REMEDIAL MEASURES (1986)

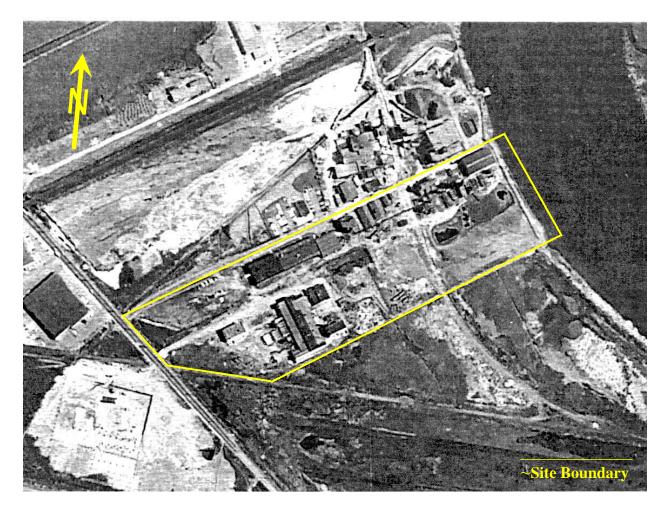


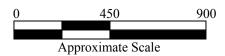

SCCC SITE AFTER INTERIM REMEDIAL MEASURES (2006)

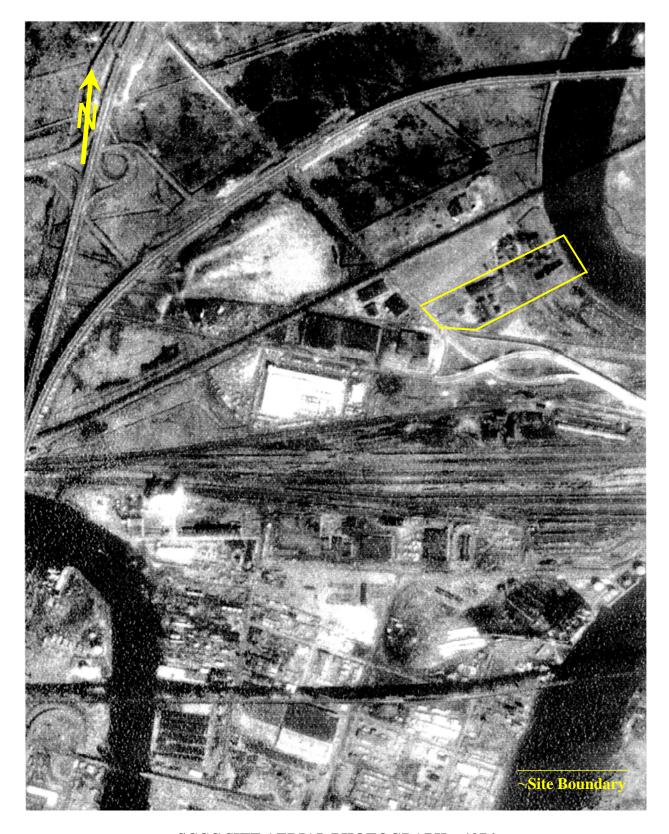


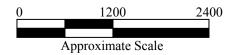

SCCC SITE AERIAL PHOTOGRAPH – 1953

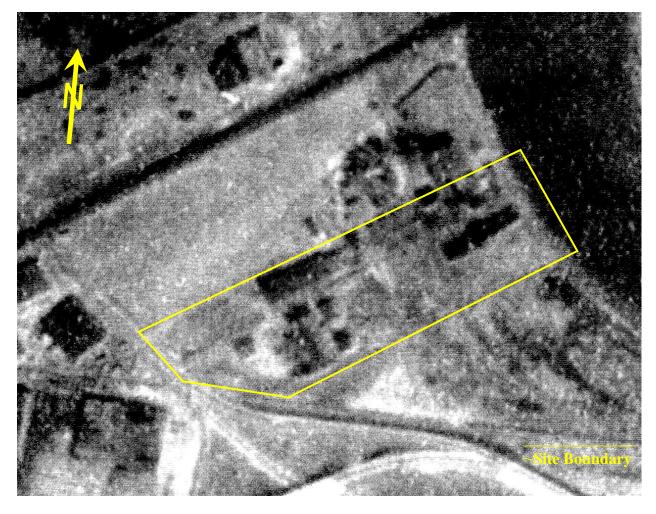


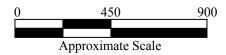

SCCC SITE AERIAL PHOTOGRAPH – 1953 (ENLARGED PORTION OF ORIGINAL)

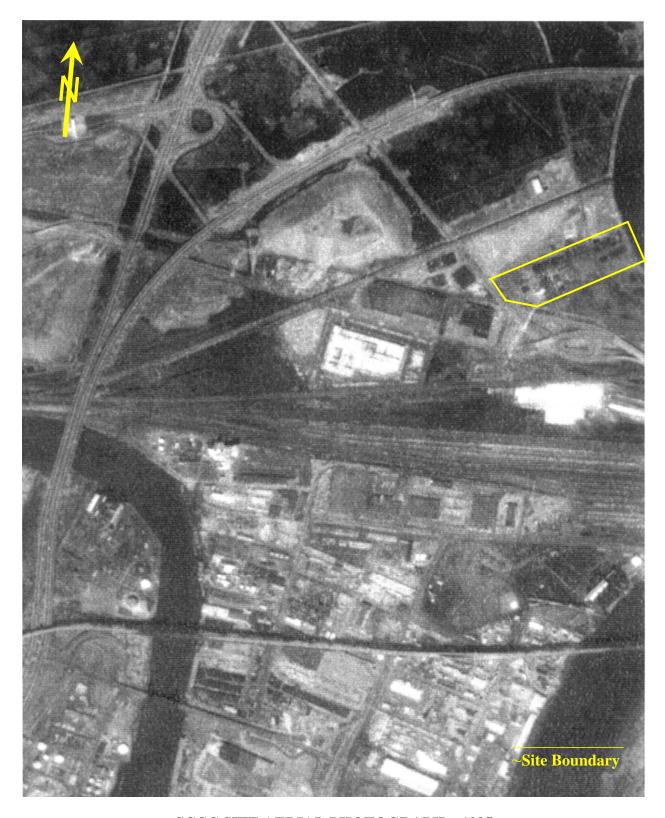


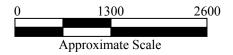

SCCC SITE AERIAL PHOTOGRAPH – 1966

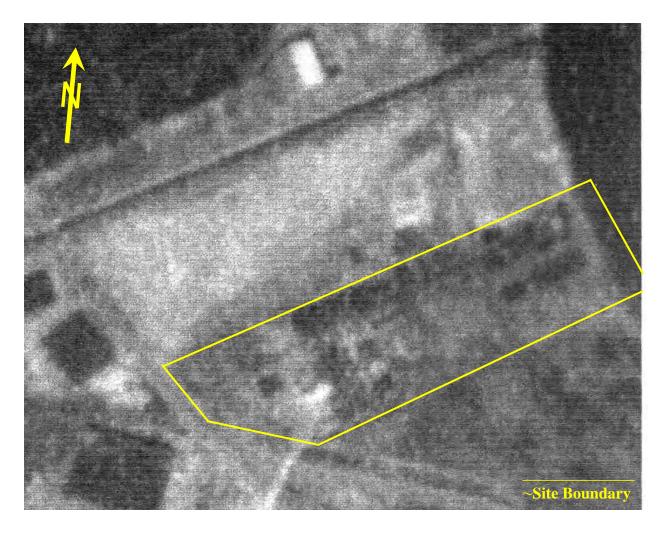


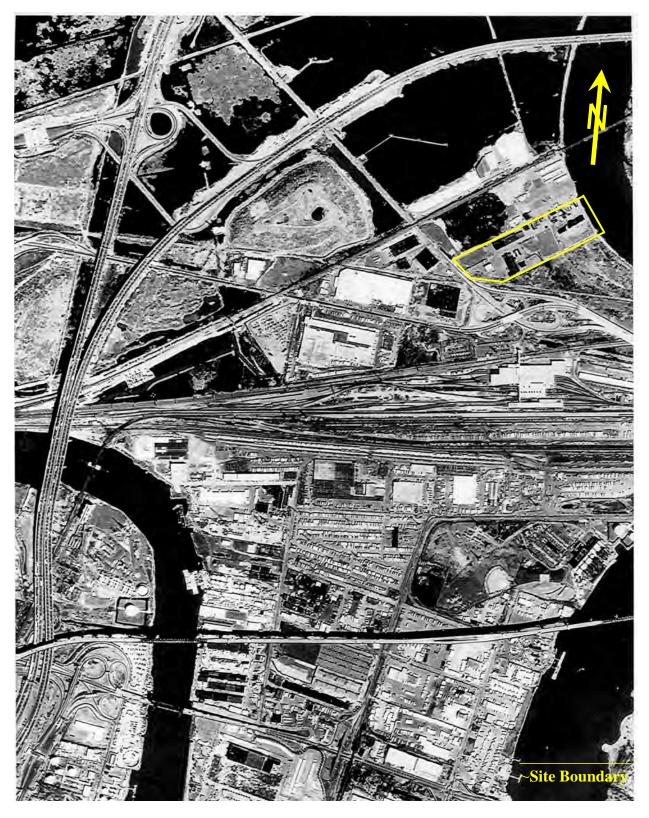

SCCC SITE AERIAL PHOTOGRAPH – 1966 (ENLARGED PORTION OF ORIGINAL)

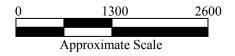



SCCC SITE AERIAL PHOTOGRAPH – 1976

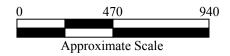



SCCC SITE AERIAL PHOTOGRAPH – 1976 (ENLARGED PORTION OF ORIGINAL)


SCCC SITE AERIAL PHOTOGRAPH – 1985

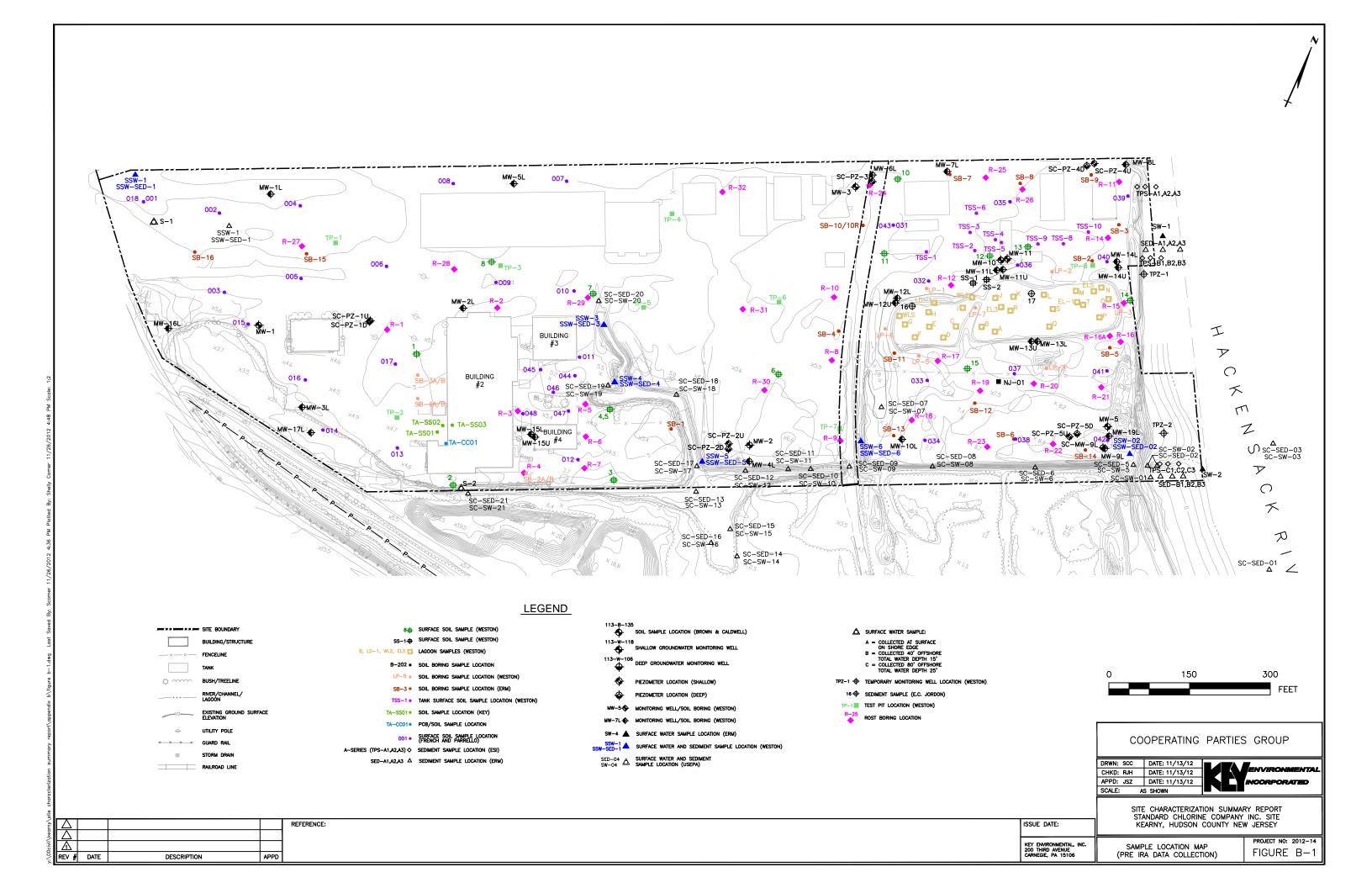


SCCC SITE AERIAL PHOTOGRAPH - 1985 (ENLARGED PORTION OF ORIGINAL)



SCCC SITE AERIAL PHOTOGRAPH – 1995

SCCC SITE AERIAL PHOTOGRAPH – 1995 (ENLARGED PORTION OF ORIGINAL)



APPENDIX B HISTORICAL CHEMICAL ANALYTICAL RESULTS

Figure B-1	Sample Location Map
Table B-1	COPR Surface Soil Samples (1991)
Table B-2	Tank Area Surface Soil Samples (1990)
Table B-3	TCDD Characterization Surface Soil Samples (1985)
Table B-4	Transformer Area Concrete Chip and Soil Samples (1998)
Table B-5	DNAPL Delineation Borings (1990 and 1999)
Table B-6	Soil Borings (1990 – 1999)
Table B-7	Test Pit Subsurface Soil Samples (1993)
Table B-8	Groundwater – Fill Unit Monitoring Wells (1991)
Table B-9	Groundwater – Fill Unit Piezometers (1983)
Table B-10	Groundwater – Sand Unit Monitoring Wells (1991 – 1999)
Table B-11	Groundwater – Sand Unit Piezometers (1983)
Table B-12	Surface Water Samples – South Ditch (1991 – 2002)
Table B-13	Surface Water Samples – Hackensack River (1996 - 2002)
Table B-14	Lagoon Solids Samples and Perimeter Soil Boring Samples (1985-1987)
Table B-15	Lagoon Solids Samples (1991)
Table B-16	Sediment Samples – South Ditch (1991 – 2002)
Table B-17	Sediment Samples (1991)
Table B-18	Sediment Samples – Hackensack River (1996 - 2002)

Note: All data qualifiers are as reported in original source documents and reports. No laboratory packages were available for these data, therefore, detection limits are not always available. Where an analyte was reported as "Not Detected", "ND" or "U", no value was put in these tables unless a value was presented in the document. Dashes are used when no analyses were conducted.

COMPLETE FIGURES, TABLES, AND APPENDICES FROM THE SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT (DECEMBER 2012, REVISED MARCH 2013)

TABLE B-1 HISTORICAL ANALYTICAL RESULTS COPR SURFACE SOIL SAMPLES (1991) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	Units	001 08/01/9 ² 0-0.5 Primary		002 08/01/9 0-0.5 Primary		003 08/01/9 ² 0-0.5 Primary	004 08/01/9 ² 0-0.5 Primary		0-0.5	08/01/91		1
Metals												
Chromium	mg/Kg	722		17.5		1990	21.4		733		2000	
Chromium (Hexavalent)	mg/Kg	2.7	U	3	U	270	3	U	8.2		16	

Constituent of Interest	Units	007 08/01/91 0-0.5 Primary	008 08/01/91 0-0.5 Primary	009 08/01/91 0-0.5 Primary	010 08/01/91 0-0.5 Primary	011 08/01/9 0-0.5 Primary		012 08/01/9 0-0.5 Primary	
Metals									
Chromium	mg/Kg	2520	1490	2540	529	579		129	
Chromium (Hexavalent)	mg/Kg	13	15	110	8.6	30	U	3.6	U

Constituent of Interest	Units	013 08/01/91 0-0.5 Primary		014 8/01/91 0-0.5 imary	015 08/01/91 0-0.5 Primary	016 08/01/91 0-0.5 Primary	017 08/01/91 0-0.5 Primary	08/01/91 0-0.5		1
Metals										
Chromium	mg/Kg	1100	22	240	520	769	511		224	
Chromium (Hexavalent)	mg/Kg	7.3	1	13	3.4	12	3.8		3	

Constituent of Interest	Units	031 08/01/9 [,] 0-0.5 Primary		032 08/01/91 0-0.5 Primary	033 08/01/91 0-0.5 Primary	034 08/01/9 ² 0-0.5 Primary		035 08/01/91 0-0.5 Primary		036 08/01/9 0-0.5 Primary	
Metals											
Chromium	mg/Kg	9900		5330	9900	18000		11000		6460	
Chromium (Hexavalent)	mg/Kg	14	U	0.65	244	0.11	U	0.39		0.26	U

Constituent of Interest	Units	037 08/01/91 0-0.5 Primary	038 08/01/91 0-0.5 Primary		039 08/01/9 ² 0-0.5 Primary	-	040 08/01/9 [,] 0-0.5 Primary		0-0.5	08/01/91		1
Metals												
Chromium	mg/Kg	5120	18800		11500		7050		9390		11900	
Chromium (Hexavalent)	mg/Kg	54	0.23	С	195		0.24	U	0.15		0.12	U

Constituent of Interest	Units	043 08/01/9 ⁻ 0-0.5 Primary		044 08/01/9 0-0.5 Primary		045 08/01/9 0-0.5 Primary		046 08/01/9 0-0.5 Primary		0-0.5	08/01/91)1 y
Metals													
Chromium	mg/Kg	8570		579		95.7		59.7		142		188	
Chromium (Hexavalent)	mg/Kg	0.15	U	0.26	U	0.13	U	0.14	U	0.14	U	0.28	U

TABLE B-2
HISTORICAL ANALYTICAL RESULTS
TANK AREA SURFACE SOIL SAMPLES (1990)
STANDARD CHLORINE SITE
KEARNY, NEW JERSEY

Constituent of Interest	Units	TSS-1 12/01/9 0-0.5 Primar	0	TSS-2 12/01/9 0-0.5 Primar	0	TSS-3 12/01/9 0-0.5 Primar	0	TSS-4 12/01/9 0-0.5 Primar	0	TSS-5 12/01/9 0-0.5 Primar	0	TSS-6 12/01/9 0-0.5 Primar	00	TSS-7 12/01/9 0-0.5 Primary	0	TSS-8 12/01/9 0-0.5 Primary	0	TSS-9 12/01/9 0-0.5 Primar	0	TSS-9I 12/01/9 0-0.5 Duplica	0	TSS-10 12/01/9 0-0.5 Primary	00
Volatile Organics	1 10.5																		1				
1,2-Dichloroethene	mg/Kg	10	U	2.3	U	0.0026	U	1.2	U	0.0765		0.028	U	0.0205		0.0024	U	3	U	2.4	U	0.000	U
Benzene	mg/Kg	27	U	6.4	U	0.0072	U	3.3	U	0.11	U	0.076	U	0.0075	U	0.0067	J	8.1	U	6.6	U		U
Chlorobenzene	mg/Kg	99.6		8.7	U	0.0098	J	5.94		0.3		0.1	U	0.01	U	0.0091	U	33.5		68.4		0.0891	
Methylene chloride	mg/Kg	18	U	5.69	.	0.0046	U	2.1	U	0.114		0.0708	.	0.00657		0.0042	U	7.02	.	5.98	.	0.0044	U
Tetrachloroethene	mg/Kg	26	U	5.9	U	0.0067	U	3.1	U	2.31		0.071	U	0.0125		0.0062	U	7.6	U	6.1	U		
Trichloroethene	mg/Kg	12	U	2.8	U	0.0031	U	1.4	U	0.866		0.033	U	0.0292		0.0029	U	3.5	U	2.8	U	0.003	U
Semivolatile Organics																							
1,2,4-Trichlorobenzene	mg/Kg	75000		3040		6.36		14100		68200		30.1		25.4		28.3		100000		200000		62.8	
1,2-Dichlorobenzene	mg/Kg	3850		4680		12.1		34.4		522		10.8		3.78		2.9	J	4340		6470		6.53	Ш
1,3-Dichlorobenzene	mg/Kg	1210		738		14.5		9.59		394		9.5		6.4		2.9	J	1270		1550		66.2	ш
1,4-Dichlorobenzene	mg/Kg	2230		4840		54.6		15		52.2		15.7		7.4	U	6.6	U	876		1200	L.	41.7	Ш
Acenaphthene	mg/Kg	92		219		3.1	U	2.9	U	11.8		3.3	U	3.2	U	2.9	U	3.5	U	2.8	U		
Acenaphthylene	mg/Kg	24.1		5.1	U	5.7	U	5.3	U	9	U	6	U	5.9	U	5.3	U	6.5	U	5.2	U		U
Anthracene	mg/Kg	46.2		7.29		3.1	\supset	2.9	U	4.9	U	3.3	U	3.2	C	2.9	J	3.83		4.27		8.05	ш
Benzo(a)anthracene	mg/Kg	49	U	11	U		U	12	U	20	U	13	U	13	U	12	U	14	U	12	U		U
Benzo(a)pyrene	mg/Kg	16	U	3.84		34.1		6.58		6.4	U	4.91		4.95		3.8	U	4.6	U	3.7	U		U
Benzo(b)fluoranthene	mg/Kg	30	U	6.9	U	65.8		16.7		14		11.6		8.7		7.2	J	33.1		7.1	U	7.5	U
Benzo(ghi)perylene	mg/Kg	26	U	5.9	U	31.4		7.94		11	U	9.05		10.5		6.2	U	9		6.81		6.4	U
Bis(2-ethylhexyl)phthalate	mg/Kg	63	U	14	U	16	U	15	U	30		34.5		44.5		15	U	19	U	15	U		U
Chrysene	mg/Kg	41.9		7.42		14.6		12		12.5		6.67		4.83		3.8	U	21.5		17.2		10.9	
Dibenzo(a,h)anthracene	mg/Kg	16	U	3.6	U	7.28		3.8	U	6.4	U	4.3	U	4.2	U	3.8	U	4.6	U	3.7	U		U
Di-n-butyl phthalate	mg/Kg	63	U	14	U	16	U	15	U	26	U	17	U	17	U	15	U	19	U	15	U		U
Fluoranthene	mg/Kg	121		12.3		7.28		8.99		12.3		5.33		3.7	U	3.3	U	33.8		23.4		18.9	Ш
Fluorene	mg/Kg	213		45.6		3.1	U	2.9	U	4.9	U	3.3	U	3.2	U	2.9	U	3.5	U	2.8	U		Ш
Hexachlorobenzene	mg/Kg	45		137		3.1	כ	30.4		359		56.9		21.1		2.9	J	34.8		23.8		3	U
Hexachlorobutadiene	mg/Kg	5.6	U	8.52		1.5	U	1.4	U	2.3	U	1.5	U	1.5	U	1.4	U	1.7	U	1.3	U		U
Indeno(1,2,3-cd)pyrene	mg/Kg	23	U	5.4	U	35.9		10.5		9.5	U	10.1		11.3		5.6	J	11.1		7.66		5.8	U
Naphthalene ⁽¹⁾	mg/Kg	2370000		167		191		5.02		4.1	U	51.8		7.31		16.7		3	U	2.4	U		
Phenanthrene	mg/Kg	428		35.3		8.9	כ	10.9		19.3		9.3	U	9.1	U	8.1	כ	59.7		59.9		179	
Pyrene	mg/Kg	70.5		8.02		6.69		5.8		7.69		4.31		3.2	С	2.9	כ	17.1		11.9		21.5	1]

^{1.} Naphthalene results as reported by Weston exceed pure product concentration. Likely as quantitated by the laboratory by instruments outside linear calibration range.

TABLE B-3 HISTORICAL ANALYTICAL RESULTS TCDD CHARACTERIZATION SURFACE SOIL SAMPLES (1985) STANDARD CHLORINE SITE

KEARNY, NEW JERSEY	

Constituent of Interest	Units	1 05/07/85 0-0.5 Primary		2 05/07/8 0-0.5 Primary		3 05/07/8 0-0.5 Primary		4 05/07/8 0-0.5 Primary		5 05/07/8 0-0.5 Duplica	
Polychlorinated Dioxins and	Furans										
2,3,7,8-TCDD	ug/Kg	0.15	U	0.6	U	0.037	U	0.62	U	0.62	U

Constituent of Interest	Units	6 05/07/85 0-0.5 Primary		7 05/07/8 0-0.5 Primary		8 05/07/8 0-0.5 Primary		10 05/07/8 0-0.5 Primary		11 05/07/85 0-0.5 Primary		
Polychlorinated Dioxins and	Furans											
2,3,7,8-TCDD	ug/Kg	0.54	U	0.67	U	0.23	U	0.29	U	0.16	U	

Constituent of Interest	Units	12_5-85 05/07/85 0-0.5 Primary	12_8-85 08/01/85 1.5-2 Primary	13_5-85 05/07/85 0-0.5 Primary	13_8-85 08/01/85 1.5-2 Primary	14 05/07/85 0-0.5 Primary
Polychlorinated Dioxins and	Furans					
2,3,7,8-TCDD	ug/Kg	0.52	0.23 U	0.7 U	0.13 U	0.62 U

Constituent of Interest	Units	15 05/07/8 0-0.5 Primary		16 05/07/85 0-0.5 Primary	NJ-01 08/01/8 0-0.5 Primar	35	SS-1 03/01/ 0-0.5 Prima	87 5	SS-2 03/01/ 0-0.9 Prima	87 5
Polychlorinated Dioxins and	Furans									
2,3,7,8-TCDD	ug/Kg	0.29	U	59.5	0.16	U	1.1	U	1.4	U

Note: Sample 9 was an equipment blank.

TABLE B-4 HISTORICAL ANALYTICAL RESULTS TRANSFORMER AREA CONCRETE CHIP AND SURFACE SOIL SAMPLES (1998) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	Units	TA-CC0 10/09/98 0-0.5 Primary	8	TA-SS0 10/09/98 0-0.5 Primary	В	TA-SS0 10/09/99 0-0.5 Primary	8	TA-SS0 10/09/9 0-0.5 Primary	8
Polychlorinated Biphenyls (Aroclors)									
Aroclor 1254	mg/Kg	22	U	0.034	U	0.034		0.036	U
Aroclor 1260	mg/Kg	9300		0.15		0.29		0.022	
Total PCBs	mg/Kg	9300		0.15		0.29		0.022	

TABLE B-5 HISTORICAL ANALYTICAL RESULTS - DNAPL DELINEATION BORINGS (1990 and 1999) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest Volatile Organics	Units	SC-MW- 12/01/9 0-0.5 Primar	0	SC-MW-1 01/13/9 0-2 Primary	9	SC-MW-1 01/13/9 8-10 Primary	9	SC-MW-1 01/13/9 0-2 Primary	9	SC-MW- 01/13/9 10-12 Primar	9
1,1,1-Trichloroethane	mg/Kg	0.4	Τυ		Г		Т				┰
Benzene	mg/Kg	0.47	Ü								+-
Carbon tetrachloride	mg/Kg	0.3	Ū								+
Chlorobenzene	mg/Kg	0.64	Ü								+
Chloromethane	mg/Kg	1.1	Ū								+
Tetrachloroethene	mg/Kg	0.44	Ū								+
Toluene	mg/Kg	0.64	Ū								+
Semivolatile Organics	1119/119	0.01	10								
1,2,4-Trichlorobenzene	mg/Kg	0.46	Τυ	0.12	Ιυ	0.14	U	0.13	U	0.22	Τυ
1,2-Dichlorobenzene	mg/Kg	1.14	Ť	0.076	Ť	0.19	Ť	0.13	Ū	0.22	Ū
1,3-Dichlorobenzene	mg/Kg	0.833		0.075		0.54		0.052		0.094	Ť
1,4-Dichlorobenzene	mg/Kg	1.29		0.12	U	2		0.13		0.2	\top
2,4-Dimethylphenol	mg/Kg	0.66	U	0.38	Ū	0.44	U	0.22		0.73	U
2-Chlorophenol	mg/Kg			0.38	Ū	0.44	Ū	0.43	U	0.73	Ū
2-Methylnaphthalene	mg/Kg		1	0.12	Ū	0.14	Ū	0.13	Ū	0.22	Ū
2-Methylphenol	mg/Kg			0.38	Ū	0.44	Ū	0.23	П	0.73	Ū
4-Methylphenol	mg/Kg			0.38	Ū	0.44	Ū	0.43	U	0.73	υ
Acenaphthene	mg/Kg	1.1		0.12	Ü	0.14	Ū	0.13	Ū	0.52	Ť
Acenaphthylene	mg/Kg			0.062	Ť	0.14	Ū	0.13	Ū	0.069	T
Anthracene	mg/Kg	0.587		0.091		0.14	Ū	0.058	Ť	0.28	\dagger
Benzo(a)anthracene	mg/Kg	1.9	U	0.28		0.14	Ū	0.24		0.47	+
Benzo(a)pyrene	mg/Kg	0.61	Ū			0.14	Ū	0.38		0.42	\dagger
Benzo(b)fluoranthene	mg/Kg	1.8	Ť	0.45		0.041	Ť	0.48		0.68	T
Benzo(ghi)perylene	mg/Kg	1	U	0.048		0.14	U	0.21		0.16	\dagger
Benzo(k)fluoranthene	mg/Kg			0.19		0.14	Ū	0.17		0.095	T
Bis(2-ethylhexyl)phthalate	mg/Kg	9.92		0.1		0.14	Ū	0.075		0.22	U
Butyl benzyl phthalate	mg/Kg			0.12	U	0.14	Ū	0.13	U	0.22	Ū
Carbazole	mg/Kg			0.039		0.14	U	0.13	U	0.1	T
Chrysene	mg/Kg	0.629		0.28		0.14	U	0.26		0.48	T
Dibenzo(a,h)anthracene	mg/Kg			0.12	U	0.14	U		U	0.22	U
Dibenzofuran	mg/Kg			0.12	U	0.14	U	0.13	U	0.067	
Diethyl phthalate	mg/Kg			0.12	U	0.14	U	0.13	U	0.22	U
Dimethyl phthalate	mg/Kg			0.12	U	0.14	U	0.13	U	0.22	U
Di-n-butyl phthalate	mg/Kg	3.06		0.12	U	0.14	U	0.13	U	0.22	U
Di-n-octyl phthalate	mg/Kg			0.12	U	0.14	U	0.13	U	0.22	U
Fluoranthene	mg/Kg	3.14		0.46		0.05		0.38		1.2	T
Fluorene	mg/Kg	1.36		0.12	U	0.14	U	0.13	U	0.17	T
Hexachlorobenzene	mg/Kg			0.12	U	0.14	U	0.13	U	0.22	U
Hexachlorobutadiene	mg/Kg			0.12	U	0.14	U	0.13	U	0.22	U
Indeno(1,2,3-cd)pyrene	mg/Kg	0.9	U	0.19		0.14	U	0.13	U	0.22	U
Naphthalene	mg/Kg	3.22		0.12	U	0.14	U	0.04		0.092	
N-Nitrosodiphenylamine	mg/Kg			0.12	U	0.14	U	0.15		0.22	U
Pentachlorophenol	mg/Kg			2	U	2.3	U	2.2	C	3.8	U
Phenanthrene	mg/Kg	3.66		0.21		0.14	U	0.17		0.82	
Phenol	mg/Kg			0.38	U	0.44	U	0.5		0.73	U
Pyrene	mg/Kg	1.89		0.41		0.044		0.34		1.2	
Metals											
Antimony	mg/Kg	13	U								
Arsenic	mg/Kg	2.1	U								
Beryllium	mg/Kg	0.21	U								
Cadmium	mg/Kg	0.93									
Chromium	mg/Kg	593							$oxed{\Box}$		
Copper	mg/Kg	26							Ш		
Lead	mg/Kg	640			$oxedsymbol{oxedsymbol{oxed}}$						
Mercury	mg/Kg	0.17	U						Ш		
Nickel	mg/Kg	45							Ш		
Silver	mg/Kg	2.1	U								
Zinc	mg/Kg	55									\perp
RCRA Characteristics and Indica											
Cyanide (Reactivity)	mg/Kg	1.2									

Constituent of	Units	SB-01 08/16/96	SB-03 08/05/96		6	SB-07 08/16/96		SB-09 08/12/96		SB-09 08/12/9		SB-10F 08/16/9	6
Interest	Onno	15.5-16	14.5-15			15.5-16		1.5-2		15-15.5		16-16.	
Volatile Organics		Primary	Primary	Primary	<u> </u>	Primary		Primary	<u> </u>	Primary	<u>′</u>	Primar	<u>y</u>
1,1,1-Trichloroethane	mg/Kg		T T		П	1	Т	[Т				Т
1,2,3-Trichlorobenzene	mg/Kg	ND	1770	1000	\vdash	ND	+	0.0326		345		2140	t
1,2,4-Trichlorobenzene	mg/Kg	0.002	6540	1870	\vdash	ND ND	_	0.0203		1180		2290	t
1,2,4-Trimethylbenzene	mg/Kg	ND	ND	ND		65.5	-	ND		ND		60.8	t
1,2-Dichlorobenzene	mg/Kg	0.115	1080	1310		ND	-	0.00598		506		2320	ł
1,2-Dichloroethene	mg/Kg	0.113				IND	+					2320	ł
1,3,5-Trimethylbenzene	mg/Kg	ND	 			23.9	+					ND	ł
1,3-Dichlorobenzene	mg/Kg	0.043	1700	433		ND	-	0.00329		210		557	ł
1,4-Dichlorobenzene	mg/Kg	0.043	1630	677	\vdash	ND ND	_	0.00559		257		1160	t
2-Butanone	mg/Kg		1030		\vdash		+			231		1100	t
Acetone	mg/Kg		ND	ND	\vdash		+	ND		ND			ł
Benzene	mg/Kg				\vdash		\dashv						t
Carbon tetrachloride	mg/Kg		+		\vdash		\dashv						t
Chlorobenzene	mg/Kg		ND	ND	\vdash		+	ND	-	42.6	\dashv		t
Chloromethane	mg/Kg		110		\vdash		+		\dashv	<u></u> ∠.∪	\dashv		t
n-Butylbenzene	mg/Kg		ND	57.8	\vdash		+	ND	+	ND	\dashv		t
Styrene	mg/Kg		110		\vdash		+	יאט	+		\dashv		t
Tetrachloroethene	mg/Kg		ND	ND	\vdash		+	ND	+	56.9	\dashv		t
Toluene	mg/Kg				\vdash		\dashv		-	30.3			t
Trichloroethene	mg/Kg		ND	ND	\vdash		\dashv	0.0056	-	ND			t
Xylene (total)	mg/Kg	ND			\vdash	62.6	\dashv	0.0030	-			ND	t
Semivolatile Organics	ing/itg	ND				02.0						ND	1
2,4-Dimethylphenol	mg/Kg		T T	T	П	1	$\overline{}$	1	$\overline{}$				T
2-Chlorophenol	mg/Kg		+		\vdash		\dashv						t
2-Methylnaphthalene	mg/Kg		+		\vdash		\dashv						ł
2-Methylphenol	mg/Kg		+		\vdash		\dashv		-				ł
4-Methylphenol	mg/Kg		 		\vdash		\dashv		-				t
Acenaphthene	mg/Kg		 		\vdash		\dashv						t
Acenaphthylene	mg/Kg		 		\vdash		\dashv						t
Anthracene	mg/Kg		 		\vdash		\dashv						ł
Benzo(a)anthracene	mg/Kg		 		\vdash		\dashv						t
Benzo(a)pyrene	mg/Kg		+		\vdash		\dashv		-				ł
Benzo(b)fluoranthene	mg/Kg		 		\vdash		\dashv						t
Benzo(ghi)perylene	mg/Kg		 		\vdash		\dashv						t
Benzo(k)fluoranthene	mg/Kg		 		\vdash		\dashv						t
Bis(2-ethylhexyl)phthalate	mg/Kg		 		H								t
Butyl benzyl phthalate	mg/Kg		 		\vdash		\dashv						t
Carbazole	mg/Kg		 		\vdash		\dashv						t
Chrysene	mg/Kg		 		\vdash								t
Dibenzo(a,h)anthracene	mg/Kg		 		H								ł
Dibenzofuran	mg/Kg		 		\vdash		十				\dashv		t
Diethyl phthalate	mg/Kg				\vdash								t
Dimethyl phthalate	mg/Kg		 		\vdash								t
Di-n-butyl phthalate	mg/Kg		 		t		_						
Di-n-octyl phthalate	mg/Kg				\vdash								t
Fluoranthene	mg/Kg				\vdash								1
Fluorene	mg/Kg				\vdash		+		\dashv		\dashv		t
Hexachlorobenzene	mg/Kg				\vdash		\dashv				\dashv		1
Hexachlorobutadiene	mg/Kg				\vdash		+		\top		\dashv		t
Indeno(1,2,3-cd)pyrene	mg/Kg				\vdash		+		\dashv		\dashv		t
Naphthalene	mg/Kg	0.026	1010	2400	\vdash	1820	+	0.191	\dashv	181	\dashv	5750	
N-Nitrosodiphenylamine	mg/Kg				\vdash		\dashv		\dashv		\dashv		ł
Pentachlorophenol	mg/Kg		 		\vdash		十				\dashv		ł
Phenanthrene	mg/Kg		 		\vdash		+		+		\dashv		ł
Phenol	mg/Kg		 		\vdash		\dashv		+		\dashv		ł
Pyrene	mg/Kg		 		\vdash		+		+		H		ł

Constituent of Interest	Units	SB-01 08/16/9 15.5-16 Primary	5	SB-03 08/05/96 14.5-15 Primary	SB-04 08/12/90 15-15.5 Primary	;	SB-07 08/16/9 15.5-16 Primary	6 6	SB-09 08/12/9 1.5-2 Primary	6	SB-09 08/12/9 15-15.5 Primary	6	SB-10R 08/16/96 16-16.5 Primary	ô
Polychlorinated Bipheny	ls													
Aroclor 1248	mg/Kg						-							
Aroclor 1254	mg/Kg						1							
Aroclor 1260	mg/Kg						1							
Metals														
Antimony	mg/Kg													
Arsenic	mg/Kg													
Beryllium	mg/Kg													
Cadmium	mg/Kg													
Chromium	mg/Kg													
Copper	mg/Kg													
Lead	mg/Kg													
Mercury	mg/Kg													
Nickel	mg/Kg													
Selenium	mg/Kg													
Silver	mg/Kg													
Thallium	mg/Kg													
Zinc	mg/Kg													
RCRA Characteristics														
Cyanide (Reactivity)	mg/Kg													

Constituent of Interest Volatile Organics	Units	SB-14 08/07/96 18.5-19 Primary		SC-SB- 01/14/9 0-2 Primary	9	SC-SB- 01/14/9 8-10 Primar	9	SC-SB- 01/14/9 16-18 Primary	9	SC-SB- 01/14/9 0-2 Primar	9	SC-SB- 01/14/9 10-12 Primar	9	SC-SB- 01/14/9 16-18 Primar	99 3
1,1,1-Trichloroethane	mg/Kg				П		П				П				\neg
1,2,3-Trichlorobenzene	mg/Kg	0.0919					H		H		+		H		+
1,2,4-Trichlorobenzene	mg/Kg	0.35		0.12	U	0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
1,2,4-Trimethylbenzene		0.00215			۲		۲		۳		H		H		₩
1,2-Dichlorobenzene	mg/Kg	0.0702		0.12	U	0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
1,2-Dichloroethene	mg/Kg				۲		H		۲		H		H		₩
1,3,5-Trimethylbenzene	mg/Kg						Н		H		\forall		Н		+
1,3-Dichlorobenzene	mg/Kg	0.0509		0.12	U	0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
1,4-Dichlorobenzene	mg/Kg	0.0535		0.12	Ŭ	0.4	Ü	0.15	Ü		Ü	0.14	Ŭ	0.12	Ü
2-Butanone	mg/Kg				۲		۲		۳		H		H		₩
Acetone	mg/Kg	0.135			H		H		H		++		Н		+
Benzene	mg/Kg								\vdash		+		Н		+
Carbon tetrachloride	mg/Kg								\vdash		+		Н		+
Chlorobenzene)	0.00349	-		H		Н		\vdash		\dashv		\vdash		+
Chloromethane	mg/Kg		_		\vdash		Н		\vdash		\vdash		\vdash		+
n-Butylbenzene	mg/Kg	ND	-		Н		Н		\vdash		\dashv		\vdash		+
Styrene	mg/Kg		-		Н		Н		\vdash		\dashv		\vdash		+
Tetrachloroethene)						Н		₩		+		Н		+
Toluene	mg/Kg	ND	-		\vdash		Н		\vdash		\varTheta		\vdash		+
	mg/Kg	ND							₩		+		\vdash		┿
Trichloroethene	mg/Kg	ND							₩		+		₩		+
Xylene (total)	mg/Kg				Ш		Ш		Ш		ш		ш		
Semivolatile Organics	/17.		_	0.44	1	4.0	1			0.00	-	0.40	1	0.44	
2,4-Dimethylphenol	mg/Kg			0.41	U	1.3	U	0.5	U		₩.	0.46	U	0.41	U
2-Chlorophenol	mg/Kg			0.41	С	1.3	U	0.5	U		U	0.46	U	0.41	U
2-Methylnaphthalene	mg/Kg			0.11	.	0.4	U	0.15	U		U	0.14	U	0.12	U
2-Methylphenol	mg/Kg			0.41	U	1.3	U	0.5	U		U	0.46	U	0.41	U
4-Methylphenol	mg/Kg			0.41	U	1.3	U	0.5	U	0.32	1	0.46	U	0.41	U
Acenaphthene	mg/Kg			0.24		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Acenaphthylene	mg/Kg			0.13		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Anthracene	mg/Kg			0.57		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Benzo(a)anthracene	mg/Kg			1.5	L	0.2		0.15	U	0.47	U	0.14	U	0.12	U
Benzo(a)pyrene	mg/Kg			0.12	U	0.21		0.15	U		U		С	0	U
Benzo(b)fluoranthene	mg/Kg			2.2		0.3	Ш	0.15	U		U	0.14	U	0.12	U
Benzo(ghi)perylene	mg/Kg			0.2		0.4	U	0.15	U		U	0.14	U	0.12	U
Benzo(k)fluoranthene	mg/Kg			2.2		0.4	U	0.15	U	_	U	0.14	U	0.12	U
Bis(2-ethylhexyl)phthalate	mg/Kg			120		0.29		0.071		0.47	U	0.14	U	0.12	U
Butyl benzyl phthalate	mg/Kg			0.12	U	0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Carbazole	mg/Kg			0.36		0.4	U	0.15	U		U	0.14	U	0.12	U
Chrysene	mg/Kg			6.4		0.2		0.15	U	0.47	U	0.14	U	0.12	U
Dibenzo(a,h)anthracene	mg/Kg			0.45		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Dibenzofuran	mg/Kg			0.16		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Diethyl phthalate	mg/Kg			0.12	U	0.4	С	0.15	U	0.47	U	0.14	U	0.12	C
Dimethyl phthalate	mg/Kg			0.12	U	0.4	U	0.15	U	0.62		0.14	U	0.12	U
Di-n-butyl phthalate	mg/Kg			0.12	U	0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Di-n-octyl phthalate	mg/Kg			190		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Fluoranthene	mg/Kg			3.1		0.4		0.15	U	0.47	U	0.14	U	0.12	U
Fluorene	mg/Kg			0.24		0.4	U	0.15	U	0.47	U	0.14	U	0.12	U
Hexachlorobenzene	mg/Kg			0.12	U	0.4	U	0.15	U		U	0.14	U	0.12	U
Hexachlorobutadiene	mg/Kg			0.12	Ū	0.4	Ū	0.15	Ū		Ū	0.14	Ū	0.12	Ū
Indeno(1,2,3-cd)pyrene	mg/Kg			0.86	П	0.4	Ū	0.15	Ū		Ū	0.14	Ū	0.12	Ū
Naphthalene	mg/Kg	0.0572		0.21	П	0.4	Ū	0.07	Ħ	0.24	Ħ	0.14	Ŭ	0.12	Ū
N-Nitrosodiphenylamine	mg/Kg			0.12	U	0.4	Ŭ	0.15	U	0.47	U	0.14	Ŭ	0.12	Ü
Pentachlorophenol	mg/Kg			2.1	Ü	6.8	Ü	2.6	Ŭ		Ü	2.3	Ŭ	2.1	ΙŬ
Phenanthrene	mg/Kg			2	H	0.23	Η̈́	0.15	Ŭ		Ü	0.14	Ŭ	0.12	ΙŬ
Phenol	mg/Kg			0.41	U	1.3	U	0.5	Ü		Ü	0.46	Ŭ	0.41	Ü
irnenoi •	11111/1511			(141					1 ()	l in	1 () .	1 ()40	1 () ;	(141	

Constituent of Interest	Units	SB-14 08/07/96 18.5-19 Primary	6	SC-SB-15 01/14/99 0-2 Primary	SC-SB-15 01/14/99 8-10 Primary	SC-SB-15 01/14/99 16-18 Primary	SC-SB-16 01/14/99 0-2 Primary	SC-SB-16 01/14/99 10-12 Primary	SC-SB-16 01/14/99 16-18 Primary
Polychlorinated Biphenyls	3								
Aroclor 1248	mg/Kg								
Aroclor 1254	mg/Kg								
Aroclor 1260	mg/Kg								
Metals									
Antimony	mg/Kg								
Arsenic	mg/Kg								
Beryllium	mg/Kg								
Cadmium	mg/Kg								
Chromium	mg/Kg								
Copper	mg/Kg								
Lead	mg/Kg								
Mercury	mg/Kg								
Nickel	mg/Kg								
Selenium	mg/Kg								
Silver	mg/Kg								
Thallium	mg/Kg								
Zinc	mg/Kg								
RCRA Characteristics									
Cyanide (Reactivity)	mg/Kg								

Constituent of Interest Volatile Organics	Units	SB-2A 1992 Fill Primar		SB-2E 1992 Sand Primar		SB-3 <i>A</i> 1992 Fill Primar		SB-3B 1992 Sand Primary		SB-4A 1992 Fill Primar		SB-4E 1992 Sand Primar	
1,1,1-Trichloroethane	mg/Kg	0.013	U	71	ΙυΙ	0.36		1.5	U	0.5		0.46	
1,2,3-Trichlorobenzene	mg/Kg	0.013	U		Н	0.30	+	1.5	Н	0.5	Н	0.40	Н
1,2,4-Trichlorobenzene	mg/Kg	6		71	U	34		260	U	12	U	12	╁┼
1,2,4-Trimethylbenzene	mg/Kg				Н		+	200	Ч		Ч		Н
1,2-Dichlorobenzene	mg/Kg	6.8		9200	Н	400	+	260	U	98	Н	12	╁┼
1,2-Dichloroethene	mg/Kg	0.013	U	71	U	1.4	U	0.79	J	1.5	U	2	U
1,3,5-Trimethylbenzene	mg/Kg		۲		Н	1.4		0.73	٦		Н		Н
1,3-Dichlorobenzene	mg/Kg	3.5		1300	Н	410	+	260	U	12	Н	12	111
1,4-Dichlorobenzene	mg/Kg	3.4		1300	Н	430		260	U	7	Н	12	∺
2-Butanone	mg/Kg	0.013	U	71	U	0.45	+	0.17	U	0.56	Н	2	∺
Acetone	mg/Kg	0.013	0	4.3	Н	1.4	U	1.5	U	0.35	Н	0.41	۲
Benzene	mg/Kg	0.018	U	4.3	H	0.32	۲	0.11	J	0.35	Н	0.41	+
Carbon tetrachloride		0.013	U	71	U	1.4	U	1.5	U		Н	2	IJ
Chlorobenzene	mg/Kg mg/Kg	0.013	U	220		1.4	╀	0.091	J	0.089 5.1	Н	27	۲
Chloromethane	mg/Kg	0.013	U	71	U	1.4	U	0.091	J	0.18	Н	2	╁
n-Butylbenzene	mg/Kg	0.013			쒸	1.4	+	0.33	Н	0.18	Н		╀
Styrene	mg/Kg	0.013	U	71	U	1.4	U	1.5	U	0.12	Н	2	₩
Tetrachloroethene	mg/Kg		Н	71	U	1.4	U	1.5	Н		H	2	쓔
Toluene	mg/Kg	0.003	\vdash	0.96		0.16	Н	1.5	U	0.15 0.21	H	<u>∠</u> 0.16	₩
Trichloroethene	mg/Kg	0.001		0.96	Н	0.16	+	1.3	Ч	0.21	Н	0.10	┿
		0.012	U	71	U	1.4	U	1.5	U	0.15	Н	2	IJ
Xylene (total) Semivolatile Organics	mg/Kg	0.013	U	/ 1	ΙU	1.4	10	1.3	U	0.15			10
2,4-Dimethylphenol	ma/Ka	12	U	120	ΙυΙ	12	ΤυΙ	260	U	12	U	12	Tii
2-Chlorophenol	mg/Kg	13	U	120	Н			260	Ч		Н		۲
	mg/Kg				U		U		U		U		U
2-Methylnaphthalene	mg/Kg	6.6		120	Ч	12	U	260	U	12	Ч	12	۲
2-Methylphenol	mg/Kg				Н				Н		Н		+
4-Methylphenol Acenaphthene	mg/Kg	 2F		120	U		U		U	12	U	12	U
Acenaphthylene	mg/Kg mg/Kg	25 		120	Н	12	Н	260	Н		Н		۲
Anthracene	mg/Kg	90		120	U	12	U	260	U	12	U	12	╁
Benzo(a)anthracene	mg/Kg	87		120	Ü	12	Ü	260	U	12	U	12	U
		82			Ü		Ü	260	U	12	U	12	뜌
Benzo(a)pyrene Benzo(b)fluoranthene	mg/Kg mg/Kg	58		120 120	Ü	12	Ü	260	U	12	U	12	U
Benzo(ghi)perylene	mg/Kg	53		120	Ü	12	Ü		U	12	U	12	뜌
Benzo(k)fluoranthene	mg/Kg				Н		۲	260	Н		Н		屵
Bis(2-ethylhexyl)phthalate	mg/Kg	13	U	120	U	12	U	260	U	12	U	12	U
Butyl benzyl phthalate	mg/Kg		۲		Н		-		Н		Н		₽
Carbazole	mg/Kg	10		120	U	12	U	260	U	12	U	12	╁
Chrysene	mg/Kg	79		120	Ŭ	12	υ	260	U	12	Ü	12	ΙÜ
Dibenzo(a,h)anthracene	mg/Kg				Н		Н		Н		Н		₽
Dibenzofuran	mg/Kg	15		120	U	12	U	260	U	12	U	12	U
Diethyl phthalate	mg/Kg				Н		Н		Н		Н		۲
Dimethyl phthalate	mg/Kg				Н				Н		Н		+
Di-n-butyl phthalate	mg/Kg	13	U	120	U	12	U	260	U	12	U	12	╁
Di-n-octyl phthalate	mg/Kg		۲		Н		Н		Н		Н		۲
Fluoranthene	mg/Kg	200		120	U	12	U	260	U	12	U	12	╁
Fluorene	mg/Kg	33		120	Ŭ	12	Ü	260	Ü	12	Ŭ	12	Ü
Hexachlorobenzene	mg/Kg		H		怡		∺		Н		怡		∺
Hexachlorobutadiene	mg/Kg		H		Н		\vdash		Н		H		+
Indeno(1,2,3-cd)pyrene	mg/Kg	54	H	120	U	12	U	260	U	12	U	12	+
Naphthalene	mg/Kg	5.3	\vdash	120	Ü	12	Ü	260	U	12	U	12	U
N-Nitrosodiphenylamine	mg/Kg	<u> </u>	H		怡		∺		Н		怡		∺
Pentachlorophenol	mg/Kg		H		Н		\vdash		H		H		+
Phenanthrene	mg/Kg	200	H	120	U	12	U	260	U	12	U	12	U
Phenol	mg/Kg		H		怡		H	200	Н		H		H
Pyrene	mg/Kg	190	\vdash	120	U	12	U	260	U	12	U	12	U
i yioilo	ing/itg	190	1	120	U	12	J	200	L^{U}	14	U	14	70

Constituent of Interest	Units	SB-2 <i>F</i> 1992 Fill Primar		SB-2B 1992 Sand Primary		SB-3A 1992 Fill Primar		SB-3B 1992 Sand Primary		SB-4A 1992 Fill Primar		SB-4E 1992 Sand Primar	l
Polychlorinated Biphenyls						,							
Aroclor 1248	mg/Kg	1.3	U	0.039	U	0.038	U	0.042	U	0.041	U	0.066	П
Aroclor 1254	mg/Kg	1.3	U	0.039	U	0.038	U	0.042	U	0.041	U	0.041	U
Aroclor 1260	mg/Kg	1.3	U	0.039	U	0.038	U	0.3	J	0.061		0.041	U
Metals													
Antimony	mg/Kg	24	U	24	U	24	U	24	U	47.5		20.1	
Arsenic	mg/Kg	4.21		4	U	2.53		2.71		41.9		13.2	
Beryllium	mg/Kg	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Cadmium	mg/Kg	8.0	U	0.8	U	0.8	U	8.0	U	4.16		1.9	
Chromium	mg/Kg	36.7		4.45		685		0.39		428		130	
Copper	mg/Kg	23.6		4	U	109		23.2		335		124	
Lead	mg/Kg	270		4.82		53		19.9		647		241	
Mercury	mg/Kg	0.55		0.32	U	0.32	U	0.32	U	0.32	С	0.32	U
Nickel	mg/Kg	9.4		8.1	U	14.6		9.73		51.8		25.5	
Selenium	mg/Kg	2	U	2	U	2	U	2	U	2	С	2	U
Silver	mg/Kg	4	U	4	U	4	U	4	U	4	С	4	U
Thallium	mg/Kg	4	U	4	U	4	U	4	U	4	U	4	U
Zinc	mg/Kg	99.3		14.2		90.6		42.3		3710		1520	
RCRA Characteristics													
Cyanide (Reactivity)	mg/Kg	0.6	U	0.6	U	2.1		0.6	U	0.6	U	0.6	С

TABLE B-7 HISTORICAL ANALYTICAL RESULTS TEST PIT SUBSURFACE SOIL SAMPLES (1993) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	Units	TP-1 05/01/93 4 Primary	TP-2 05/01/9 1.5 Primary	TP-3 05/01/93 2 Primary	3	TP-4 05/01/9 2 Primary	TP-5 05/01/93 6 Primary	TP-6 05/01/93 2.5 Primary	3	TP-7 05/01/99 2 Primary	TP-8 05/01/93 3 Primary	
Metals												
Chromium	mg/Kg	31900	1740	26300		34900	33100	30400		32100	32600	

HISTORICAL ANALYTICAL RESULTS GROUNDWATER - FILL UNIT MONITORING WELLS (1991) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of	Units	SC-MW-11 01/12/91	U	SC-MW-12 01/12/91	:U	SC-MW-13 01/12/91	U	SC-MW-14 01/12/91	U	SC-MW-15 01/12/91	
Interest		Primary		Primary		Primary		Primary		Primary	
Volatile Organics		,		,						,	
1,2-Dichloroethene	ug/L	174	П	100	U	1.6	U	1.6	U	1.6	Τυ
Benzene	ug/L	353		100	U	4.4	U	4.59		4.4	U
Chlorobenzene	ug/L	796		100	U	6	U	6	U	6	U
Chloromethane	ug/L	200	U	200	U	10	U	10	U	10	U
Dichlorodifluoromethane	ug/L	200	U	200	U	10	U	10	U	10	U
Ethylbenzene	ug/L	140	U	100	U	7.2	U	51.1		7.2	U
Methylene chloride	ug/L	56	U	101		2.8	U	2.8	U	2.8	U
Tetrachloroethylene	ug/L	96.7		100	U	4.1	U	4.1	U	4.1	U
Toluene	ug/L	120	U	100	U	6	U	20.7		6	U
Trichloroethylene	ug/L	96		100	U	1.9	U	1.9	U	1.9	U
Vinyl chloride	ug/L	200	U	200	U	10	U	10	U	10	U
Semivolatile Organics											
1,2,4-Trichlorobenzene	ug/L	5400		128		166		41.8		2.1	U
1,2-Dichlorobenzene	ug/L	5250		145		74.2		5.2		140	
1,3-Dichlorobenzene	ug/L	892		65.9		25.4		4.1		78.6	
1,4-Dichlorobenzene	ug/L	1910		141		51.7		9.56		109	
2,4,6-Trichlorophenol	ug/L	2.9	U	15.5		3	U	3	U	3	U
2,4-Dichlorophenol	ug/L	2.9	U	3	U	3	U	3	U	3	U
2,4-Dimethylphenol	ug/L	1830		33.7		808		53.3		3	U
2-Chlorophenol	ug/L	3.6	U	3.7	U	3.7	U	3.7	U	3.6	U
Acenaphthene	ug/L	22.4		117		25.5		238		2.1	U
Acenaphthylene	ug/L	3.8	U	8.7		3.9	U	6.88		3.8	U
Anthracene	ug/L	9.66		3.63		2.1	U	4.2		2.1	U
Bis(2-chloromethyl)ether	ug/L	200	U	200	U	10	U			10	U
Bis(2-ethylhexyl)phthalate	ug/L	11	U	11	U	11	U	11	U	588	
Fluoranthene	ug/L	2.4	U	4.26		2.5	U	2.4	U	2.4	U
Fluorene	ug/L	19.3		39.7		2.9		57.8		2.1	U
Hexachlorobenzene	ug/L	2.1	U	2.1	U	2.1	U	2.1	U	2.1	U
Naphthalene	ug/L	9660		426		5020		6540		1.8	U
Phenanthrene	ug/L	15.9		41.1		6.1	U	27		5.9	U
Phenol	ug/L	445		6.62		19300		1.7	U	1.6	U
Pyrene	ug/L	2.1	U	2.1		2.1	U	2.1	U	2.1	U
Metals											
Antimony	ug/L	390	Ш	60	U	62		180		110	
Arsenic	ug/L	130		10	U	10	U	35		24	┸
Beryllium	ug/L	2.6		1	U	1	U	1.9		3.1	
Cadmium	ug/L	14	Ш	5.5		2	U	7.6		8.1	
Chromium (Total)	ug/L	6640	Ш	2300	Ш	7150	$oxed{oxed}$	20300		4200	丄
Chromium (Hexavalent)	ug/L	50	U	81		7380		3320		88	<u> </u>
Copper	ug/L	900	Ш	77		22		230	<u> </u>	260	丄
Cyanide	ug/L	197	Ш	25	U	25		31		25	U
Lead	ug/L	12500	Ш	600	Ш	75	U	2600		44900	丄
Mercury	ug/L	142	Ш	1.4		0.33		34.7		0.87	
Nickel	ug/L	480	Ш	220		29		360		130	
Selenium	ug/L	25	U	5	U	5	U	25	U	25	U
Silver	ug/L	10	U	10	U	10	С	10	U	10	U
Thallium	ug/L	10	U	10	U	10	U	10	U	10	U
Zinc	ug/L	550	$oxed{oxed}$	220		28		640		620	

TABLE B-9 HISTORICAL ANALYTICAL RESULTS GROUNDWATER - FILL UNIT PIEZOMETERS (1983) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of	Units	SC-PZ-1 01/01/8		SC-PZ-2 01/01/8		SC-PZ-3 01/01/8		SC-PZ-4 01/01/8		SC-PZ-5 01/01/8	
Interest		Primary	,								
Volatile Organics											
1,1,2-Trichloroethane	ug/L	10	U	10	U	10	U	10	U	5	U
1,1-Dichloroethene	ug/L	10	U	10	U	10	U	10	U	5	U
1,2-Dichloroethene	ug/L	10	U	10	U	10	U	10	U	5	U
Benzene	ug/L	10	U	10	U	65		10	U	190	
Chlorobenzene	ug/L	10	U	1500		55		93000		450	
Ethylbenzene	ug/L	10	U	10	U	10	U	10	U	5	U
Tetrachloroethylene	ug/L	10	U	10	U	25		10	U	5	U
Toluene	ug/L	10	U	10	U	10	U	10	U	5	U
Trichloroethylene	ug/L	10	U	10	U	35		10	U	5	U
Xylene (total)	ug/L	10	U	10	U	55		10	U	5	U
Semivolatile Organics											
1,2,4-Trichlorobenzene	ug/L	10	U	10	U	10	U	10	U	10	
1,2-Dichlorobenzene	ug/L	10	U								
1,2-Diphenylhydrazine	ug/L	10	U								
1,3-Dichlorobenzene	ug/L	10	U								
1,4-Dichlorobenzene	ug/L	10	U	10	U	10	U	10		10	U
Acenaphthene	ug/L	10	U	10	U	540		10		10	С
Anthracene	ug/L	10	U	10	U	630		10		10	U
Bis(2-ethylhexyl)phthalate	ug/L	10	U	10	U	10	U	22		12	
Dimethyl phthalate	ug/L	10	U	10	U	10		10	U	10	U
Di-n-butyl phthalate	ug/L	10	U	10	U	10	C	10	U	10	U
Fluoranthene	ug/L	10	U	10	U	86		10	U	10	U
Fluorene	ug/L	10	U	10	U	570		10	U	10	U
Naphthalene	ug/L	10	U	10	U	10	U	510		10	U
Phenanthrene	ug/L	10	U	10	U	170		10	U	10	U
Metals											
Chromium (Total)	ug/L	0.05	U	7.7		0.29		101.7			
Chromium (Hexavalent)	ug/L	0.1	U	0.1	U	0.1	U	97			
Indicator Parameters											
рН	SU	8.4		9.3		8.8		11.4		11.4	
Specific Conductance	umhos	1050		5000		2450		5000		5000	

TABLE B-10 HISTORICAL ANALYTICAL RESULTS GROUNDWATER - SAND UNIT MONITORING WELLS (1991 - 1999) STANDARD CHLORINE SITE

Constituent		SC-MW-10	ol I	SC-MW-10)L	SC-MW-11	LI	SC-MW-12	L I	SC-MW-12	PL I	SC-MW-13	st T	SC-MW-14	LL T	SC-MW-14L		SC-MW-15	5L	SC-MW-15	5L T	SC-MW-16L	SC-	-MW-17	L T	SC-MW-	1L T	SC-MW-2L
of	Units	01/12/91	-	09/30/92		01/12/91	-	01/12/91	-	09/30/92		01/12/91	´-	01/12/91	_	09/30/92	-	01/12/91		09/30/92		02/02/99		2/02/99	-	01/12/9		01/12/91
Interest		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		rimary		Primar		Primary
Volatile Organics		,	<u> </u>							,			-		<u> </u>	,		,			<u> </u>	,		, ,				
1.2-Dichloroethene	ug/L	16	Tul	25	Tul	32	ΙυΙ	40	υI	100	U	32	ΙυΙ	1.6	Tul	20	υT	160	Tul	250	ΙυΙ		$\overline{}$		\Box	1.6	Tul	40 U
Acetone	ug/L		1	310					Ť	100	Ū				Ħ		ŭ			250	Ū						11	
Benzene	ug/L	108	11	160	\vdash	467	П	337	Н	260	П	118	П	131	\vdash	140	\dashv	3010	П	1700	Ħ					4.4	lul	190
Carbon disulfide	ug/L		T	25	ΙυΙ		П		Н	100	U		П		\vdash	25	一		\Box	250	ΙυΙ						11	
Chlorobenzene	ug/L	111	\Box	140	H	1110	П	743	П	400	H	200	П	134	\vdash	48	_	1830	П	1200	Ħ					6	U	882
Chloromethane	ug/L	100	U			200	U	250	U		П	267	П	10	lul			1000	U							10	Ü	250 U
Dichlorodifluoromethane	ug/L	100	ΙŪ		\vdash	200	Ū		Ū		П	200	U	10	ΙŬ			1000	ΙŬ							10	ΙŪ	250 U
Ethylbenzene	ug/L	72	Ū	73	T	140	Ū	240		100	П	140	Ū	21.1	H	55	一十	720	Ū	250	U					7.2	Ü	180 U
Methylene chloride	ug/L	38.9	В	28	T	73.3			U	46	J	56	ΙŬ	2.8	ΙυΙ		в	289	Ū	190	ij					2.8	Ü	81.4
Styrene	ug/L		\dagger	25	ΙυΙ		П			92	ij				H				+ +		+ +						11	
Tetrachloroethylene	ug/L	41	ΙυΙ	25	Ü	82	U	100	U	16	Ĵ	82	ΙυΙ	74.1	\vdash	24	\neg	410	U	250	U					4.1	U	100 U
Toluene	ug/L	108	+ +	150	╁	120	Ü	1290	۲	770	Ť	120	Ū	115	H	200	_	600	Ü	250	Ū					6	Ü	150 U
Trichloroethylene	ug/L	19	Ιυ	25	u	173		108	H	52	IJ	79	Ť	121	\vdash	71	十	190	ΙŪ	250	Ü					1.9	ΙŬ	48 U
Vinyl chloride	ug/L	100	ΙŬ	25	ΙŬ	200	υl	250	U	100	ΙŬ	200	ΙυΙ	10	ul		U	1000	ΙŬ	250	ΙŬ		_		\vdash	10	TÜ	250 U
Xylene (total)	ug/L		+-+	400	 				┪	600	 					200	1		 	250	ΙŬ				\vdash		+++	
Semivolatile Organics	<u> </u>																				1 - 1							
1,2,4-Trichlorobenzene	ug/L	21	ΤυΙ	620	ΙUΙ	6070	П	1520	П	5600	П	3520	П	14000	П	26000	Т	81.2	П	190	IJ	50	Ul ·	17		2.1	ΙυΙ	89.6
1,2-Dichlorobenzene	ug/L	156	+ 1	640	H	6650	П	5290	Н	12000	П	771	П	2780	\vdash	2100	一	20600	\Box	33000	+ +	330	_	2000		2.58	11	19600
1,3-Dichlorobenzene	ug/L	60.4	\Box	620	ΙυΙ	1570	П	1130	Н	2800	П	239	П	2650	H	1900	_	15200	H	21000		460		400		2.1	U	18500
1,4-Dichlorobenzene	ug/L	110	1 1	380	J	2310	\Box	2560	H	5400	Н	497	Н	4610	\vdash	2700	_	19500	\Box	33000		540	_	000		4.8	Ü	21900
2,4,5-Trichlorophenol	ug/L		1 1		 		Н		Н		Н		Н		\vdash		\neg		\Box		\vdash		_	50	U		+ +	
2,4,6-Trichlorophenol	ug/L	30	ΙυΙ	620	u	59	υl	150	U	2600	U	32	u	150	υl	560	u	3	lul	560	ΙυΙ		_	10	Ū	2.9	U	3.3 U
2,4-Dichlorophenol	ug/L	30	ΙŬ	620	Ü	59	Ü		Ü	2600	ΙŬ	32	ΙŬ	150	ΙŬ		ΰl	321	╎	350	Ĵ			6	J	2.9	ΙŬ	99
2,4-Dimethylphenol	ug/L	25900	╫	31000	l J l	1180	╎	20900	۲	38000	╫	22800	╎	17500	╎	18000	┭	3	lul	560	ΙŬ		_		Ŭ	2.9	Ü	3.82
2,4-Dinitrophenol	ug/L		1 1		╫		\Box		Н		Н		Н		\vdash		十		╫		╫		_		Ū		+	
2,4-Dinitrotoluene	ug/L		1 1				\Box		Н		Н		\Box		\vdash		\dashv		\Box		1			10	Ū		11	
2,6-Dinitrotoluene	ug/L		\Box				\Box		Н		Н		Н		\vdash		\dashv		\Box		1 1			10	Ū		11	
2-Chloronaphthalene	ug/L		1 1		\vdash		\Box		Н		Н		Н		\vdash		十		\Box		\vdash			10	Ü			
2-Chlorophenol	ug/L	36	ΙυΙ	620	lul	73	u	180	U	2600	U	39	ΙυΙ	190	u	560	U	63.3	\Box	58	1.1			25	Ť	3.6	U	4 U
2-Methylnaphthalene	ug/L		╫	960					H	1500	J				╎	770	┪		\Box	560	Ü			10	U		╅	
2-Methylphenol	ug/L		\Box	58000			\Box		Н	38000	╎		Н		\vdash	14000	十		\Box	560	Ü			10	Ū		++	
2-Nitroaniline	ug/L		1 1		\vdash		\Box		Н		H		Н		\vdash		\dashv		\Box		╫				Ü		+	
2-Nitrophenol	ug/L		1 1				\Box		Н		Н		\Box		\vdash		\dashv		\Box		1				Ü		11	
3,3-Dichlorobenzidine	ug/L		\Box		\vdash		Н		Н		Н		Н		\vdash		\dashv		\Box		\vdash		_		Ū		++	
3-Nitroaniline	ug/L		\Box		\vdash		Н		Н		Н		Н		\vdash		\dashv		\Box		\vdash		_	50	Ū		+ +	
4,6-Dinitro-2-methylphenol	ug/L		1 1		t		\Box		Н		Н		Н		\vdash		\dashv		H		+		_		Ü		+	
4-Bromophenylphenyl ether	ug/L		T		\vdash		Н		Н		Н		Н		\vdash		\dashv		\Box		\vdash			10	Ü			
4-Chloroaniline	ug/L		╁┼		+		\vdash		H		\Box		\Box		\vdash		十		+		+			10	Ü		++	
4-Chlorophenyl phenyl ether	ug/L		+ +		+		\vdash		H		+		\vdash		\vdash		十		+		+		_	10	Ü		++	
4-Chloro-3-methylphenol	ug/L		+		+		\vdash		Н		1 1		\vdash		\vdash		\dashv		+ +		+		_		Ü		++	
4-Methylphenol	ug/L		+	200000	\vdash		\vdash		Н	140000	H		\vdash		\vdash	48000	\dashv		+	560	ΙυΙ			10	Ü		++	
4-Nitroaniline	ug/L		+ +		++		\vdash		Н		1 1		\vdash		\vdash		十		+ +		╁		_	50	Ü		++	
4-Nitrophenol	ug/L		╫		++		\vdash		Н		┥		\vdash		\vdash		+		╅		┰		_		Ü		++	
Acenaphthene	ug/L	33.7	+ +	620	U	42	U	104	Н	2600	U	308	\vdash	110	U	180	\dashv	2.1	1,,	560	U				Ü	2.1	1,,	6.43
Acenaphthylene	ug/L	38	U	620	ΙŬ	77	Ü		U	2600	ΙŬ	41	U	200	υ		U	3.9	ऻग़ऻ	560	ΙÜ		_		Ü	3.8	111	4.2 U
Anthracene	ug/L	21	Ü	620	ΙŬ	42	Ü		Ü	2600	ΙŬ	22	Ü	110	Ü		ΰl	2.1	눼	560	ΙÜ		_		Ü	2.1	ΙŬ	2.3 U
Benzo(a)anthracene	ug/L ug/L		╁┦		╎		╒		H		╒		╎		╎			<u> </u>	╁		╁				U	Z. I 	+	2.3 U
Benzo(a)pyrene	ug/L		╁		\vdash		\vdash		Н		┥		\vdash		\vdash		+		+		+				Ü		++	
Benzo(b)fluoranthene	ug/L ug/L		╁┼	<u></u>	\vdash		$\vdash \vdash$		$\vdash \vdash$		┥		\vdash		\vdash		+		+ +	<u></u>	++				U		++	
Benzo(ghi)perylene	ug/L ug/L		╫		\vdash		$\vdash \vdash$		$\vdash \vdash$		↤		\vdash		\vdash		+	<u></u>	┥┤		$\vdash \vdash$		_	10	U		++	
			╫		\vdash		 		Н		┥		\vdash		\vdash	-	+		┨		╁┼			10	U		++	
Benzo(k)fluoranthene	ug/L		ш		$oldsymbol{oldsymbol{\sqcup}}$		$\sqcup \bot$		ш		$\perp \perp$		ш		$\perp \perp$				$\perp \perp$		ш	ου <u> </u>	<u> </u>	IU				

TABLE B-10 HISTORICAL ANALYTICAL RESULTS GROUNDWATER - SAND UNIT MONITORING WELLS (1991 - 1999) STANDARD CHLORINE SITE

Constituent		SC-MW-1	0L	SC-MW-10)L	SC-MW-11	L	SC-MW-12	L	SC-MW-12	L	SC-MW-13	L	SC-MW-14	IL	SC-MW-14	L	SC-MW-15	L	SC-MW-15	iL	SC-MW-16L	SC-M	W-17L	L	SC-MW-1	L	SC-MW-2L	٦
of	Units	01/12/91	1	09/30/92		01/12/91		01/12/91		09/30/92		01/12/91		01/12/91		09/30/92		01/12/91		09/30/92		02/02/99	02/0	2/99		01/12/91		01/12/91	
Interest		Primary	,	Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary	Prin	nary		Primary		Primary	
Semivolatile Organics (Cont'd)																•												-	1
Bis(2-chloroethoxy)methane	ug/L																					50 U	10		U				1
Bis(2-chloroethyl)ether	ug/L				П						П		П		П		П		П		П	50 U	10		U				1
Bis(2-chloromethyl)ether	ug/L	100	U		П	200	U	250	U		П	200	U	10	U		П	1000	U		П	50 U	10		U	10	U	250 l	IJ
Bis(2-ethylhexyl)phthalate	ug/L	110	U	620	U	220	U	540	U	2600	U	120	U	560	U	560	U	11	U	560	U	50 U	10		U	11	U	12 l	Л
Butyl benzyl phthalate	ug/L																					50 U	10		U				
Carbazole	ug/L																					50 U	10		U				
Chrysene	ug/L																					50 U	10		U				1
Dibenzo(a,h)anthracene	ug/L																					50 U	10		U				
Dibenzofuran	ug/L			620	U					2600	U					69	J			560	U	50 U	10		U				
Diethyl phthalate	ug/L																					50 U	10		U				
Dimethyl phthalate	ug/L																					50 U	10		U				
Di-n-butyl phthalate	ug/L																					50 U	10		U				
Di-n-octyl phthalate	ug/L															-						50 U	10		U				
Fluoranthene	ug/L	24	U	620	U	48	U	120	U	2600	U	26	U	120	U	560	U	2.4	U	560	U	50 U	10		U	2.4	U	2.7 L	J
Fluorene	ug/L	21	U	620	U	42	U	100	U	2600	U	22	U	110	U	32	J	2.1	U	560	U	50 U	10		U	2.1	U	5.51	
Hexachlorobenzene	ug/L	21	U	620	U	42	U	100	U	2600	U	22	U	110	U	560	U	2.1	U	560	U	50 U	10		U	2.1	U	2.3 L	J
Hexachlorobutadiene	ug/L																					50 U	10		U				1
Hexachlorocyclopentadiene	ug/L				П						П		П		П		П		П		П	50 U	10		U				1
Hexachloroethane	ug/L																					50 U	10		U				
Indeno(1,2,3-cd)pyrene	ug/L																					50 U	10		U				
Isophorone	ug/L				П						П		П		П		П		П		П	50 U	10		U				1
Naphthalene	ug/L	4990		2400	П	7150		11700		19000	П	16400	П	5020	П	6400	П	20.4	П	560	U	6 J	12			1.7	U	111	1
Nitrobenzene	ug/L																					50 U	10		U				
N-Nitrosodiphenylamine	ug/L																					50 U	10		U				
N-Nitrosodipropylamine	ug/L																					50 U	10		U				
Phenanthrene	ug/L	59	U	620	U	120	U	290	U	2600	U	64	U	300	U	560	U	6	U	560	U	50 U	10		U	5.9	U	6.5 L	J
Phenol	ug/L	16	U	230000		19100		42600		91000		210000		33500		31000		783		280	J	50 U	10		U	1.6	U	73.5	_
Pyrene	ug/L	21	U	620	U	42	U	100	U	2600	U	22	U	110	U	560	U	2.1	U	560	U	50 U	10		U	2.1	U	2.3 L	J
Metals																													
Antimony	ug/L	60	U			60	U	60	U			190		60	U			60	U							60	U	60 L	J
Arsenic	ug/L	50	U			66		50	U			100	U	50	U			10	U							50	U	47	
Beryllium	ug/L	17				3		2.8				33		5.4				1	U							1.4		1 l	<u>J</u>
Cadmium	ug/L	4	U			13		10		-		170		21				10								2	U	2 l	J
Chromium (Total)	ug/L	4900		1290	\coprod	1160		170		118	\Box	67300	\coprod	900	\Box	272	oxdot	23	\Box	18.1	oxdot					1870	\coprod	39	╛
Chromium (Hexavalent)	ug/L	50	U			10	U	10	U			50	U	10	U			10	U							50	U	50 l	J
Copper	ug/L	51				37		19				350		58				21								26		15]
Cyanide	ug/L	67			\prod	55		70				25	U	73				25	U							34	\coprod	25 l	J
Lead	ug/L	140		3.79		340		75	U	8.52		350		110		21.2		820		848						75	U	75 l	J
Mercury	ug/L	0.2	U			0.41		0.23				0.2	U	0.23				0.2	U							0.2	U	0.2 l	J
Nickel	ug/L	930				460		300				2950		510				20	U							27		20 l	J
Selenium	ug/L	25	U			5	U	50	U			25	U	5	U			25	U							25	U	5 l	J
Silver	ug/L	10	U		$\Box \top$	10	U	10	U			10	U	10	U			10	U							10	U	10 l	Ţ
Thallium	ug/L	10	U		$\Box \Box$	10	U	10	U			10	U	10	U			10	U							10	U	10 l	<u>J</u>
Zinc	ug/L	1300				540		310				2530		490				54								37		20 l	IJ

TABLE B-10 HISTORICAL ANALYTICAL RESULTS GROUNDWATER - SAND UNIT MONITORING WELLS (1991 - 1999)

STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent	Unita	SC-MW-2		SC-MW-		SC-MW-3		SC-MW-4		SC-MW-4		SC-MW-5		SC-MW-5		SC-MW-61	L	SC-MW-7		SC-MW-8	L	SC-MW-8		SC-MW-9		SC-MW-9L
Of Interest	Units	09/30/92		01/12/9		09/30/92		01/12/91		09/30/92		01/12/91		09/30/92		01/12/91		01/12/91		01/12/91		09/30/92		01/12/91		09/30/92
Interest		Primary		Primar	у	Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary		Primary	_	Primary
Volatile Organics	1/1	50	11	4.0	1	100	1 1	400	1 1	050	1 1	40	1 1	50	1 1	4.0	1 1	40	1	044	1	400	1 .	2.0	1	00 1
1,2-Dichloroethene	ug/L	50 50	U U	1.6	U	100 100	U	160	U	250 250	U	40	101	50 50	U	16	U	40	U		\vdash	190 500	J	3.2	ĮΨ	82 J 500
Acetone	ug/L		14	4.4	U		1 4	 E10	+			110	++		_	 F24	Н	 E01	+	200	\vdash				++	
Benzene	ug/L	55	 	4.4	- 10		J	519	+	250	J	110	14	23	J	534	↤	501	+	388	\vdash	430	J	31.1	₩	85 J
Carbon disulfide	ug/L	50	U		_	100	U	4000	+	250	U		+	50	U		 	450	 		┨	500	U		+	50 J
Chlorobenzene	ug/L	380	+	65.1	- 	1100	+	1230	+	300	Н	414	++	310	+	60	U	150	Į U	3060	 	5200	\vdash	12	181	50 J
Chloromethane	ug/L		++	10	U		+	1000	U		\vdash	250	101		+	100	U	250	U	500	U		Н	20	181	
Dichlorodifluoromethane	ug/L		 	10.6	-		١	1000	U		╀	250	<u> U </u>		+	100	U	250	Įυ	500	U		I	20	U	
Ethylbenzene	ug/L	50	ΙUΙ	7.2	U		U	720	U	52	J	180	U		U	309	┰	243	\perp	360	U	500	U	14	10	50 J
Methylene chloride	ug/L	25	J	2.8	U	65	J	415	\sqcup	180	J	70	101	56	В	38.8	В	79.8	Ш	223	В	420	J	5.6	10	32 J
Styrene	ug/L		\sqcup				\bot		Ш		Ш		\sqcup		\bot		Ш		Ш		Ш		Ш		\bot	
Tetrachloroethylene	ug/L	50	U	4.1	U		U	410	U	250	U	100	U	50	U	41	U	100	U	1590	Ш	2000		8.2	U	40 J
Toluene	ug/L	6	J	6	U		J	600	U	210	J	150	U	50	U	912	Ш	1190	Ш	300	U	500	U	14.6	Ш	50 U
Trichloroethylene	ug/L	50	U	1.9	U	100	U	190	U	40	J	48	U	50	U	19	U	48	U	5270		5600		3.8	U	50 U
Vinyl chloride	ug/L	50	U	10	U	100	U	1000	U	250	U	250	U	50	U	100	U	250	U	669		350	J	20	U	50 U
Xylene (total)	ug/L	50	U			100	U			95	J			50	U							120	J			47 J
Semivolatile Organics																										
1,2,4-Trichlorobenzene	ug/L	140	J	127		62	J	107		120	J	21	U	62	U	10	U	22	U	14400	П	12000		110	TUT	5600 U
1,2-Dichlorobenzene	ug/L	13000		30300		11000	\top	28100	П	9600	П	9650		5100	11	10	U	1570		13800	П	16000		110	U	5600 U
1,3-Dichlorobenzene	ug/L	9800		24600		7500	\top	26900	П	8000	П	6030	\Box	3000	\top	10	U	152		12500	П	15000		110	U	5600 U
1,4-Dichlorobenzene	ug/L	14000		29500		11000	\top	29200	\Box	11000	П	10400	\Box	4900	\top	24	ΙυΙ	279	П	12300	П	18000	H	250	Tul	5600 U
2,4,5-Trichlorophenol	ug/L		T				\top		\Box		П		\top		\top		Ħ		T		Н		H		\vdash	
2,4,6-Trichlorophenol	ug/L	560	U	3.2	U	530	U	16	U	530	U	29	U	62	U	15	ΙυΙ	31	U	66	Ιυ	670	U	160	tut	5600 U
2,4-Dichlorophenol	ug/L	180	IJ	145	╅	120	J	77.3	╫	530	Ū	142	╅	190	╅	15	ΙŬ	31	ΙŬ		ΙŬ	670	Ü	160	tül	5600 U
2,4-Dimethylphenol	ug/L	560	lŭl	3.2	U		Ŭ	5400	\top	3200	╎	29	lul	62	Tu	28500	╎	83200	╁	581	╫	920	۲	7930	⇈	6800
2,4-Dinitrophenol	ug/L		╫		╅		╅		+		Н		╁		╅		Н		\vdash		Н		\vdash		+	
2,4-Dinitrotoluene	ug/L		+		_		+		+		Н		+ +		+		\vdash		\vdash		Н		Н		+	
2,6-Dinitrotoluene	ug/L		+ +				+		+		Н		+ +		+		↤		\vdash		┨		Н		+	
2-Chloronaphthalene	ug/L		+		+		+		+		Н		+		╫		$\vdash \vdash$		\vdash		┨		Н		+	
2-Chlorophenol	ug/L ug/L	58	+ +	3.9	U		U	20	U	530	U	36	lul	25	+	18	Ш	38	U		U	670	U	190	U	5600 U
2-Methylnaphthalene	ug/L ug/L	560	111		- 10	530	Ü		╀	530	Ü		╀┦	62	Ü		Н		1		۲	150	J		₩	5600 U
2-Methylphenol		670	╀		-	530	U		+	570	H		╫	62	U		↤		\vdash		┨	450	J		₩	18000
2-Nitroaniline	ug/L		+		_		+		+		Н		+		+		\vdash		\vdash		\vdash		٦		₩	
	ug/L		++				+		+		Н		+		+		Н		+		\vdash		Н		+	
2-Nitrophenol	ug/L		++				+		+		\vdash		+		+		\vdash		\vdash		\vdash		Н		₩	
3,3-Dichlorobenzidine	ug/L		++		_		+		+		$\vdash\vdash$		+		+		₩		\vdash		┥		Н		₩	
3-Nitroaniline	ug/L		++		_		+		+		Н		+		+		Н		+		\vdash		Н		+	
4,6-Dinitro-2-methylphenol	ug/L		++				+		+		\vdash		+		+		\vdash		\vdash		\vdash		Н		+	
4-Bromophenylphenyl ether	ug/L		+		_		+		+		$\vdash \vdash$		+		+		₩		\vdash		\vdash		Ш		₩	
4-Chloroaniline	ug/L		\vdash				+		+		Н		\vdash		+		Н		\vdash		\vdash		ш		₩	
4-Chlorophenyl phenyl ether	ug/L		\vdash				\perp		\perp		ш		\perp		\bot		ш		\perp		\sqcup		Ш		+	
4-Chloro-3-methylphenol	ug/L						\perp		\sqcup		Ш		\vdash		\perp		Н		ш		\sqcup		Ш		ightarrow	
4-Methylphenol	ug/L	560	ΙUΙ			530	U		Ш	710	Ш		\sqcup	62	U		Ш		Ш		Ш	1700	Ш		\bot	170000
4-Nitroaniline	ug/L		\sqcup				Ш		Ш		Ш		$\perp \perp$				Ш				Ш				Ш	
4-Nitrophenol	ug/L		\sqcup				Ш		Ш		Ш		Ш		\perp		Ш		Ш		Ш		Ш		Ш	
Acenaphthene	ug/L	560	U	2.2	U		U	11	U	530	U	21	U	62	U	264	\sqcup	548	Ш	46	U	670	U	2910	$oldsymbol{ol}}}}}}}}}}}}}}}}$	5600 U
Acenaphthylene	ug/L	560	U	4.1	U		U	21	U	530	U	38	U	62	U	52.9	Ш	96.3		85	U	670	U	200	U	5600 U
Anthracene	ug/L	560	U	2.2	U	530	U	11	U	530	U	21	U	62	U	23.4		69.3		46	U	670	U	110	U	5600 U
Benzo(a)anthracene	ug/L																								ፗŢ	
Benzo(a)pyrene	ug/L						П		П				\Box				П				П				П	
Benzo(b)fluoranthene	ug/L		П				П		П		П		П		П		П		П		П				П	
Benzo(ghi)perylene	ug/L		\sqcap				\Box		\Box		П				\top		\Box		П		П		П		\sqcap	
Benzo(k)fluoranthene	ug/L		1 1				1		\top		П		1 1		11		П		П		П		П		\Box	

HISTORICAL ANALYTICAL RESULTS

GROUNDWATER - SAND UNIT MONITORING WELLS (1991 - 1999) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent	1 1	SC-MW-2	L T	SC-MW-	-3L	SC-MW-3	L	SC-MW-4	IL I	SC-MW-4	IL I	SC-MW-5	LT	SC-MW-5	L	SC-MW-6L		SC-MW-7	L	SC-MW-8	L	SC-MW-8	L	SC-MW-9	L	SC-MW-9L
of	Units	09/30/92		01/12/9		09/30/92		01/12/9		09/30/92		01/12/91		09/30/92		01/12/91	-	01/12/91		01/12/91	-	09/30/92		01/12/91		09/30/92
Interest		Primary	'	Primar		Primary		Primary		Primary		Primary		Primary	' I	Primary		Primary		Primary		Primary	•	Primary		Primary
Semivolatile Organics (Cont'd)		Tilliary		Timu	,	Timiary		1 minut		Timary		i iiiiai y	_	1 milary		i iiiiai y		1 minuty		1 milary		Timiary		1 minury		1 milary
Bis(2-chloroethoxy)methane	ug/L		П		\Box		П		т		П		П		П		П		П		П		Т		П	
Bis(2-chloroethyl)ether	ug/L						П				П		П		П		П		П		П					
Bis(2-chloromethyl)ether	ug/L			10	U		П	1000	U		\Box	250	U		П	100	U	250	U	500	U			20	U	
Bis(2-ethylhexyl)phthalate	ug/L	560	U	12	U	530	U	60	U	530	U	110	U	62	U	11100	П	110	U	240	U	670	U	570	U	5600 U
Butyl benzyl phthalate	ug/L						П												П							
Carbazole	ug/L		П		П		П		\Box		\Box		П		П		П		П		П					
Chrysene	ug/L				\Box		П		\top		\top		П		П		П		П		П					
Dibenzo(a,h)anthracene	ug/L				\Box		П		\Box				П		П		П		П		П					
Dibenzofuran	ug/L	560	U			530	U			530	U			62	U				П			670	U			5600 U
Diethyl phthalate	ug/L				\top		П		\top		\Box		П		П		П		П		П					
Dimethyl phthalate	ug/L		\sqcap		$\neg \neg$		\sqcap		\top		\sqcap		\sqcap		\sqcap		П		П		П					
Di-n-butyl phthalate	ug/L				\sqcap		\Box		\top		\top		\Box		П				П		П					
Di-n-octyl phthalate	ug/L						П												П							
Fluoranthene	ug/L	560	ΙυΙ	2.6	U	530	U	13	Tul	530	U	24	υl	62	U	12	U	29.7	П	54	U	670	U	130	U	5600 U
Fluorene	ug/L	560	ΙυΙ	2.2	U	530	U	11	U	530	U	21	U	62	U	136	П	303	П	46	U	670	U	110	U	5600 U
Hexachlorobenzene	ug/L	560	U	2.2	U	530	U	11	U	530	U	21	U	62	U	10	U	22	U	46	U	670	U	110	U	5600 U
Hexachlorobutadiene	ug/L				11		П		\Box		\Box		П		П		П		П		П					
Hexachlorocyclopentadiene	ug/L		\Box		\top		П		\top		\Box		П		П		П		П		П					
Hexachloroethane	ug/L						П				П		П		П		П		П		П					
Indeno(1,2,3-cd)pyrene	ug/L		П		П		П		\Box		П		П		П		П		П		П					
Isophorone	ug/L				\Box		П		\top		\top		П		П		П		П		П					
Naphthalene	ug/L	560	U	55.8	\Box	530	U	70.8	\Box	68	J	19.6	П	62	U	12700	П	23700	П	4970	П	7200		58200		5600 U
Nitrobenzene	ug/L						П												П							
N-Nitrosodiphenylamine	ug/L				\Box		П		\Box		П		П		П		П		П		П					
N-Nitrosodipropylamine	ug/L				\Box		П		\top		\top		П		П		П		П		П					
Phenanthrene	ug/L	560	U	6.4	U	530	U	32	U	530	U	59	U	62	U	68.8	П	216	П	130	U	670	U	310	U	5600 U
Phenol	ug/L	560	U	1.8	U	530	U	1320		150	J	16	U	31	J	888		53700	П	3600		2100		68700		360000
Pyrene	ug/L	560	U	2.2	U	530	U	11	U	530	U	21	U	62	U	10	U	22	U	46	U	670	U	110	U	5600 U
Metals																										
Antimony	ug/L			60	U		П	60	U		П	60	U		П	60	U	60	U	60	U			60	U	
Arsenic	ug/L			130	\Box		П	20	\Box		П	100	П		П	42	П	50	U	20	U			250	U	
Beryllium	ug/L			1	U		П	2.2	\Box		П	2.9	П		П	1	U	2.8	П	2.1	П		1	145		
Cadmium	ug/L			2	U		П	2	U		П	2.3	П		П		U	2	U	2	U		1	10	U	
Chromium (Total)	ug/L	7.74		14	\sqcap	27.8	П	1400	\Box	1210	\Box	1890		5100	\Box	180		870	П	710		1440		15800		9560
Chromium (Hexavalent)	ug/L			50	U		\sqcap	50	U		\top	10	U		П		U	500	U	50	U			500	U	
Copper	ug/L			11	ヿヿ		\sqcap	15	\top		\top	46			П	14		18	П	64	П			570		
Cyanide	ug/L			35				25	U		\Box	80				58		92		37				28		
Lead	ug/L	22.6		75	U	6.62		75	U	1.78		75	U	1	U	75	U	75	U	7	U	41.6		610		1 U
Mercury	ug/L			0.2	U		\sqcap	0.2	U		\top	0.2	U		П		U		U	0.2	U			0.2	U	
Nickel	ug/L			20	U			45	\top		\top	23			П	23		67	П	26				6740		
Selenium	ug/L			5	U		\Box	10	U		\top	25	U				U		U	5	U			25	U	
Silver	ug/L			10	U		\sqcap	10	U		\top	10	U		П	10	U	10	U	10	U			10	U	
Thallium	ug/L			10	U		\Box	10	U		П	10	U		П	10	U		U		U		Ī	10	U	
Zinc	ug/L			20	U		П	50	\Box		П	68	\sqcap		П	74	П	39	П	46	П			11900		

TABLE B-11 HISTORICAL ANALYTICAL RESULTS GROUNDWATER - SAND UNIT PIEZOMETERS (1983) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent		SC-PZ-1I	5 1	SC-PZ-2)	SC-PZ-3D)	SC-PZ-4E)	SC-PZ-5I	<u> </u>
of	Units	08/01/83	;	08/01/83		08/01/83		01/01/83		08/01/83	
Interest		Primary		Primary		Primary		Primary		Primary	
Volatile Organics						•					
1,1,2-Trichloroethane	ug/L	10	U	5	U	10	U	30		5	U
1,1-Dichloroethene	ug/L	10	U	5	U	10	U	20		5	U
1,2-Dichloroethene	ug/L	10	U	30		10	U	10	U	5	U
Benzene	ug/L	125		1000		670		220		50	
Chlorobenzene	ug/L	1850		660		10	U	13900		5	U
Ethylbenzene	ug/L	10	U	300		310		10	U	5	U
Tetrachloroethylene	ug/L	10	U	5	U	10	U	5350		5	U
Toluene	ug/L	10	U	435		640		10	U	5	U
Trichloroethylene	ug/L	10	U	20		10	U	13960		5	U
Xylene (total)	ug/L	10	U	745		1550		10	U	5	U
Semivolatile Organics											
1,2,4-Trichlorobenzene	ug/L	10		10	U	10	U	10	U	10	U
1,2-Dichlorobenzene	ug/L	1500		2700		10	U	4900		10	U
1,2-Diphenylhydrazine	ug/L	10	U	10	U	10	U	10	U	37	
1,3-Dichlorobenzene	ug/L	1300		1400		10	U	10	U	10	U
1,4-Dichlorobenzene	ug/L	4100		3700		10	U	10	U	10	U
Acenaphthene	ug/L	10	U	10	U	28		10	U	10	U
Anthracene	ug/L	10	U	10	U	64		10	U	120	
Bis(2-ethylhexyl)phthalate	ug/L	10	U	10	U	10	С	31		10	U
Dimethyl phthalate	ug/L	10	U	10	U	10	U	10	U	10	U
Di-n-butyl phthalate	ug/L	10		19		10	U	32		10	U
Fluoranthene	ug/L	10	U	10	U	10	U	10	U	10	U
Fluorene	ug/L	10	U	10	U	10	С	10	U	10	U
Naphthalene	ug/L	10		10	U	53		10	U	10	U
Phenanthrene	ug/L	10	U	10	U	10	U	10	U	10	U
Metals											
Chromium (Total)	ug/L	0.05	U	0.3		0.06		0.44		44.3	
Chromium (Hexavalent)	ug/L	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Indicator Parameters											
рН	SU	6.3		5.6		5.3		4.8		2	
Specific Conductance	umhos	2150		5000		2400		5000		5000	

HISTORICAL ANALYTICAL RESULTS

SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE

Printage Printage	Constituent	Ī Ī	SSW-1	SSW-2	SSW-3	SSW-4	SSW-5	SSW-6	SC-SW-05			SC-SW-08	SC-SW-09	SC-SW-10	SC-SW-11	SC-SW-12	SC-SW-13	SC-SW-14
Windlest Sequence Wind		Units		1	1			I	1	1		1	I	1				01/03/02 Primary
II.1-Trial. Appendix			Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary
11.2 2 Fresharostromation 10.2		Lug/L	T	T T	T T	T T	T T	T T	I ND I	I ND I	T ND T	I ND I	I ND I	I ND I	ND I	I ND I	ND I	ND
11,2-Farineces	_ · ·			+	+	+ +	+	+ +										ND ND
11.2 Triffenders 1.2 Triff				+			+	+ +										ND ND
11-0-chichomethre	, ,			+	+	+ +	+ +											ND ND
Institution					+	+ +	+	+ +										ND ND
International content 100				+	 	† †	 	+ +										ND ND
12-Determonethenee	· ·					 												ND ND
12-Dishiposphane				† _	 +	 	 											ND ND
Face-Informer	•	+																ND
28-Diamone	1,2-Dichloroethene		8 U	1.6	U 8 L	J 21	21	10 U	ND	ND	ND							
2-Heatenone Ug L ND ND ND	1,2-Dichloropropane	ug/L							ND	ND	ND							
Methyle-penianone	2-Butanone	ug/L							ND	5 .	J 3 J	J 3 .	J 2 J	ND	ND	4 J	ND	ND
Appelled March M	2-Hexanone	ug/L							ND	ND	ND							
Benzende	, ,			<u> </u>			T		1 - I			+ +		+				ND
Bromote/Internethating UyL ND ND		+ -							, , ,				• •	<u> </u>				5 J
Bromonetume			22 U	9.7	22	J 39.8	39.8	10 U		<u> </u>		<u> </u>						ND
Bromenthane Ug/L				+		 	 	+ +										ND ND
Carbon disultide				+ +		+		+ +										ND ND
Carbon tetrachloride		-		+ +	+	+ +	+		+ +							<u> </u>		ND ND
Chloropherzene								+ +										ND ND
Chloroptane																		3 J
Chloromethane				1			1 1											ND J
Chloromethane					+	+ +	+	+ +										ND ND
Cis-1_2-Dichicroethene Ug/L ND ND ND		- 3		+	+	+ +	+	+ +										ND ND
Inst-13-Dichloropropene Ug/L		- 3		+ +	 	+	 	+ +										ND ND
Cyclobrane	,	+ -		† †	+	 	 											ND
Distromochloropropage Ug/L ND ND											ND							ND
Dichlorodifiluoromethane	2					1 1	1 1		ND		ND	ND						
Ethylbenzene	Dibromochloromethane	ug/L							ND	ND	ND							
Methyl Acetate	Dichlorodifluoromethane	ug/L							ND	ND	ND							
Methylcyclohexane	Ethylbenzene	ug/L	36 U	7.2	U 36 l	J 36 U	36	U 10 U		3 .	J 7 J	J 2 .	J ND			4 J	ND	ND
Methylene chloride	Methyl Acetate	ug/L																ND
Methylterl-butylether																		ND
Styrene			14 U	2.8	U 14 L	J 14 U	J 14	U 3 J										ND
Tetrachloroethylene	· ·	-																ND
Toluene				_			+ + +	+ +										ND
Trichloropropene	·																	ND ND
Trichloroethylene				1 1			1 -	_										ND ND
Trichlorofluoromethane												+ +				 		ND
Vinyl chloride				1	_	_	 											 ND
Xylene (total)					+ +	+ +	+ +	+ +										ND ND
Semivolatile Organics 1,1'-Biphenyl Ug/L				_	+ +	+ +	+ +											ND ND
1,1'-Biphenyl ug/L </td <td></td> <td>ı ug/∟</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 10</td> <td>1 140</td> <td>1 1</td> <td>·</td> <td><u> </u></td> <td>0 ND </td> <td>1 140</td> <td>I ND</td> <td>1 10 10</td> <td>140</td> <td>140</td>		ı ug/∟						10 10	1 140	1 1	·	<u> </u>	0 ND	1 140	I ND	1 10 10	140	140
1,2,4-Trichlorobenzene ug/L 2 U 78.5 49.3 51 30.2 34 J 2 J 16 82 33 1 J ND ND 6.7 ND 1,2-Dichlorobenzene ug/L 171 224 542 2740 321 170 ND 90 150 68 2 J 2 J 3 J 58 ND 1,3-Dichlorobenzene ug/L 269 85.5 432 2920 278 82 ND 52 65 29 3 J 5.8 6.9 12 6.4 1,4-Dichlorobenzene ug/L 369 192 517 4680 385 240 ND 79 200 77 5.6 6 6.3 15 4 J 2,4,5-Trichlorophenol ug/L ND ND </td <td></td> <td>ug/l</td> <td></td> <td> </td> <td>T T</td> <td>T T</td> <td>T T</td> <td>T T</td> <td> </td> <td> T</td> <td>T T</td> <td>T T</td> <td>T T</td> <td> T</td> <td> T</td> <td>T T</td> <td> T</td> <td>T T</td>		ug/l			T T	T T	T T	T T		T	T T	T T	T T	T	T	T T	T	T T
1,2-Dichlorobenzene ug/L 171 224 542 2740 321 170 ND 90 150 68 2 J 2 J 3 J 58 ND 1,3-Dichlorobenzene ug/L 269 85.5 432 2920 278 82 ND 52 65 29 3 J 5.8 6.9 12 6.4 1,4-Dichlorobenzene ug/L 369 192 517 4680 385 240 ND 79 200 77 5.6 6 6.3 15 4 J 2,4,5-Trichlorophenol ug/L ND ND ND ND ND ND ND ND 2,4,6-Trichlorophenol ug/L 2.8 U 3 U 19.8 3.1 U 57 U ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 J</td><td></td><td></td><td></td><td></td><td>ND</td></t<>													1 J					ND
1,3-Dichlorobenzene ug/L 269 85.5 432 2920 278 82 ND 52 65 29 3 J 5.8 6.9 12 6.4 1,4-Dichlorobenzene ug/L 369 192 517 4680 385 240 ND 79 200 77 5.6 6 6.3 15 4 J 2,4,5-Trichlorophenol ug/L ND ND <td></td> <td>2 J</td> <td></td> <td></td> <td></td> <td></td> <td>2 J</td>													2 J					2 J
1,4-Dichlorobenzene ug/L 369 192 517 4680 385 240 ND 79 200 77 5.6 6 6.3 15 4 J 2,4,5-Trichlorophenol ug/L ND ND <td< td=""><td></td><td>— <u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3 J</td><td>5.8</td><td></td><td></td><td></td><td>4 J</td></td<>		— <u> </u>											3 J	5.8				4 J
2,4,6-Trichlorophenol ug/L ND 3 J ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>385</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4 J</td><td>4 J</td></t<>							385										4 J	4 J
2,4-Dichlorophenol ug/L 2.8 U 2.8 U 3 U 19.8 3.1 U 57 U ND ND 5.9 2 J ND ND ND ND ND ND ND				1 1			1 1		ND		ND	ND		ND			ND	ND
	2,4,6-Trichlorophenol	ug/L							ND	3 .	J ND	ND	ND	ND	ND	ND	ND	ND
12.4-Dimethylphenol	·				U 3 l						5.9		J ND					ND
	2,4-Dimethylphenol	ug/L	17.6	60.4	3 l	J 2.9 U	3.1	U 1000	ND	ND	81	43	2 J	ND	ND	ND	ND	ND
2,4-Dinitrophenol ug/L ND																		ND
2,4-Dinitrotoluene ug/L ND	2,4-Dinitrotoluene	ug/L					T		ND	ND	ND							

HISTORICAL ANALYTICAL RESULTS

SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE

Constituent		SSW-1	SSW-2	SSW-3	SSW-4	SSW-	5	SSW-6	SC-SW-05	SC-SW-06	SC-SW-07	SC-SW-08	SC-SW-09	SC-SW-10	SC-SW-11	SC-SW-12	SC-SW-13	SC-SW-14
of	Units	01/01/91	01/01/91	01/01/91	01/01/91	01/01/9		01/01/91	01/02/02	01/02/02	01/02/02	01/02/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Interest	, ,	Primary	Primary	Primary	Primary	Primar	<u> </u>	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
2,6-Dinitrotoluene	ug/L			 +			+		ND ND	ND	ND ND	ND NB	ND ND	ND	ND ND	ND	ND	ND
2-Chloronaphthalene	ug/L						 		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	ug/L	3.9	3.5 L	 	3.5 l	5.0	U		J ND	ND 11	1 1	J ND	ND 15	ND	ND	ND	ND	ND .
2-Methylnaphthalene	ug/L								J ND	44	40	24	15	ND	ND	80	ND	1 J
2-Methylphenol	ug/L		 	 +			+	340	ND ND	17	39	24	6.6	ND	ND ND	8.5	ND	ND ND
2-Nitroaniline	ug/L		 			 	++	- +	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND
2-Nitrophenol	ug/L					 	++		ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND
3-Nitroaniline	ug/L				 +		++-	-	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
4,6-Dinitro-2-methylphenol	ug/L				 		++-	-	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
4-Bromophenylphenyl ether	ug/L						+	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
4-Chlorophand phand other	ug/L						+	-	ND ND		ND	ND	ND ND	ND	ND	ND	ND	ND ND
4-Chlorophenyl phenyl ether 4-Chloro-3-methylphenol	ug/L		 		 		++		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Methylphenol	ug/L						+	-	ND ND	45	37	29	17	ND ND		39	ND ND	ND ND
4-Nitroaniline	ug/L				 +		++	-+	ND ND	ND ND	ND	ND ND	ND ND	ND	ND 1	ND ND	ND ND	ND ND
4-Nitroaniline 4-Nitrophenol	ug/L ug/L						++-	- 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acenaphthene	ug/L ug/L	2 l		2.1 U			lul-	93	ND ND	13	38	30	3 J	ND ND	ND ND	9.3	ND ND	ND ND
Acenaphthylene	ug/L ug/L	3.6 L					U		J ND	ND ND	30	J ND	ND J	ND ND	ND ND	9.3 ND	ND ND	ND ND
Anthracene	ug/L ug/L	3.0	3.7	3.6 0	3.7	J 4 	 	5 <i>1</i>	ND ND	ND ND	ND S	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Azobenzene	ug/L ug/L				 		++-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Benzo(a)anthracene	ug/L ug/L				 		++-		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
Benzo(a)pyrene	ug/L		 		 	+	+ + -		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(b)fluoranthene	ug/L		+ +	 	 		+ + -		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Benzo(ghi)perylene	ug/L		+ +	 	 	+	+ + -		ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Benzo(k)fluoranthene	ug/L		 			 			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
Benzyl alcohol	ug/L								ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
Bis(2-chloroethoxy)methane	ug/L								ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	ug/L								ND	ND	ND	ND	ND	ND	1 J	ND	ND	1 J
Bis(chloromethyl)ether	ug/L																	
Butyl benzyl phthalate	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	ug/L							52	J ND	5.9	18	10	3 J	ND	ND	15	ND	ND
Diethyl phthalate	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	ug/L								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	ug/L						$oxed{oxed}$		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	ug/L								1 J	ND	1 J	J ND	ND	ND	ND	ND	ND	ND
Fluorene	ug/L	2 L	J 2.8	2.1	2 (J 2.2	U	26	J ND	ND	9	4.9	ND	ND	ND	2 J	ND	ND
Hexachlorobenzene	ug/L						+		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	ug/L						+		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	ug/L						\vdash		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
Hexachloroethane	ug/L						++		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Indeno(1,2,3-cd)pyrene	ug/L						+		ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Isophorone	ug/L	2.3 L	2.0				+		J ND	ND	ND 070	ND 100	ND 00	ND	ND ND	ND 040	ND	ND I
Naphthalene	ug/L	9.14	260	16.4	3.97	7.07	++	81	ND ND	77 ND	270	100	33	ND	ND	240	ND	2 J
Nitrobenzene	ug/L				 		++		ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	ug/L						+		ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
N-Nitrosodipropylamine	ug/L				 		++		ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Pentachlorophenol	ug/L	 F.G. I			 		 		ND ND	ND 2	ND 1 7.0	ND 4	ND ND	ND	ND ND	ND 4.0	ND	ND
Phenanthrene	ug/L	5.6 L	, <u>, , , , , , , , , , , , , , , , , , </u>		<u> </u>	_	U	9	J ND	3 (J 7.8	4 ND	J ND	ND	ND ND	4.9	ND	ND
Physical	ug/L	29	241	1.6 U	 		U		J ND	15 ND	ND ND	ND ND	12 ND	ND ND	ND ND	31 ND	ND ND	ND ND
Pyrene Metals	ug/L								1 J	ן אט	ן אט ן	ן אט	ן אט ן	ן אט	ן טט	ן אט	ן אט	ן אט
Aluminum	ug/L	1	T T	T T	Т Т	T	1 1	1	8400	760	ND	ND I	ND ND	ND	410	1500	250	ND I
raummum	ug/L		 						1 0400	100	ן אט ן	ן אט	ן אט	ן אט	1 +10 L	1300	200	2 of (

HISTORICAL ANALYTICAL RESULTS

SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE

Constituent	1	SSW-1	1	SSW-2	$\overline{}$	SSW-3	$\overline{}$	SSW-4	_	SSW-5	_	SSW-6	-1	SC-SW-05	SC-SW-06	S SC-SW-0	07	SC-SW-08	SC-SW-09	SC-SW-10	SC-SW-11	SC-SW-12	SC-SW-13	SC-SW-14
of	Units	01/01/9		01/01/91		01/01/91		01/01/91	- 1	01/01/91	ıΙ	01/01/91		01/02/02	01/02/02	01/02/02		01/02/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Interest		Primary		Primary	- 1	Primary		Primary	- 1	Primary	- 1	Primary	- 1	Primary	Primary	Primary		Primary	Primary	Primary	Primary	Primary	Primary	Primary
Antimony	ua/L	60	Tul	60	Ιυ	60	ul		υl	60	U	24000	U	ND	ND I	ND ND	П	ND I	ND ND	ND ND	ND	17	ND	ND
Arsenic	ug/L	10	ΙŬ	10	Ŭ		ŭΙ	10	┪	10	Ū	5000	Ū		ND	ND	П	ND	ND	ND	ND	ND	ND	ND
Barium	ug/L		T		П		1		寸					260	620	98	П	69	160	46	140	250	50	18
Beryllium	ug/L	1	U	1	U	1	υ	2	一	1	U	200	U	ND	ND	ND	П	ND	ND	ND	ND	ND	ND	ND
Cadmium	ug/L	2	U	2	U	2		17	寸	3		3000	U	ND	ND	ND	П	ND	ND	ND	ND	ND	ND	ND
Calcium	ug/L		11		П									290	810	92		50	89	35	150	390	31	21
Chromium (Dissolved)	ug/L		\Box		П				ヿ								П							
Chromium (Total)	ug/L	6290	\Box	320	П	480		8640	一	160		1240000		1300	1900	1400	П	1100	710	230	450	3300	250	150
Chromium (Hexavalent, dissolved)	ug/L																							
Chromium (Hexavalent)	ug/L																							
Cobalt	ug/L													11	ND	ND		ND	ND	ND	ND	ND	ND	ND
Copper	ug/L	23		10	U	10	U	200		10	U	173000		21	11	ND		ND	ND	ND	ND	ND	ND	ND
Cyanide	ug/L	25	U	25	U	25	U	25	U	25	U	1000	U											
Iron	ug/L													39000	980	240		200	580	870	2200	1200	1700	880
Lead	ug/L	75	U	75	U	75	U	1000		75	U	136000		65	25	ND	U	26	200	80	330	210	420	76
Magnesium	ug/L		$\perp I$		$\Box \Box$					-		-		500	12	11	Ш	6	6.4	8.3	11	7.1	12	10
Manganese	ug/L		$\perp I$		\Box				\bot	-		-		1300	60	11	Ш	13	42	81	220	200	72	56
Mercury	ug/L	ND	U	ND	U	ND I	U	.,,	U	ND	U	19400		0.31	0.62	0.086		0.49	8.3	ND	ND	ND	0.11	ND
Nickel	ug/L	20	U	20	U	20	U	350		37	Ш	982000	Ш	39	14	8.2	Ш	8.6	7	5.1	7	ND	7.3	ND
Potassium	ug/L		$\downarrow \downarrow$		\sqcup		\perp				Щ		Щ	150	8.2	16	Ш	13	6.3	6.1	6.2	4.3	6.9	6.5
Selenium	ug/L	5	U	5	U		U	5	4	5	U	2000	U		ND	ND	Ш	ND	ND	ND	ND	ND	ND	ND
Silver	ug/L	13	$\perp \perp$	10	U	10	U	10	U	10	U	2000	U		ND	ND	Ш	ND	ND	ND	ND	ND	ND	ND
Sodium	ug/L		$\perp \perp$		Щ		\perp		4		Ц			3900	110	220	Ш	180	57	51	50	69	53	47
Thallium	ug/L	10	U	10	U	10	U	10	U	10	U	2000	U	ND	ND	ND	Ш	ND	ND	ND	ND	ND	ND	ND
Vanadium	ug/L		\bot		Щ		_		4					74	33	120	Ш	81	ND	ND	10	ND	12	ND
Zinc	ug/L	360	ш	230	Щ	58	ㅗ	1600		580		487000	Ш	220	40	ND	Ш	9.6	ND	8.6	40	22	29	ND
PCBs							-		-						T 15 T	T 115			1 115 1	1 10 1	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Aroclor 1016	ug/L		+		$\vdash \vdash$		+		\dashv				-	ND	ND	ND	Н	ND	ND ND	ND	ND	ND	ND	ND
Aroclor 1221	ug/L		++		₩		+		\dashv		-		-	ND	ND	ND	Н	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Aroclor 1232	ug/L		++		$\vdash \vdash$		+		\dashv		\dashv		\dashv	ND	ND	ND	Н	ND	ND ND	ND	ND ND	ND	ND	ND ND
Aroclor 1242	ug/L		++		\vdash		+		+		\dashv		\dashv	ND	ND	ND	Н	ND	ND ND	ND	ND ND	ND	ND	ND ND
Arcelor 1248	ug/L		+		\vdash		+		+		-		\dashv	ND	ND	ND	Н	ND	ND ND	ND ND	ND	ND	ND	ND ND
Arcelor 1254	ug/L		++		\vdash		+		\dashv		-		\dashv	ND ND	ND ND	ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
Aroclor 1260	ug/L				ш				_				Ш	ND	I ND I	ND	Ш	I ND I	ן אט ן	ן אט ן	ND	ן עט	ND	I ND
Pesticides 4,4'-DDD	Lua/I	Π	т т			Т	_	Т	_					ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	ug/L ug/L		+		₩		+		\dashv		\dashv		\dashv	ND ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,4'-DDT	ug/L ug/L		++		⊢┼		+		\dashv		$\vdash \vdash$		$\vdash \vdash$	ND ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Aldrin	ug/L ug/L		++		$\vdash \vdash$		+		+		\vdash		\vdash	ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
alpha-BHC	ug/L ug/L		++		$\vdash \vdash$		+		+		\vdash		\vdash	ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
alpha-Chlordane	ug/L ug/L		++		$\vdash \vdash$		+		\dashv		\dashv		$\vdash \vdash$	ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
beta-BHC	ug/L		++		$\vdash \vdash$		+		\dashv		\vdash		$\vdash \vdash$	ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Chlordane	ug/L		++		$\vdash \vdash$		+		\dashv		\vdash		\vdash	ND	ND ND	ND ND	Н	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
delta-BHC	ug/L		++		\vdash		+		\dashv		\vdash		\vdash	ND	ND ND	ND ND	H	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
Dieldrin	ug/L		++		\vdash		+		十		\dashv		\vdash	ND	ND ND	ND ND	Н	ND	ND ND	ND ND	ND	ND ND	ND	ND
Endosulfan I	ug/L		++		\vdash		+		\dashv		\dashv		\vdash	ND	ND ND	ND ND	Н	ND	ND ND	ND ND	ND	ND ND	ND	ND
Endosulfan II	ug/L		++		\vdash		+		\dashv		\dashv		\vdash	ND	ND	ND	Н	ND	ND ND	ND ND	ND	ND ND	ND	ND
Endosulfan sulfate	ug/L		++		\vdash		\top		\dashv		Н		\vdash	ND	ND ND	ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND	ND
Endrin	ug/L		++		\vdash		十		\dashv		\dashv		\vdash	ND	ND	ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND	ND
Endrin aldehyde	ug/L		+		\vdash		\top		十		\Box		\Box	ND	ND ND	ND	П	ND	ND ND	ND ND	ND	ND	ND	ND
Endrin ketone	ug/L		\top		一		十		十		П		\Box	ND	ND ND	ND	П	ND	ND ND	ND ND	ND ND	ND	ND	ND
gamma-Chlordane	ug/L		+		一		十		十		П		\Box	ND	ND	ND	П	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ug/L		+		\vdash		\top		十		\dashv		\Box	ND	ND ND	ND	П	ND	ND ND	ND ND	ND	ND	ND	ND
Heptachlor epoxide	ug/L		+		\vdash		\top		十		\Box		H	ND	ND ND	ND	П	ND ND	ND ND	ND ND	ND	ND ND	ND	ND
Lindane	ug/L		++		\vdash		\top		\dashv		Н		H	ND	ND ND	ND ND	П	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
Methoxychlor	ug/L		++		\vdash		\top		十		\Box		\Box	ND	ND ND	ND	Н	ND ND	ND ND	ND ND	ND	ND	ND	ND
Toxaphene	ug/L		++		\vdash		十		\dashv		\vdash		\vdash	ND	ND	ND	Н	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
	~ ~ ~ -							!			ш		ш								,			

TABLE B-12 HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent	1	SC-SW-	15	SC-SW-	16	SC-SW-1	17	SC-SW-1	8	SC-SW-1	19	SC-SW-2	20	SC-SW-2	21
of	Units	01/03/0		01/03/0		01/03/02		01/03/02		01/03/0		01/03/0		01/03/0	
Interest	Jinto	Primary		Primary		Primary		Primary		Primary		Primary		Primary	
Volatile Organics															
1,1,1-Trichloroethane	ug/L	ND		ND	П	ND		ND		ND		ND	Π	ND	Т
1,1,2,2-Tetrachloroethane	ug/L	ND		ND	П	ND		ND		ND		ND		ND	十
1,1,2-Trichloroethane	ug/L	ND		ND	П	ND		ND		ND		ND	П	ND	丅
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	ND		ND		ND		ND		ND		ND		ND	T
1,1-Dichloroethane	ug/L	ND		ND		ND		ND		ND		ND		ND	
1,1-Dichloroethene	ug/L	ND		ND		ND		ND		ND		ND		ND	
1-Methylethyl-benzene	ug/L	ND		ND		ND		ND		ND		ND		ND	
1,2-Dibromoethane	ug/L	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloroethane	ug/L	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloroethene	ug/L	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane	ug/L	ND		ND		ND		ND		ND		ND		ND	上
2-Butanone	ug/L	ND		ND	Ш	ND		ND		ND		2	J	ND	┸
2-Hexanone	ug/L	ND		ND		ND		ND		ND		ND		ND	┸
4-Methyl-2-pentanone	ug/L	ND		ND	Ш	ND		ND		ND		ND		ND	┸
Acetone	ug/L	5	J	6	J	4	J	5	J	5	J	11	J	3	J
Benzene	ug/L	ND	Ш	ND	Ш	ND		ND	Ш	15		29	Ш	23	丄
Bromodichloromethane	ug/L	ND	Ш	ND	Ш	ND		ND	Ш	ND		ND	Ш	ND	丄
Bromoform	ug/L	ND		ND	Ш	ND		ND		ND		ND	Ш	ND	丄
Bromomethane	ug/L	ND		ND	Ш	ND		ND	Ш	ND		ND	Ш	ND	丄
Carbon disulfide	ug/L	ND		ND	Ш	ND		ND		ND		3	J	37	丄
Carbon tetrachloride	ug/L	ND		ND	Ш	ND		ND		ND		ND		ND	丄
Chlorobenzene	ug/L	ND		ND	Ш	ND		9	J	250	J	600	Ш	760	丄
Chloroethane	ug/L	ND		ND	Ш	ND		ND		ND		ND	Ш	ND	丄
Chloroform	ug/L	ND		ND	Ш	ND		ND		ND		ND		ND	丰
Chloromethane	ug/L	ND		ND	Н	ND		ND	Ш	ND		ND		ND	╄
cis-1,2-Dichloroethene	ug/L	ND	Н	ND	Н	ND		ND		ND		ND	Н	ND	╄
cis-1,3-Dichloropropene	ug/L	ND		ND	Н	ND		ND	Ш	ND		ND	Ш	ND	+
Cyclohexane	ug/L	ND	Н	ND	Н	ND		ND	Н	ND		ND	Н	ND	╄
Dibromochloropropane	ug/L	ND		ND	Н	ND		ND		ND		ND	Н	ND	+
Dibromochloromethane	ug/L	ND		ND	Н	ND		ND	Н	ND		ND 2	١.	ND	╀
Dichlorodifluoromethane	ug/L	ND		ND	Н	ND		ND	Н	ND		3	Ļ	ND	┿
Ethylbenzene	ug/L	ND	Н	ND	Н	ND		ND	H	ND		2 ND	J	ND	╀
Methyl Acetate	ug/L	ND	Н	ND	Н	ND		ND	Н	ND			Н	ND ND	╀
Methylcyclohexane	ug/L	ND ND	Н	ND ND	Н	ND		ND ND	Н	ND		ND	Н	ND ND	╁
Methylene chloride	ug/L	ND ND		ND ND	H	ND ND		ND ND	Н	ND ND		ND ND	Н	ND ND	╁
Methyltert-butylether Styrene	ug/L ug/L	ND ND	Н	ND ND	Н	ND		ND ND	Н	ND ND		ND ND	Н	ND ND	╁
Tetrachloroethylene	ug/L ug/L	ND ND	Н	ND	Н	ND		ND ND	Н	ND ND		ND ND	Н	ND ND	╁
Toluene	ug/L ug/L	ND ND	Н	ND	Н	ND		ND ND	Н	ND		ND ND	Н	ND	╁
trans-1,3-Dichloropropene	ug/L	ND	Н	ND	H	ND		ND ND	Н	ND		ND ND	Н	ND	╁
Trichloroethylene	ug/L		Н		Н				Н				Н		╁
Trichlorofluoromethane	ug/L	ND	H	ND	Н	ND		ND	Н	ND		ND	Н	ND	十
Vinyl chloride	ug/L	ND	H	ND	Н	ND		ND ND	H	ND		ND	Н	ND	╁
Xylene (total)	ug/L	ND	Н	ND	Н	ND		ND	Н	ND		7	J	ND	十
Semivolatile Organics	ug/L	ND		ND		ND		IND		ND		,		110	
1,1'-Biphenyl	ug/L														┰
1,2,4-Trichlorobenzene	ug/L	ND	H	ND	H	ND		2	J	4	J	45	H	200	十
1,2-Dichlorobenzene	ug/L	ND	H	ND	Н	ND		ND	H	35	Ť	450	Н	190	T
1,3-Dichlorobenzene	ug/L	3	J	4	J	13		30	H	85		390	Н	430	+
1,4-Dichlorobenzene	ug/L	3	J	4.2	Ť	3	J	11	Н	46		420	П	610	\top
2,4,5-Trichlorophenol	ug/L	ND	H	ND	Н	ND	Ť	ND	Н	ND		ND	Н	ND	+
2,4,6-Trichlorophenol	ug/L	ND	П	ND	Н	ND		ND	Н	ND		ND	Н	ND	+
	ug/L	ND	Н	ND	Н	ND		ND	Н	4	J	5.7	Н	34	+
12.4-Dichlorophenol			1								. ~				
2,4-Dichlorophenol 2.4-Dimethylphenol		ND		ND		ND		ND		ND		ND		ND	LU
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	ug/L ug/L	ND ND	Н	ND ND	Н	ND ND		ND ND		ND ND		ND ND		ND ND	U

TABLE B-12 HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent		SC-SW-15	SC-SW-16	SC-SW-17	SC-SW-18	SC-SW-19	SC-SW-20	SC-SW-21
of	Units	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Interest		Primary						
2,6-Dinitrotoluene	ug/L	ND I	ND U					
2-Chloronaphthalene	ug/L	ND	ND	ND	ND	ND	ND	ND U
2-Chlorophenol	ug/L	ND	ND	ND	ND	1 J	4.4	4 J
2-Methylnaphthalene	ug/L	ND	ND	ND	ND	ND	2 J	ND
2-Methylphenol	ug/L	ND						
2-Nitroaniline	ug/L	ND						
2-Nitrophenol	ug/L	ND						
3-Nitroaniline	ug/L	ND						
4,6-Dinitro-2-methylphenol	ug/L	ND						
4-Bromophenylphenyl ether	ug/L	ND						
4-Chloroaniline	ug/L	ND						
4-Chlorophenyl phenyl ether	ug/L	ND						
4-Chloro-3-methylphenol	ug/L	ND						
4-Methylphenol	ug/L	ND	ND	ND	ND	ND	4 J	3 J
4-Nitroaniline	ug/L	ND						
4-Nitrophenol	ug/L	ND						
Acenaphthene	ug/L	ND						
Acenaphthylene	ug/L	ND						
Anthracene	ug/L	ND						
Azobenzene	ug/L	ND						
Benzo(a)anthracene	ug/L	ND						
Benzo(a)pyrene	ug/L	ND						
Benzo(b)fluoranthene	ug/L	ND						
Benzo(ghi)perylene	ug/L	ND						
Benzo(k)fluoranthene	ug/L	ND						
Benzyl alcohol	ug/L	ND						
Bis(2-chloroethoxy)methane	ug/L	ND						
Bis(2-chloroethyl)ether	ug/L	ND						
Bis(2-chloroisopropyl)ether	ug/L	ND						
Bis(2-ethylhexyl)phthalate	ug/L	ND						
Bis(chloromethyl)ether	ug/L							
Butyl benzyl phthalate	ug/L	ND						
Chrysene	ug/L	ND						
Dibenzo(a,h)anthracene	ug/L	ND						
Dibenzofuran	ug/L	ND						
Diethyl phthalate	ug/L	ND						
Dimethyl phthalate	ug/L	ND						
Di-n-butyl phthalate	ug/L	ND						
Di-n-octyl phthalate	ug/L	ND						
Fluoranthene	ug/L	ND						
Fluorene	ug/L	ND						
Hexachlorobenzene	ug/L	ND						
Hexachlorobutadiene	ug/L	ND						
Hexachlorocyclopentadiene	ug/L	ND						
Hexachloroethane	ug/L	ND						
Indeno(1,2,3-cd)pyrene	ug/L	ND						
Isophorone	ug/L	ND						
Naphthalene	ug/L	ND	ND	ND	ND	3 J	23	5.6
Nitrobenzene	ug/L	ND						
N-Nitrosodiphenylamine	ug/L	ND						
N-Nitrosodipropylamine	ug/L	ND						
Pentachlorophenol	ug/L	ND						
Phenanthrene	ug/L	ND						
Phenol	ug/L	ND	ND	ND	ND	1 J	5.5	4.5
Pyrene	ug/L	ND	ND	ND _	ND	ND	ND	ND
Metals	1			1 1	1 ,:= 1	l= 1		1000
Aluminum	ug/L	330	2500	ND	ND	ND U	690	1900

TABLE B-12 HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - SOUTH DITCH (1991 - 2002) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

of Interest Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	SC-SW-15 01/03/02 Primary ND ND 68 ND ND 25 240 ND 10	SC-SW-16 01/03/02 Primary 59 ND 550 ND ND 63 810 ND 	SC-SW-17 01/03/02 Primary ND ND 83 ND ND 34 270 ND	SC-SW-18 01/03/02 Primary ND ND 70 ND ND ND 35 	ND 1 1 70 ND 1 46 250	SC-SW-20 01/03/02 Primary J ND J ND 91 J ND J ND J ND	SC-SW-21 01/03/02 Primary 16 16 200 ND ND 92 350
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Primary ND ND 68 ND ND 25 240 ND ND 10	Primary	Primary ND ND 83 ND ND 34 270	Primary ND ND 70 ND ND 35 260	Primary ND ND 70 ND ND 46 250	Primary J ND J ND 91 J ND U ND 110 720	Primary 16 16 200 ND ND 92 350
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND ND 68 ND ND 25 240 ND 10	59 ND 550 ND ND 63 810 ND	ND ND 83 ND ND 34 270	ND ND 70 ND ND 35 260	ND ND ND ND ND ND ND 46 250	J ND J ND 91 J ND J ND 110 720	16 16 200 ND ND ND 92 350
Arsenic Barium Beryllium Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	68 ND ND 25 240 ND 10	550 ND ND 63 810 ND	83 ND ND 34 270	70 ND ND 35 260	70 ND ND 46 250	91 J ND J ND 110 720	200 ND ND 92 350
Beryllium Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND ND 25 240 ND 10	ND ND 63 810 ND	ND ND 34 270 	ND ND 35 260	ND 1 1 1 1 1 1 1 1 1	J ND J ND 110 720	ND ND 92 350
Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND 25 240 ND 10	ND 63 810 ND	ND 34 270 	ND 35 260	ND 46 250	J ND 110 720	ND 92 350
Cadmium Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND 25 240 ND 10	63 810 ND	ND 34 270 	ND 35 260	ND 46 250	110 720	92 350
Calcium Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25 240 ND 10	63 810 ND	34 270 	35 260 	46 250 	110 720	92 350
Chromium (Dissolved) Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	240 ND 10	 810 ND	270 	260 		720	350
Chromium (Total) Chromium (Hexavalent, dissolved) Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	 ND 10	 ND					t - t
Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	 ND 10	 ND			+		
Chromium (Hexavalent) Cobalt Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L	ND 10	ND			 		ı I
Copper Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L	10		ND		I I		
Cyanide Iron Lead Magnesium Manganese	ug/L ug/L ug/L		56		ND	ND	ND	ND
Cyanide Iron Lead Magnesium Manganese	ug/L ug/L			ND	ND	ND	ND	48
Lead Magnesium Manganese	ug/L ug/L	3000						
Magnesium Manganese			29000	1100	430	1400	4600	31000
Manganese	ug/L	240	12000	380	140	310	ND	490
		11	14	17	18	22	26	15
Mana	ug/L	110	540	57	45	120	280	380
Mercury	ug/L	0.056	0.2	ND	ND	ND	ND	0.16
Nickel	ug/L	6.3	20	10	10	11	9.4	9.9
Potassium	ug/L	6.7	8.9	8	8.3	9	12	9.5
Selenium	ug/L	ND	ND	ND	ND	ND	ND	ND
Silver	ug/L	ND	ND	ND	ND	ND	ND	ND
Sodium	ug/L	46	44	69	70	69	97	28
Thallium	ug/L	ND	ND	ND	ND	ND	ND	ND
Vanadium	ug/L	14	56	ND	ND	ND	21	30
Zinc	ug/L	29	400	59	13	13	ND	150
PCBs								
Aroclor 1016	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	ug/L	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	ug/L	ND	ND	ND	ND _	ND	ND ND	ND L
Pesticides	1 /			T 115 T	1 1		1 15 1	T 115 T
4,4'-DDD	ug/L	ND	ND	ND ND	ND	ND	ND ND	ND ND
4,4'-DDE	ug/L	ND	ND	ND	ND	ND	ND ND	ND
4,4'-DDT	ug/L	ND	ND	ND ND	ND	ND	ND ND	ND
Aldrin	ug/L	ND	ND	ND	ND	ND	ND ND	ND
alpha-BHC	ug/L	ND	ND	ND ND	ND	ND	ND ND	ND
alpha-Chlordane	ug/L	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
beta-BHC	ug/L					ND		
Chlordane delta-BHC	ug/L ug/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dieldrin		ND	ND	ND	ND ND	ND ND	ND ND	ND
Endosulfan I	ug/L ug/L	ND	ND	ND	ND ND	ND ND	ND ND	ND
Endosulfan II	ug/L ug/L	ND	ND	ND	ND ND	ND ND	ND ND	ND
Endosulfan sulfate	ug/L ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Endrin	ug/L ug/L	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Endrin aldehyde	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Endrin ketone	ug/L	ND	ND	ND ND	ND	ND ND	ND ND	ND
gamma-Chlordane	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Heptachlor	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Heptachlor epoxide	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Lindane	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Methoxychlor	ug/L	ND	ND	ND ND	ND ND	ND	ND ND	ND ND
Toxaphene	ug/L	ND	ND	ND ND	ND ND	ND	ND ND	ND ND

HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

Constituent		0)4/		014/ 6		0147.0	. 1	014/		100 0111		100.011		100 014		00.011.04
	11!4	SW-1		SW-2		SW-3		SW-4								SC-SW-04
of Interest	Units	08/28/9 Primai		08/28/9 Primar		08/28/9 Primar		08/28/9 Primar		01/02/0 Primar		01/02/0 Primar		01/02/0 Primar		01/02/02 Primary
Volatile Organics		Fillia	у	Pillilai	у	Filliai	у	Pillilai	y	Filliai	<u>y</u>	Pilliai	<u>y</u>	Filliai	у	Filliary
1,1,1-Trichloroethane	ug/L	5	U	5	U	5	U	5	U	ND		ND	П	ND		ND
1,1,1,2-Tetrachloroethane	ug/L	5	U	5	U	5	U	5	Ü						\vdash	
1,1,2,2-Tetrachloroethane	ug/L	5	U	5	U	5	U	5	Ü	ND		ND		ND	\vdash	ND
1,1,2-Trichloroethane	ug/L	5	Ü	5	Ū	5	U	5	Ü	ND		ND		ND		ND
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L		H		Ĕ		Ĭ		١Ť	ND		ND		ND		ND
1,1-Dichloro-1-propene	ug/L	5	U	5	U	5	U	5	U							
1,1-Dichloroethane	ug/L	5	Ū	5	Ŭ	5	Ū	5	Ŭ	ND		ND		ND		ND
1,1-Dichloroethene	ug/L	5	Ū	5	Ŭ	5	Ū	5	Ŭ	ND		ND		ND		ND
1-Methylethyl-benzene	ug/L									ND		ND		ND		ND
1,2-Dibromoethane	ug/L	5	U	5	U	5	U	5	υ	ND		ND		ND		ND
1,2-Dibromo-3-chloropropane	ug/L	5	U	5	U	5	U	5	U							
1,2-Dichloroethane	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
1,2-Dichloroethene	ug/L									ND		ND		ND		ND
1,2-Dichloropropane	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
1,2,4-Trimethylbenzene	ug/L	5	U	5	U	5	U	5	U							
1,3-Dichloropropane	ug/L	5	U	5	U	5	U	5	U							
1,3,5-Trimethylbenzene	ug/L	5	U	5	U	5	U	5	U							
2-Butanone	ug/L									ND		3	J	3	J	ND
2-Hexanone	ug/L									ND		ND		ND		ND
2,2-Dichlororopane	ug/L	5	U	5	U	5	U	5	U							
4-Methyl-2-pentanone	ug/L			-						ND		ND		ND		ND
Acetone	ug/L									3	7	12	7	3	J	2 J
Benzene	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
Bromobenzene	ug/L	5	U	5	U	5	U	5	U							
Bromochloromethane	ug/L	5	U	5	U	5	U	5	J							
Bromodichloromethane	ug/L	5	U	5	U	5	U	5	J	ND		ND		ND		ND
Bromoform	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
Bromomethane	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
Butylbenzene	ug/L	5	U	5	U	5	U	5	U							
Carbon disulfide	ug/L									ND		ND		ND		ND
Carbon tetrachloride	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
Chlorobenzene	ug/L	5	U	5	U		J	5	J			5	J	_ +	J	ND
Chloroethane	ug/L	5	С	5	С	5	U	5	J	ND		ND		ND		ND
Chloroform	ug/L	5	С	5	U	5	U	5	\supset	ND		ND		ND		ND
Chloromethane	ug/L	5	U	5	С	5	U	5	J	ND		ND		ND		ND
cis-1,2-Dichloroethene	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
cis-1,3-Dichloropropene	ug/L									ND		ND		ND		ND
Cumene	ug/L	5	U	5	U	5	U	5	U							
Cyclohexane	ug/L									ND		ND		ND		ND
Dibromochloropropane	ug/L									ND		ND		ND		ND
Dibromochloromethane	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
Dichlorodifluoromethane	ug/L	5	U	5	J	5	U	5	U	ND		ND		ND		ND
Dibromomethane	ug/L	5	Ω.	5		5	J	5	U							
Ethylbenzene	ug/L	5	U	5	U	5	U	5	U	ND		ND		ND		ND
m - and p-Xylenes	ug/L	5	U	5	U	5	U	5	U	\						
Methyl Acetate	ug/L									ND		ND		ND		ND
Methylcyclohexane	ug/L		\sqcup		<u> </u>		<u> </u>		ļ	ND		ND	_	ND	\vdash	ND
Methylene chloride	ug/L	5	U	5	U	5	U	5	U	ND		ND	_	ND	L	ND
Methyltert-butylether	ug/L		H		H				ļ	ND		ND	_	ND	\vdash	ND
n-Propylbenzene	ug/L	5	U	5	U	5	U	5	U				_		\vdash	
o-Chlorotoluene	ug/L	5	Ω.	5	: C	5		5	\supset				_		\vdash	
o-Xylene	ug/L	5	: С	5	: C	5	U	5	U				-		\vdash	
p_Chlorotoluene	ug/L	5	: C	5	: C	5	υ.	5	U				-		\vdash	
p_Cymene	ug/L	5	U	5	: C	5	U	5	U				_		H	
sec-Butylbenzne	ug/L	5	U	5	U	5	U	5	U							

HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

Constituent		SW-1	ı	SW-2	,	SW-3	<u> </u>	SW-4	1	SC-SW-	01	SC-SW-	02	SC-SW	-03	SC-SW-04
of	Units	08/28/9		08/28/9		08/28/9		08/28/9		01/02/0		01/02/0		01/02/0		01/02/02
Interest	Omics	Primar		Primar		Primar		Primar		Primar		Primar		Primar		Primary
Styrene	ug/L	5	U	5	U	5	U	5	U	ND	,	ND	<i>y</i>	ND	<u>, </u>	ND
tert-Butylbenzene	ug/L	5	U	5	U	5	Ü	5	Ŭ							
Tetrachloroethene	ug/L	5	Ü	5	U	5	Ü	5	Ü	ND		ND		ND		ND
Toluene	ug/L	5	Ü	5	U	5	Ü	5	Ü	ND		ND		ND		ND
trans-1,2-Dichloroethene	ug/L	5	Ü	5	U	5	Ü	5	ŭ							
trans-1,3-Dichloropropene	ug/L		Ť		Ŭ		Ť		۲	ND		ND		ND		ND
Trichloroethylene	ug/L	5	U	5	U	5	U	5	U							
Trichlorofluoromethane	ug/L	5	Ü	5	U	5	Ü	5	Ü	ND		ND		ND		ND
Vinyl chloride	ug/L	5	Ū	5	U	5	Ü	5	ŭ	ND		ND		ND		ND
Xylene (total)	ug/L		Ť		Ť		Ť		۲	ND		ND		ND		ND
Semivolatile Organics	g,											.,_				.,_
1,2,3-Trichlorobenzene	ug/L	5	U	5	U	5	U	5	ΙU							
1,2,4-Trichlorobenzene	ug/L	5	Ū	ND	Ť	ND	Ť	1.63	Ĵ	ND		12		11		
1,2-Dichlorobenzene	ug/L	1.57	J	1.43	J	6.13		3.14	Ĵ	ND		3	J	3	J	ND
1,3-Dichlorobenzene	ug/L	5	Ū	ND		4.56	J	ND	Ť	ND		1	J	1	J	ND
1,4-Dichlorobenzene	ug/L	1.47	J	1.21	J	6.37	Ť	1.8	J	2	J	4	J	4	J	ND
2,4,5-Trichlorophenol	ug/L								É	ND	-	ND		ND	Ĺ	ND
2,4,6-Trichlorophenol	ug/L								T	ND		ND		ND		ND
2,4-Dichlorophenol	ug/L									ND		ND		ND		ND
2,4-Dimethylphenol	ug/L									ND		ND		ND		ND
2,4-Dinitrophenol	ug/L									ND		ND		ND		ND
2,4-Dinitrotoluene	ug/L									ND		ND		ND		ND
2,6-Dinitrotoluene	ug/L									ND		ND		ND		ND
2-Chloronaphthalene	ug/L									ND		ND		ND		ND
2-Chlorophenol	ug/L									ND		ND		ND		ND
2-Methylnaphthalene	ug/L									ND		10		9.7		ND
2-Methylphenol	ug/L									ND		6.2		ND		ND
2-Nitroaniline	ug/L									ND		ND		ND		ND
2-Nitrophenol	ug/L									ND		ND		ND		ND
3-Nitroaniline	ug/L									ND		ND		ND		ND
4,6-Dinitro-2-methylphenol	ug/L									ND		ND		ND		ND
4-Bromophenylphenyl ether	ug/L									ND		ND		ND		ND
4-Chloroaniline	ug/L									ND		ND		ND		ND
4-Chlorophenyl phenyl ether	ug/L									ND		ND		ND		ND
4-Chloro-3-methylphenol	ug/L									ND		ND		ND		ND
4-Methylphenol	ug/L									ND		ND		ND		ND
4-Nitroaniline	ug/L									ND		ND		ND		ND
4-Nitrophenol	ug/L									ND		ND		ND		ND
Acenaphthene	ug/L									1	J	2	J	2	J	ND
Acenaphthylene	ug/L									3	J	ND		ND		ND
Anthracene	ug/L									4	J	ND		ND		ND
Azobenzene	ug/L									ND		ND		ND		ND
Benzo(a)anthracene	ug/L			-						7.6		ND		ND		ND
Benzo(a)pyrene	ug/L	-		1		-				9.1		ND		ND		ND
Benzo(b)fluoranthene	ug/L			-						12		ND		ND		ND
Benzo(ghi)perylene	ug/L			-						6.3		ND		ND		ND
Benzo(k)fluoranthene	ug/L			-						4.3		ND		ND		ND
Benzyl alcohol	ug/L	-		1		-				ND		ND		ND		ND
Bis(2-chloroethoxy)methane	ug/L			-						ND		ND		ND		ND
Bis(2-chloroethyl)ether	ug/L			-						ND		ND		ND		ND
Bis(2-chloroisopropyl)ether	ug/L	-		1		-				ND		ND		ND		ND
Bis(2-ethylhexyl)phthalate	ug/L			1						11		ND		ND		ND
Bis(chloromethyl)ether	ug/L			-						ND		ND		ND		ND
Butyl benzyl phthalate	ug/L			1		-				ND		ND		ND		ND
Chrysene	ug/L			-						8.6		ND		ND		ND
Dibenzo(a,h)anthracene	ug/L								Т	ND		ND		ND		ND

HISTORICAL ANALYTICAL RESULTS SURFACE WATER SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

Constituent		SW-1		SW-2	,	SW-3	<u> </u>	SW-4		SC-SW-0	1ISC-SW	-02	SC-SW-	03	SC-SW-04
of	Units	08/28/9		08/28/9		08/28/9		08/28/9		01/02/02			01/02/0		01/02/02
Interest		Primar		Primar		Primar		Primar		Primary	Prima		Primary		Primary
Dibenzofuran	ug/L		<u>, </u>		<u>, </u>		<u>, </u>		<u>, </u>	ND	2	J		J	ND ND
Diethyl phthalate	ug/L				Н				┢	ND	ND	Ť	ND	Ť	ND
Dimethyl phthalate	ug/L				Н				\vdash	ND	1	J	ND		ND
Di-n-butyl phthalate	ug/L				Н				H	ND	ND	Ť	ND		ND
Di-n-octyl phthalate	ug/L									ND	ND		ND		ND
Fluoranthene	ug/L									16	ND		ND		ND
Fluorene	ug/L									ND	ND		ND		ND
Hexachlorobenzene	ug/L				Н					ND	ND	1	ND		ND
Hexachlorobutadiene	ug/L	5	U	5	U	5	U	5	U	ND	ND		ND		ND
Hexachlorocyclopentadiene	ug/L		Ť		Ť		Ť		Ť	ND	ND		ND		ND
Hexachloroethane	ug/L								Н	ND	ND		ND		ND
Indeno(1,2,3-cd)pyrene	ug/L									6.5	ND		ND		ND
Isophorone	ug/L									ND	ND		ND		ND
Naphthalene	ug/L	5	U	5	U	5	U	3.15	J	ND	45	1	42		ND
Nitrobenzene	ug/L		Ť		Ť		Ť		Ť	ND	ND		ND		ND
N-Nitrosodiphenylamine	ug/L									ND	ND		ND		ND
N-Nitrosodipropylamine	ug/L									ND	ND		ND		ND
Pentachlorophenol	ug/L				Н				H	ND	ND	1	ND		ND
Phenanthrene	ug/L									5.1	ND		ND		ND
Phenol	ug/L				Н				┢	ND	ND	1	ND		ND
Pyrene	ug/L				Н				\vdash	19	ND	1	ND		ND
Metals	ug/ L									10	110		140	_	.,,,,
Aluminum	ug/L	l	Π		П	l	Π	l	П	67000	5500	Т	10000	П	1200
Antimony	ug/L									15	ND		ND		ND
Arsenic	ug/L									73	ND		ND		ND
Barium	ug/L									390	120		150		58
Beryllium	ug/L									ND	ND		ND		ND
Cadmium	ug/L									9.3	ND		ND		ND
Calcium	ug/L									200	180		190		160
Chromium (Dissolved)	ug/L														
Chromium (Total)	ug/L				П					3000	280		390		24
Chromium (Hexavalent, dissolved)	ug/L				П										
Cobalt	ug/L									62	ND		8.7		
Copper	ug/L									460	ND		31		ND
Iron	ug/L									16000	18000		29000		2400
Lead	ug/L				П					540	ND		29		ND
Magnesium	ug/L									600	250		270		490
Manganese	ug/L									3300	920		1100		310
Mercury	ug/L									8.8	ND		0.49		0.066
Nickel	ug/L									200	17		24		5.7
Potassium	ug/L									180	100		100		150
Selenium	ug/L									ND	ND		ND		ND
Silver	ug/L									8.1	ND		ND		ND
Sodium	ug/L									5000	2100		2300		4000
Thallium	ug/L									ND	ND		ND		ND
Vanadium	ug/L									250	ND		22		ND
Zinc	ug/L									1100	ND		86		ND
PCBs/Pesticides															_
Aroclor 1016	ug/L									ND	ND	П	ND		ND
Aroclor 1221	ug/L				П					ND	ND	T	ND		ND
Aroclor 1232	ug/L				П					ND	ND	t	ND	\dashv	ND
Aroclor 1242	ug/L				Н					ND	ND	t	ND	ᅦ	ND
Aroclor 1248	ug/L				Н				H	ND	ND	t	ND	ᅦ	ND
Aroclor 1254	ug/L				H					ND	ND	t	ND	ᅦ	ND
Aroclor 1260	ug/L				Н					ND	ND	1	ND	\dashv	ND
4,4'-DDD	ug/L				Н					ND	ND	t	ND	\dashv	ND
.,. 555	ug/∟	I	I			1		1		. 10	1 110		ן ייי		.,,,,

HISTORICAL ANALYTICAL RESULTS

SURFACE WATER SAMPLES - HACKENSACK RIVER (1996-2002)

Constituent		SW-1		SW-2	SW-3	,	SW-4		SC-SW-0	1 SC-SW-02	SC-SW-03	SC-SW-04
of	Units	08/28/9	6	08/28/96	08/28/9	96	08/28/9	6	01/02/02	01/02/02	01/02/02	01/02/02
Interest		Primar	y	Primary	Primar	у	Primary	/	Primary	Primary	Primary	Primary
4,4'-DDE	ug/L								ND	ND	ND	ND
4,4'-DDT	ug/L								ND	ND	ND	ND
Aldrin	ug/L								ND	ND	ND	ND
alpha-BHC	ug/L								ND	ND	ND	ND
alpha-Chlordane	ug/L			1					ND	ND	ND	ND
beta-BHC	ug/L								ND	ND	ND	ND
Chlordane	ug/L								ND	ND	ND	ND
delta-BHC	ug/L								ND	ND	ND	ND
Dieldrin	ug/L								ND	ND	ND	ND
Endosulfan I	ug/L								ND	ND	ND	ND
Endosulfan II	ug/L								ND	ND	ND	ND
Endosulfan sulfate	ug/L								ND	ND	ND	ND
Endrin	ug/L								ND	ND	ND	ND
Endrin aldehyde	ug/L								ND	ND	ND	ND
Endrin ketone	ug/L								ND	ND	ND	ND
gamma-Chlordane	ug/L			1					ND	ND	ND	ND
Heptachlor	ug/L								ND	ND	ND	ND
Heptachlor epoxide	ug/L								ND	ND	ND	ND
Lindane	ug/L								ND	ND	ND	ND
Methoxychlor	ug/L								ND	ND	ND	ND
Toxaphene	ug/L								ND	ND	ND	ND

HISTORICAL ANALYTICAL RESULTS

LAGOON SOLIDS SAMPLES AND PERIMETER BORING SOIL SAMPLES (1985-1987)

STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Lagoon Solids Samples

Constituent		A-1	A-2-SS	B-1	B-2-SS	C-1	C-1	C-2H-SS	C-2H-SS	D-1	D-2-SS	E-1	E-2-SS	E-3-SS
of	Units	03/10/87	03/10/87	03/10/87	03/10/87	02/27/87	02/27/87	02/27/87	02/27/87	02/26/87	02/26/87	02/26/87	02/26/87	02/26/87
	Units	0.5-1.5	1.8-2.2	0.4-1.2	3.5-4.8	0-0.8	0-0.8	1.2-2.1	1.2-2.1	0.1-0.9	2-2.5	0-0.5	0.8-1.3	1.6-1.9
Interest		Primary	Primary	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary
Polychlorinated	Dioxins a	nd Furans												
2,3,7,8-TCDD	ug/Kg	2.6	1.5 U	8.2	0.11 U	19.5	16.3	0.23	0.45 U	0.9 U	0.053 U	0.85	31.9	2.9
		•	•	•	•	•	•	•	•	•	•	•	•	
Constituent		E-4-SS	EL-1	EL-1	EL-3	F-1	F-4-SS	G-1	G-2-SS	H-1	H-2-SS	I-1	I-1H-NS	I-2-SS
Constituent		02/26/87	08/01/85	08/01/85	08/01/85	02/26/87	02/26/87	02/26/87	02/26/87	02/26/87	02/26/87	02/27/87	02/27/87	02/27/87
of	Units	2-2.3	0-0.5	0-0.5	0-0.5	0-0.6	5-5.5	0-0.8	1.5-2.5	0.2-1.2	1.7-2.1	0-0.8	0-0.8	1.3-1.8
Interest		Primary	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Polychlorinated	Dioxins a	nd Furans				·	,	Ţ	,	,		,	j	j
2,3,7,8-TCDD	ug/Kg	1.2	0.1 U	0.1 U	62.1	2.3	4.3	2.8	0.12 U	0.73 U	0.13 U	1.1 U	1.3	3.2
		•	•	•	•		•	•	•	•	•	•		
Comptitudent		I-3-SS	I-4-SS	J-1	J-3-SS	J-4-SS	K-1H	K-2-SS	K-3-SS	K-4-SS	L-1H	LD-1	M-1	M-2-SS
Constituent	l	02/27/87	02/27/87	02/27/87	02/27/87	02/27/87	03/12/87	03/12/87	03/12/87	03/12/87	03/11/87	08/01/85	03/12/87	03/12/87
of	Units	2.5-3.5	4.5-5.5	0.1-1.1	2.9-3.9	5-5.8	0.1-1.1	1.7-2.2	2.4-3.1	4.6-5.6	0.2-1.2	0-0.5	0-0.8	1.8-2.4
Interest		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Polychlorinated	Dioxins a													
2,3,7,8-TCDD	ug/Kg	38.4	6.2	11.2	237	148	69.6	2.7	6.1	3.7	0.71	3.1	0.36 U	0.084 U
7-7-7-	3. 3	, ,				- 1								
		N-1	N-1	N-2-SS	0-1	O-2-SS	P-1	P-2-SS	Q-1SS-NS	Q-1	Q-1D-SS	Q-2D-SS	R-1	R-2-SS
Constituent	l	03/12/87	03/12/87	03/12/87	03/13/87	03/13/87	03/13/87	03/13/87	03/11/87	03/11/87	03/11/87	03/11/87	03/17/87	03/17/87
of	Units	0-0.8	0-0.8	1.7-2.0	0-1.0	1.6-2.3	0-0.8	1.3-1.8	0.3-0.8	0.3-0.8	0.3-0.8	2.2-2.6	0-0.8	2.5-3.2
Interest		Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Polychlorinated	Dioxins a			, , , , , , , , ,	,	,	, , , , , , , , , , , , , , , , , , , ,	,	, , ,		,	,	,	,
2,3,7,8-TCDD	ug/Kg	0.62 U	0.49 U	0.18 U	0.33 U	0.028 U	0.6 U	0.11 U	8.2	0.56 U	0.26 U	0.089 U	15.3	62.1
. , , ,	0 0													
0 111 1		R-3-SS	R-4-SS	R-4-SS	S-1-SS	S-2-SS	T-1-SS	T-2-SS	WL-2	WL-2D				
Constituent		03/17/87	03/17/87	03/17/87	03/16/87	03/16/87	03/13/87	03/13/87	08/01/85	08/01/85				
of	Units	4.2-5.0	6-6.7	6-6.7	0.3-0.8	1.8-2.6	0.5-1.5	2.5-3.2	0-0.5	0-0.5				
Interest		Primary	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary				
Polychlorinated	Dioxins a			= = = = = = = = = = = = = = = = = = = =	- · · · · · · · · ·	- · · · · · · · · · · · ·		- · · · · · · · · · · ·		- · · · · · · ·				
2,3,7,8-TCDD	ug/Kg	190	46	43	0.41 U	0.076 U	0.23 U	0.21 U	55.6	45.2				
	-99		. <u> </u>		J U	3.0.0	JU	J J						

Lagoon Perimeter Boring Soil Samples

Constituent of Interest	Units	LP-1A 08/01/85 0-0.5 Primary		LP-1B 08/01/8 1.5-1.7 Primary	,	LP-2 08/01/8 0.5-W1 Primary	- 1	LP-3/ 08/01/8 0-0.5 Primar	35	LP-30 08/01/3 3.5-4 Primar	85	LP-4/ 08/01/8 0-0.5 Primar	35	LP-4I 08/01/3 6-6.5 Prima	85	LP-5 08/01/ 0-0. Prima	85 5	LP-5[08/01/3 3.6-4. Primai	85 1	LP-6A 08/01/8 0-0.5 Primary	5	LP-6E 08/01/8 0.5-W Primar	35 T	LP-7A 08/01/8 0-0.5 Primar	35	LP-76 08/01/8 1.7-2. Primar	85 .1
Polychlorinated	Dioxins a	nd Furans																									
2,3,7,8-TCDD	ug/Kg	0.05 l	J	0.12	U	0.67	U	0.02	U	0.17	U	0.16	U	0.15	U	0.1	U	0.01	U	0.03	U	0.05	U	0.09	U	0.38	U

TABLE B-15 HISTORICAL ANALYTICAL RESULTS LAGOON SOLIDS SAMPLES (1991) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	Units	ELS-1 01/01/9 [,] top Primary		ELS-2 01/01/9 ² bottom Primary		WLS-1 01/01/9 [,] top Primary	1	WLS-2 01/01/9 bottom Primary	1 า
Volatile Organics									
Benzene	mg/Kg	0.896		23.4		15	U	4.1	U
Chlorobenzene	mg/Kg	0.91	U	9.1	J	20	U	5.6	U
Ethylbenzene	mg/Kg	2.58		43.3		39.6		15.2	
Methylene chloride	mg/Kg	0.438		5.33		21.5		6.09	
Toluene	mg/Kg	3.05		63.1		33.8		15.3	
Semivolatile Organics									
1,2,4-Trichlorobenzene	mg/Kg	5.8	U		U	130	U	170	U
1,2-Dichlorobenzene	mg/Kg	22.1		290	כ	130	U	170	U
1,3-Dichlorobenzene	mg/Kg	5.8	U	290	U	130	U	170	U
1,4-Dichlorobenzene	mg/Kg	40		660	U	290	U	400	U
2,4-Dimethylphenol	mg/Kg	17600		3490		21900		2770	
Acenaphthene	mg/Kg	529		3650		6070		2090	
Anthracene	mg/Kg	180		290	J	1700		190	
Benzo(a)anthracene	mg/Kg	24	U	1200	כ	520	J	720	С
Benzo(b)fluoranthene	mg/Kg	15	U	730	U	320	U	440	U
Fluoranthene	mg/Kg	115		330	J	903		200	С
Fluorene	mg/Kg	587		604		5150		717	
Hexachlorobenzene	mg/Kg	93.5		290	U	130	U	170	U
Naphthalene ⁽¹⁾	mg/Kg	815000		25200000		2040000		300000	
Phenanthrene	mg/Kg	715		820	U	5320		628	
Phenol	mg/Kg	4220		14100		1210		12100	
Pyrene	mg/Kg	32.2		290	U	663		170	U
Metals									
Antimony	mg/Kg	19	U	19		39	U	11	U
Arsenic	mg/Kg	3.1	U	5.1		33	U	9.5	U
Beryllium	mg/Kg	0.31	U	0.3	U	0.66	U	0.19	U
Cadmium	mg/Kg	0.62	U	0.61	J	1.3	U	0.39	
Chromium	mg/Kg	767		2080		200		521	
Copper	mg/Kg	200		64		480		66	
Lead	mg/Kg	570		4270		970		1200	
Mercury	mg/Kg	4.5		3.1		16		0.15	U
Nickel	mg/Kg	91		150		130		41	
Selenium	mg/Kg	7.5	U	7.5	U	3.3	U	0.94	U
Silver	mg/Kg	3.1	Ū	3	U	6.6	Ū	1.9	Ū
Thallium	mg/Kg	16	Ū	3	Ū	6.6	Ū	1.9	Ū
Zinc	mg/Kg	20		39		13	Ū	20	
RCRA Characteristics and Indicators									
Cyanide (Reactivity)	mg/Kg	12.58		14.3		58.7		98.7	

^{1.} Naphthalene results as reported by Weston exceed pure product concentration. Likely as quantitated by the laboratory by instruments outside linear calibration range.

							KLA	KNT, NEW JE	INGLI									
Constituent		SC-SED-04	4 SC-SED-05	SC-SED-06	SC-SED-07	SC-SED-08	SC-SED-09	SC-SED-10	SC-SED-11	1 SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-19	SC-SED-20
_	Units	01/02/02	01/02/02	01/02/02	01/02/02	01/02/02	01/02/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Of	Units																	
Interest		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organics																		
1,1,1-Trichloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylethyl-benzene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	mg/Kg	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
4-Methyl-2-pentanone	mg/Kg	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
Acetone	mg/Kg	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
Benzene	mg/Kg	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
Bromodichloromethane	mg/Kg	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND
Bromoform	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane Carbon disulfide	mg/Kg	ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND	ND ND	ND ND	ND ND
Carbon disulide Carbon tetrachloride	mg/Kg mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Chlorobenzene	mg/Kg	ND	ND ND	ND ND	0.86	ND	ND ND	ND ND	ND ND	ND ND	14	ND	ND ND	2.2	2	2	250	43
Chloroethane	mg/Kg	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Chloroform	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Chloromethane	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
cis-1,3-Dichloropropene	mg/Kg	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND
Cyclohexane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Dibromochloropropane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyltert-butylether	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	mg/Kg	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Semivolatile Organics		ND I	LID	LID	1 0 40	1 4 4 1	1 0 00 1	I NE I	LID	0.50	1 05 1	1 40	LND	1 40 1	l ND I	1 054	1 0000	4 7 1
1,2,4-Trichlorobenzene	mg/Kg	ND	ND ND	ND 0.4	0.43	1.4	0.32	ND	ND	0.59	2.5	1.3	ND 1.6	1.6	ND 0.70	0.51	2900	1.7
1,2-Dichlorobenzene	mg/Kg	ND	ND ND	0.4	0.4	0.93	0.23	ND ND	ND 0.00	1 1	6.4	3.3	1.6	4.7	0.76	0.87	5300	4.6
1,3-Dichlorobenzene	mg/Kg	ND	ND 0.20	0.22	0.2	0.84	0.3	ND 0.24	0.32	ND 0.24	12	5.5	2.9	9.6	1.2	0.83	3900	9.3
1,4-Dichlorobenzene	mg/Kg	ND ND	0.38 ND	0.35 ND	0.48	3	0.64	0.24	0.4 ND	0.31 ND	18 ND	8.9	5.1 ND	13	2.2	1.4	6000	21 ND
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dichlorophenol	mg/Kg mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dimethylphenol	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dinietriyiphenol	mg/Kg	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
2,4-Dinitrophenol	mg/Kg	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
2,6-Dinitrotoluene	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloronaphthalene	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol	mg/Kg	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
2-0111010pH6H0I	i iiig/Ng	טאו	טאו	ן אט	ן אט	טאו	ן אט ן	ן אט	טוו	ן אט	ן אט	טוו	ן אט	ן אט	אט	ן אט	ואט	ואט

							KEA	RNY, NEW JE	ERSEY									
Constituent		SC-SED-0	4 SC-SED-05	SC-SED-06	SC-SED-07	SC-SED-08	SC-SED-09	SC-SED-10	SC-SED-11	SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-19	SC-SED-20
Constituent of	Units	01/02/02	01/02/02	01/02/02	01/02/02	01/02/02	01/02/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Interest	Onits	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
2-Methylnaphthalene	mg/Kg	ND	ND	0.43	ND	1.4	2.2	ND	ND	3.9	0.66	ND	ND	ND	ND	ND	31	ND
2-Methylphenol	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	mg/Kg	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	mg/Kg	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenylphenyl ether	mg/Kg	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
4-Chlorophopulaband other	mg/Kg	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND
4-Chlorophenyl phenyl ether 4-Chloro-3-methylphenol	mg/Kg mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Methylphenol	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	0.29	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
4-Nitroaniline	mg/Kg	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
4-Nitrophenol	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
Acenaphthene	mg/Kg	ND	ND ND	0.23	0.15	2.4	0.7	ND ND	0.23	0.6	11	1.2	1.3	0.88	ND	ND	ND	ND
Acenaphthylene	mg/Kg	ND	ND ND	ND	ND ND	0.52	0.61	ND ND	ND ND	ND ND	1.4	0.87	1.3	0.71	ND	ND ND	ND	ND
Anthracene	mg/Kg	0.14	J ND	ND ND	ND ND	0.63	1.1	ND ND	0.33	ND ND	2.2	1.6	1.7	1.8	ND	ND	ND ND	ND
Azobenzene	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Benzo(a)anthracene	mg/Kg	0.49	J ND	0.5	ND	2	2.5	0.57	0.83	ND	6.4	6.1	4.7	7.6	0.068	1	6.8	0.52
Benzo(a)pyrene	mg/Kg	0.46	J ND	0.57	ND	2.2	3.2	0.73	0.86	ND	7.6	8.1	5.8	9.3	0.85	1.2	6.4	0.59
Benzo(b)fluoranthene	mg/Kg	0.64	0.45	0.85	0.18	3.2	4.5	0.92	1.1	0.35	11	11	7.8	12	1.2	1.7	11	0.87
Benzo(ghi)perylene	mg/Kg	0.25	J ND	0.4	ND	1.6	2.3	0.58	0.63	ND	4.5	4.8	3.3	4.7	0.66	0.83	5.3	0.5
Benzo(k)fluoranthene	mg/Kg	0.26	J ND	0.32	ND	1.2	1.8	0.36	ND	ND	3.2	3.9	3.1	4.5	0.44	0.62	3.7	ND
Benzoic acid	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl alcohol	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	mg/Kg	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	mg/Kg	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	1.4	2	21	1.3
Butyl benzyl phthalate	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND _	ND	ND	0.39	ND	ND	ND
Carbazole	mg/Kg																	
Chrysene	mg/Kg	0.64 ND	0.42 ND	0.68	0.14	2.5	3.8	0.8	ND	ND	ND 8.2	7.6	6.7 ND	9.6	0.91	1.3	9.2	0.8
Dibenzo(a,h)anthracene Dibenzofuran	mg/Kg mg/Kg	ND ND	ND ND	ND ND	ND ND	ND 1.6	ND 0.71	ND ND	ND ND	ND ND	3	ND 0.8	ND ND	ND 0.83	ND ND	ND ND	ND 3.3	ND ND
Diethyl phthalate	mg/Kg	0.34	J 1.3	0.49	0.2	0.21	0.71	0.34	0.31	ND ND	2.6	2.7	2.8	2.6	ND	ND ND	ND	ND
Dimethyl phthalate	mg/Kg	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
Di-n-butyl phthalate	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	mg/Kg	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.77	0.25	ND ND	0.88
Fluoranthene	mg/Kg	0.87	0.95	0.83	0.18	2.9	3.4	0.82	1.4	0.75	9.8	10	8.8	12	1.9	2	12	1.6
Fluorene	mg/Kg	ND	ND	ND ND	ND	1	0.29	ND ND	ND	ND	ND	ND	ND	0.62	ND	ND	ND	ND
Hexachlorobenzene	mg/Kg	ND	ND	ND	ND	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	mg/Kg	0.27	J ND	0.43	ND	1.8	2.5	0.58	0.62	ND	4.8	5.3	3.6	5.5	0.69	0.9	5.1	0.46
Isophorone	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/Kg	ND	1.9	0.52	0.41	4.5	6.3	ND	0.84	3.7	3.4	4.9	2.7	5.7	ND	0.97	23	ND
Nitrobenzene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodipropylamine	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	mg/Kg	ND	ND L 0.00	ND 0.70	ND	ND O	ND	ND	ND	ND 1.0	ND	ND 1.5	ND 10	ND	ND 0.74	ND	ND	ND 0.70
Phenanthrene	mg/Kg	0.23	J 0.66	0.73	0.14	2	1.7	0.33	0.79	1.2	3.3	4.5	4.3	4.9	0.71	0.82	9.6	0.76
Phenol	mg/Kg	ND 0.00	ND 0.04	ND 0.7	ND 0.40	ND	0.45	ND 0.70	0.31	0.37	ND	ND 0.0	ND 0.5	ND	ND 1.0	ND 1.0	ND 40	ND 1.4
Pyrene	mg/Kg	0.69	0.94	0.7	0.16	2.8	3.4	0.79	1.5	0.55	9.3	9.8	8.5	11	1.8	1.8	10	1.4
Polychlorinated Dioxins and Fura		0.0000	0.000	1 0.050	1 0 400 1	1 0 004	0.700	0.0404	1 0 0 470	1 0 0007	0.047	1 0 000	1 0 700	1 0 070	1 0 004	0.400	0.000	I 0.0000 I
1,2,3,4,6,7,8-HpCDD	ug/Kg	0.0236	0.206 34.1	0.252	0.133	0.231	0.799	0.0461	0.0472	0.0637	0.917	0.902	0.733 38.2	0.976	0.201	0.139	0.829	0.0838
1,2,3,4,6,7,8-HpCDF	ug/Kg	0.318		16.1	24.3	31.4	13.4	3.33	1.9	4.66	52.4	51.4		20.2	9.51	4.36	27.2	0.568
1,2,3,4,7,8,9-HpCDF	ug/Kg	0.01	J 1	0.486	0.737	0.859	0.378	0.0843	0.0504	0.12	1.54	1.69	1.05	0.548	0.246	0.104	0.617	0.0138

							KEA	RNY, NEW JE	ERSEY									
Comptituent		SC-SED-0	04 SC-SED-05	5 SC-SED-06	S SC-SED-07	SC-SED-08	SC-SED-09	SC-SED-10	SC-SED-11	SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-19	SC-SED-20
Constituent	Units	01/02/02			01/02/02	01/02/02	01/02/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02	01/03/02
Interest	Office	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
1,2,3,4,7,8-HxCDD	ug/Kg	0.00107	0.0246	0.0121	0.0144	0.0191	0.0143	0.00308	0.00193	0.00328	0.0701	0.0573	0.0462	0.0413	0.012	0.00766	0.0435	0.00459
1,2,3,4,7,8-HxCDF	ug/Kg	0.0997	9.85	4.88	7.65	9.09	4.33	0.952	0.587	1.35	18.5	17.8	12.1	5.11	2.43	1.19	7.24	0.178
1,2,3,6,7,8-HxCDD	ug/Kg	0.00274	0.0498	0.0413	0.0483	0.0555	0.0396	0.00722	0.00443	0.00822	0.152	0.157	0.119	0.11	0.0285	0.016	0.107	0.00506
1,2,3,6,7,8-HxCDF	ug/Kg	0.0143	1.45	0.634	0.993	1.08	0.604	0.13	0.102	0.206	2.67	2.67	1.98	0.947	0.392	0.191	1.34	0.0311
1,2,3,7,8,9-HxCDD	ug/Kg	0.0018	0.0238	0.0195	0.02	0.0252	0.0203	0.00242	0.00479	0.00505	0.0583	0.0989	0.0722	0.0973	0.0283	0.014	0.084	0.00496
1,2,3,7,8-PCDD	ug/Kg	0.000848	0.0237	0.0183	0.0103	0.0155	0.00986	0.00198	0.00193	0.00171	0.0589	0.0552	0.0434	0.0589	0.0158	0.00696	0.0467	ND U
1,2,3,7,8-PCDF	ug/Kg	0.0024	0.104	0.0768	0.0953	0.116	0.0848	0.0165	0.0189	0.0269	0.397	0.525	0.334	0.234	0.0948	0.0391	0.186	0.00743
2,3,4,6,7,8-HxCDF	ug/Kg	0.00521	J 0.605	0.291	0.505	0.613	0.283	0.0633	0.0578	0.101	1.26	0.859	0.748	0.537	0.188	0.0805	0.73	0.0185
2,3,4,7,8-PCDF 2,3,7,8-TCDD	ug/Kg	0.00989 0.00786	J 0.647 0.0146	0.46	0.557 0.00499	0.641	0.364 0.0051	0.0817 0.00695	0.0627 0.00153	0.108	1.43 0.0964	1.43 0.081	1.01 0.0917	0.668	0.221	0.116 0.00612	0.582 0.0851	0.0161 ND
2,3,7,8-TCDF	ug/Kg ug/Kg	0.00786	0.307	0.00633	0.00499	0.389	0.0051	0.00695	0.00153	0.00201	1.14	1.42	0.0917	0.05	0.00663	0.00612	0.0651	0.0152
OCDD	ug/Kg	0.0136	1.63	2.17	1.38	2.3	13.7	0.0492	0.0413	0.394	9.55	9.75	0.96	10	1.81	1.25	9.55	1.08
OCDF	ug/Kg	0.487	65.3	24.3	38.1	47.9	21	5.68	2.91	6.17	74.5	79.7	66.6	26	13.3	5.33	28	0.825
Total HpCDD	ug/Kg	0.467	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0512	0.0431	0.0252	0.00982	0.00466	0.0183	ND
Total HpCDF	ug/Kg	0.357	38.6	18.5	28.1	35.7	15.3	3.67	2.27	5.37	59.4	58.5	42.8	22.9	10.7	4.82	30.5	0.634
Total HxCDD	ug/Kg	0.0132	0.178	0.26	0.16	0.385	0.148	0.038	0.0317	0.037	1.2	1.27	0.757	0.952	0.207	0.0956	1.02	0.0653
Total HxCDF	ug/Kg	0.204	18	9.74	15.6	17.9	8.81	2.01	1.15	2.87	37.9	36.9	24.7	11.8	5.16	2.52	17.3	0.383
Total PeCDD	ug/Kg	0.0116	0.156	0.161	0.0749	0.193	0.1	0.0103	0.00581	0.0118	0.576	0.525	0.45	0.621	0.135	ND	0.508	0.0181
Total PeCDF	ug/Kg	0.0864	5.06	3.99	5.63	6.14	3.19	0.733	0.48	1	17.3	19.3	11.5	8.53	2.29	1.18	8.27	0.16
Polychlorinated Biphenyls (Aroclo			•	•	· ·	•		•	•	•	•	•	•		•	•		
Aroclor 1016	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	0.24	ND	ND	0.71	ND
Aroclor 1260	mg/Kg	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	mg/Kg	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	1.9	ND	ND	0.24	ND	ND ND	0.71	ND
Pesticides/Herbicides		L ND I	ND	LND	LND	L ND	L ND	I ND I	LND	LND	I ND I	LND	LND	LND	L ND	LND	L ND I	LND
4,4'-DDD 4,4'-DDE	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND 0.000	ND 0.000	ND ND	ND ND	ND ND	ND 0.02	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
4,4'-DDE 4,4'-DDT	mg/Kg mg/Kg	ND ND	ND ND	ND ND	ND ND	0.006 ND	0.008 ND	ND ND	ND ND	ND ND	0.03 ND	ND ND	0.04	ND ND	ND ND	ND ND	ND ND	ND ND
Aldrin	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
alpha-BHC	mg/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
alpha-Chlordane	mg/Kg	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND
beta-BHC	mg/Kg	ND	0.021	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.073	ND ND	ND	ND	0.031	0.015	ND	0.013
Chlordane	mg/Kg	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
delta-BHC	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.067	0.064	ND	ND	ND	ND	ND
Endosulfan I	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.089	ND	ND	ND	ND	ND
Endrin aldehyde	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.037	ND
gamma-Chlordane	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	mg/Kg	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	0.022	ND	ND	ND	ND	ND	ND
Lindane	mg/Kg	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Methoxychlor	mg/Kg	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND
Toxaphene	mg/Kg	ND	ND	ND	ND	ND L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals	me/1/s	12000	4700	1000	14000	I 4400 I	E200 I	I 10000 I	1500	1600	I 12000 I	1 12000 I	12000	12000	2000	2500	10000	1 9200 1
Aluminum	mg/Kg	12000	4700	1000	11000	4100	5300	19000	1500	1600	12000	12000	12000	13000	2800	2500	19000	8300
Antimony	mg/Kg	20	9.3	4.2	4.6	9.5	11	57	8.6	8.9	38	37	45	170	18	12	55	18
Arsenic Barium	mg/Kg	21 58	190	4.4 160	2.7 62	6.2 210	2.5 260	2.4 110	1.6 300	1.1	17 15	20 18	18 35	13	4.7 130	3.2 380	24 63	200
Beryllium	mg/Kg mg/Kg	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	0.6	0.72	0.61	0.76	ND ND	ND ND	0.68	
Derymum	j mg/kg	טא	טא	ן אט	טאו	עויו	עא	ן טעו	עא ן	ן אט	0.0	0.72	10.0	0.70	טאו	טא	00.0	ND U

Constituent of	Units	SC-SED-04 01/02/02	SC-SED-05 01/02/02	SC-SED-06 01/02/02	SC-SED-07 01/02/02	SC-SED-08 01/02/02	SC-SED-09 01/02/02	SC-SED-10 01/03/02	SC-SED-11 01/03/02	SC-SED-12 01/03/02	SC-SED-13 01/03/02	SC-SED-14 01/03/02	SC-SED-15 01/03/02	SC-SED-16 01/03/02	SC-SED-17 01/03/02	SC-SED-18 01/03/02	SC-SED-19 01/03/02	SC-SED-20 01/03/02
Interest		Primary																
Cadmium	mg/Kg	0.65	0.83	ND	0.46	0.43	ND	0.47	ND	ND	5	4.5	4.5	5.5	2.2	1.3	3.3	0.79
Calcium	mg/Kg	29000	210000	280000	59000	240000	220000	210000	310000	63000	53000	14000	20000	14000	260000	280000	7500	260000
Chromium	mg/Kg	3800	790	740	790	1600	2000	11000	1400	1500	5300	5100	7400	3800	1900	1600	5100	3700
Cobalt	mg/Kg	71	4.9	2.9	26	22	32	64	3.9	1.7	19	18	17	15	8	4.4	22	3.3
Copper	mg/Kg	17	26	9.3	130	73	74	12	16	11	170	250	250	320	54	34	210	25
Iron	mg/Kg	52000	42000	2400	23000	14000	22000	35000	5400	4100	57000	81000	65000	62000	24000	12000	77000	30000
Lead	mg/Kg	48	38	59	26	200	540	110	880	430	10000	3700	5200	30000	4400	3600	13000	330
Magnesium	mg/Kg	21000	18000	20000	13000	10000	25000	40000	12000	15000	6000	3800	4700	3400	7200	7400	4600	9500
Manganese	mg/Kg	740	1300	180	240	370	600	570	780	660	520	590	450	420	1900	1500	220	930
Mercury	mg/Kg	0.25	0.46	0.51	5.1	4.3	24	0.22	0.14	0.088	0.016	0.022	0.091	0.023	0.21	0.21	0.028	0.067
Nickel	mg/Kg	260	17	30	650	310	170	360	24	7.2	99	91	81	76	29	14	100	11
Potassium	mg/Kg	470	990	ND	520	210	300	ND	110	ND	750	1100	1200	840	240	180	780	270
Selenium	mg/Kg	ND	1.8	2.3	2.2	2.3	ND	ND	1.1	ND								
Silver	mg/Kg	ND	1.5	2.2	2.7	2.2	ND	ND	1.4	ND								
Sodium	mg/Kg	2300	13000	860	1700	1400	740	560	1600	1000	1500	960	990	850	1500	1300	350	2300
Thallium	mg/Kg	ND	2.4	2.2	2.4	3.2	ND	ND	ND	ND								
Vanadium	mg/Kg	720	37	30	100	150	310	280	21	15	200	200	240	210	76	41	320	86
Zinc	mg/Kg	210	92	56	160	140	120	110	71	71	1500	900	830	1600	1200	870	1000	100
RCRA Characteristics and Indica	itors																	
Corrosivity (pH)	SU																	
Cyanide (Reactivity)	mg/Kg																	
Total Organic Carbon	mg/Kg	5500	29000	15000	25000	27000	18000	11000	14000	12000	130000	120000	170000	120000	28000	16000	100000	14000

Constituent		SC-SED-21	1		SSW-SEI				SSW-SEI				SSW-SEI	
of	Units	01/03/02	01/01/9	1	01/01/9	1	01/01/9 ⁻	1	01/01/9	1	01/01/9	1	01/01/9	1
Interest		Primary	Primary	,	Primary	v	Primary	,	Primar	v	Primar	v	Primary	ν
Volatile Organics		j			·				·					
1,1,1-Trichloroethane	mg/Kg	ND												
1,1,2,2-Tetrachloroethane	mg/Kg	ND												
1,1,2-Trichloroethane	mg/Kg	ND												
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	ND												
1,1-Dichloroethane	mg/Kg	ND												
1,1-Dichloroethene	mg/Kg	ND												
1-Methylethyl-benzene	mg/Kg	ND												
1,2-Dibromoethane	mg/Kg	ND												L
1,2-Dichloroethane	mg/Kg	ND												L
1,2-Dichloroethene	mg/Kg	ND												L
1,2-Dichloropropane	mg/Kg	ND												
2-Butanone	mg/Kg	ND												L
2-Hexanone	mg/Kg	ND												Ĺ
4-Methyl-2-pentanone	mg/Kg	ND												Ţ
Acetone	mg/Kg	ND												Ĺ
Benzene	mg/Kg	ND	0.0149		0.016	U	8.1	U	18	U	1.5	U	0.005	Ţ
Bromodichloromethane	mg/Kg	ND												L
Bromoform	mg/Kg	ND												Ĺ
Bromomethane	mg/Kg	ND				L								\prod
Carbon disulfide	mg/Kg	ND												Ι
Carbon tetrachloride	mg/Kg	ND			-									Ι
Chlorobenzene	mg/Kg	41	1.484		0.0385		42.1		140		9.64		0.87	Τ
Chloroethane	mg/Kg	ND												Τ
Chloroform	mg/Kg	ND												
Chloromethane	mg/Kg	ND			-				-					Τ
cis-1,2-Dichloroethene	mg/Kg	ND												
cis-1,3-Dichloropropene	mg/Kg	ND												
Cyclohexane	mg/Kg	ND												
Dibromochloropropane	mg/Kg	ND												
Dibromochloromethane	mg/Kg	ND												L
Dichlorodifluoromethane	mg/Kg	ND												L
Ethylbenzene	mg/Kg	ND	0.021	U	0.026	U	13	U	29	U	2.4	U	0.045	L
Methyl Acetate	mg/Kg	ND												
Methylcyclohexane	mg/Kg	ND												
Methylene chloride	mg/Kg	ND	0.0136		0.01	U	5.2	U	15		1.36		0.023	L
Methyltert-butylether	mg/Kg	ND				L								Ĺ
Styrene	mg/Kg	ND				L								\prod
Tetrachloroethene	mg/Kg	ND												L
Toluene	mg/Kg	ND	0.018	U	0.021	U	11	U	24	U	2	U	0.011	Γ
Trichlorofluoromethane	mg/Kg	ND				匚								\prod
Vinyl chloride	mg/Kg	ND												Γ
Xylene (total)	mg/Kg	ND											0.049	Γ
Semivolatile Organics														
1,2,4-Trichlorobenzene	mg/Kg	25	5.6	U	0.68	U	190		257		13	U	0.59	Γ
1,2-Dichlorobenzene	mg/Kg	32	5.6	U	0.68	U	723		1070		13.3		1.1	Γ
1,3-Dichlorobenzene	mg/Kg	64	5.6	U	0.68	U	593		1010	L	35.2		0.8	ſ
1,4-Dichlorobenzene	mg/Kg	240	13	U	1.6	U	637		1170		48.5		1.9	Ţ
2,4,5-Trichlorophenol	mg/Kg	ND		oxdot		oxdot		oxdot				L		Ţ
2,4,6-Trichlorophenol	mg/Kg	ND												L
2,4-Dichlorophenol	mg/Kg	ND				L								Γ
2,4-Dimethylphenol	mg/Kg	ND	7.9	U	0.96	U	10	U	11	U	18	U	0.43	Ī
2,4-Dinitrophenol	mg/Kg	ND												Γ
2,4-Dinitrotoluene	mg/Kg	ND			-									Г
2,6-Dinitrotoluene	mg/Kg	ND			-									Г
2-Chloronaphthalene	mg/Kg	ND												Т
2-Chlorophenol	mg/Kg	ND												Т

			T					_				_		_
Constituent		SC-SED-21	SSW-SEI		SSW-SE		SSW-SED		SSW-SEI		SSW-SEC		SSW-SEI	
of	Units	01/03/02	01/01/9	1	01/01/9 ⁻	1	01/01/91	1	01/01/9	1	01/01/9 ⁻	1	01/01/9	1
Interest		D	B.:		.		D		D.:				.	
	// /	Primary	Primar	y	Primary	<u>/</u>	Primary	_	Primar	<u> </u>	Primary	<u>/</u>	Primar	<u>y</u>
2-Methylnaphthalene	mg/Kg	ND										_	1.6	╀.
2-Methylphenol	mg/Kg	ND				_						┝	0.43	L
2-Nitroaniline	mg/Kg	ND												╄
2-Nitrophenol	mg/Kg	ND										_		╄
3-Nitroaniline	mg/Kg	ND												┺
4,6-Dinitro-2-methylphenol	mg/Kg	ND												╄
4-Bromophenylphenyl ether	mg/Kg	ND												┺
4-Chloroaniline	mg/Kg	ND												┺
4-Chlorophenyl phenyl ether	mg/Kg	ND												┺
4-Chloro-3-methylphenol	mg/Kg	ND												上
4-Methylphenol	mg/Kg	ND												┺
4-Nitroaniline	mg/Kg	ND												┖
4-Nitrophenol	mg/Kg	ND												┖
Acenaphthene	mg/Kg	ND	5.6	U	0.68	U	7.86		7.6	U	13	U	2.3	L
Acenaphthylene	mg/Kg	ND												L
Anthracene	mg/Kg	1.8	5.6	U	0.68	U	7	כ	7.6	U	13	U	0.5	Ĺ
Azobenzene	mg/Kg	ND												
Benzo(a)anthracene	mg/Kg	9.7	23	U	2.8	U	29	כ	31	U	52	U	1.1	Γ
Benzo(a)pyrene	mg/Kg	6.7	7.3	U	0.89	U	37.7		27.9		17	U	1.2	
Benzo(b)fluoranthene	mg/Kg	ND	14	U	1.7	U	37.7		44.6		32	U	2.4	Г
Benzo(ghi)perylene	mg/Kg	ND	12	U	1.5	U	36.2		23.9		27	U	1.2	Г
Benzo(k)fluoranthene	mg/Kg	4.3												Т
Benzoic acid	mg/Kg	ND												Т
Benzyl alcohol	mg/Kg	ND												Т
Bis(2-chloroethoxy)methane	mg/Kg	ND												⇈
Bis(2-chloroethyl)ether	mg/Kg	ND												T
Bis(2-chloroisopropyl)ether	mg/Kg	ND												T
Bis(2-ethylhexyl)phthalate	mg/Kg	1.5	29	U	3.6	U	37	U	65.5		188		0.43	Τu
Butyl benzyl phthalate	mg/Kg	ND												Т
Carbazole	mg/Kg												0.22	T
Chrysene	mg/Kg	11	7.3	U	1.1		28		33.6		17	U	1.2	T
Dibenzo(a,h)anthracene	mg/Kg	ND		Ť								Ť		T
Dibenzofuran	mg/Kg	ND											1	T
Diethyl phthalate	mg/Kg	ND												T
Dimethyl phthalate	mg/Kg	ND										\vdash		✝
Di-n-butyl phthalate	mg/Kg	ND ND	29	U	3.6	U	37	U	40	U	67	U	0.17	t
Di-n-octyl phthalate	mg/Kg	ND ND		۲		۲		۲		۲		۲		t
Fluoranthene	mg/Kg	12	6.4	U	3.95		31.5		487		15	U	2.1	+
Fluorene	mg/Kg	ND	5.6	Ü	0.68	U	7	U	7.6	U	13	Ü	1	╆
Hexachlorobenzene	mg/Kg	ND		۲		۲		۲		۳		۲		╁
Hexachlorobutadiene	mg/Kg	ND ND										\vdash		H
Hexachlorocyclopentadiene	mg/Kg	ND										\vdash		╆
Hexachloroethane	mg/Kg	ND												╁
Indeno(1,2,3-cd)pyrene	mg/Kg	ND	11	U	1.3	U	48.3		27.8		25	U	1.5	╁
/1.7		ND		٢		۲						٢	1.5	╀
Isophorone Naphthalene	mg/Kg mg/Kg	1.1	4.7	U	0.879	\vdash	234	\vdash	8.8		11	U	3.4	╁
Nitrobenzene	mg/Kg	ND	4.7	٢		\vdash	234 	\vdash		\vdash		۲		╁
		ND ND				\vdash		\vdash		\vdash		\vdash		╁
N-Nitrosodiphenylamine	mg/Kg			\vdash		\vdash		\vdash				\vdash		╀
N-Nitrosodipropylamine	mg/Kg	ND		\vdash		\vdash		\vdash		\vdash		\vdash		╀
Pentachlorophenol	mg/Kg	ND 4.5			4.00	\vdash		\vdash	47.4	\vdash				╀
Phenanthrene	mg/Kg	4.5	16	U	4.88		23.5	 	47.4		36	U	1.8	
Phenol	mg/Kg	ND 44	4.4	U	0.53	U	5	U	6	U	10	U	0.43	ļι
Pyrene	mg/Kg	11	5.6	U	3.35	_	28.5	_	41.8		13	U	1.7	上
Polychlorinated Dioxins and Furans		0.450	T								ı			
1,2,3,4,6,7,8-HpCDD	ug/Kg	0.459				\vdash		\vdash		\vdash		\vdash		╄
1,2,3,4,6,7,8-HpCDF	ug/Kg	28.8				_		\vdash				<u> </u>		₩
1,2,3,4,7,8,9-HpCDF	ug/Kg	0.79		1		ı	l	ı		ı		ı		1

														RNY, NEW	
Constituent		SC-SED-2		SSW-SED-											_
of	Units	01/03/02		01/01/91		01/01/9	1	01/01/91	1	01/01/9	1	01/01/91	ı	01/01/9	1
Interest	Units														
litterest		Primary		Primary		Primary	/	Primary	/	Primar	y	Primary	/	Primar	/
1,2,3,4,7,8-HxCDD	ug/Kg	0.0298													
1,2,3,4,7,8-HxCDF	ug/Kg	6.7													乚
1,2,3,6,7,8-HxCDD	ug/Kg	0.0724													
1,2,3,6,7,8-HxCDF	ug/Kg	1.17													Г
1,2,3,7,8,9-HxCDD	ug/Kg	0.0469													Г
1,2,3,7,8-PCDD	ug/Kg	0.0319													Г
1,2,3,7,8-PCDF	ug/Kg	0.154													Г
2,3,4,6,7,8-HxCDF	ug/Kg	0.64	十												Г
2,3,4,7,8-PCDF	ug/Kg	0.517	_												Г
2,3,7,8-TCDD	ug/Kg	0.0217	\top												┢
2,3,7,8-TCDF	ug/Kg	0.414	十												Н
OCDD	ug/Kg	4.47	+												┢
OCDF	ug/Kg	44	+												⊢
Total HpCDD	ug/Kg	ND	+		_		\vdash								⊢
Total HpCDF		32.9	+		_		┝				H				⊢
Total HxCDD	ug/Kg	0.647	+		-		\vdash				\vdash				\vdash
Total HxCDF	ug/Kg	16.2	+		-		\vdash				\vdash				\vdash
	ug/Kg		+		_		\vdash		_		\vdash				\vdash
Total PeCDD	ug/Kg	0.455	+		_		\vdash				\vdash				\vdash
Total PeCDF	ug/Kg	5.33			_		_								ᆫ
Polychlorinated Biphenyls (Aroclors)		l la I	_		-			1							_
Aroclor 1016	mg/Kg	ND	_												ㄴ
Aroclor 1221	mg/Kg	ND	_												╙
Aroclor 1232	mg/Kg	ND													上
Aroclor 1242	mg/Kg	ND													上
Aroclor 1248	mg/Kg	ND													上
Aroclor 1254	mg/Kg	ND													上
Aroclor 1260	mg/Kg	ND													乚
Total PCBs	mg/Kg	ND													
Pesticides/Herbicides															
4,4'-DDD	mg/Kg	ND													
4,4'-DDE	mg/Kg	0.028													Г
4,4'-DDT	mg/Kg	ND													Г
Aldrin	mg/Kg	ND													Г
alpha-BHC	mg/Kg	ND													Г
alpha-Chlordane	mg/Kg	ND													Г
beta-BHC	mg/Kg	ND													Г
Chlordane	mg/Kg	ND	T												T
delta-BHC	mg/Kg	ND	\neg												г
Dieldrin	mg/Kg	ND	\top												Н
Endosulfan I	mg/Kg	ND	+												H
Endosulfan II	mg/Kg	ND	+		\dashv		\vdash								H
Endosulfan sulfate	mg/Kg	ND	+				\vdash								⊢
Endrin	mg/Kg	ND	+		-		\vdash								\vdash
Endrin aldehyde	mg/Kg	ND	+		-		\vdash				\vdash				\vdash
Endrin aldenyde Endrin ketone	mg/Kg	ND	+		-		\vdash		_		\vdash				\vdash
		ND ND	+		-		\vdash								\vdash
gamma-Chlordane	mg/Kg		+		-		\vdash								⊢
Heptachlor	mg/Kg	ND	+		-		\vdash				\vdash				⊢
Heptachlor epoxide	mg/Kg	ND	+		_		\vdash		_		\vdash				\vdash
Lindane	mg/Kg	ND	+		4		\vdash								\vdash
Methoxychlor	mg/Kg	ND	+				<u> </u>				_				\vdash
Toxaphene	mg/Kg	ND													L
Metals															
Aluminum	mg/Kg	11000													Ш
Antimony	mg/Kg	68		0.1		0.04		0.13		0.091		0.12		0.0207	L
Arsenic	mg/Kg	25		0.011		0.0036	U	0.014		0.02		0.021		0.0296	L
Barium	mg/Kg	320									L				L
Beryllium	mg/Kg	0.55		0.00078		0.00051		0.0014		0.0004	U	0.0015		0.0004	ī

Constituent	T	SC-SED-21	SSW-SE	D-1	SSW-SE)-2	SSW-SED)-3	SSW-SE)-4	SSW-SE)-5	SSW-SED)-6
of	Units	01/03/02	01/01/9	1	01/01/9 ⁻	1	01/01/9 ⁻	1	01/01/9	1	01/01/9 ⁻	1	01/01/9 ⁻	i
Interest		Primary	Primary	y	Primary	/	Primary	,	Primary	,	Primary	,	Primary	,
Cadmium	mg/Kg	2.6	0.0048		0.0045		0.0081		0.00081	U	0.012		0.00682	
Calcium	mg/Kg	6800											1	
Chromium	mg/Kg	2100	12.7		5.56		16.4		0.93		12.6		1.09	
Cobalt	mg/Kg	8.9											-	
Copper	mg/Kg	320	0.073		0.025		0.17		0.22		0.25		0.401	
Iron	mg/Kg	42000											-	
Lead	mg/Kg	3500	0.14		0.07		1.2		15.5		5.3		0.156	
Magnesium	mg/Kg	4800											-	
Manganese	mg/Kg	120											ı	
Mercury	mg/Kg	0.47	0.0013		0.0012		0.0012		0.00098		0.0036		0.0245	
Nickel	mg/Kg	37	0.099		0.065		0.19		0.049		0.11		0.718	
Potassium	mg/Kg	820											1	
Selenium	mg/Kg	2.4	0.0015	U	0.0018	U	0.0059	כ	0.002	U	0.0034	U	0.002	J
Silver	mg/Kg	0.9	0.0042		0.0051		0.006		0.004	U	0.0069	U	0.004	J
Sodium	mg/Kg	570											-	
Thallium	mg/Kg	ND	0.0029	U	0.0036	U	0.0037	כ	0.004	J	0.0069	U	0.004	J
Vanadium	mg/Kg	140											-	
Zinc	mg/Kg	570	0.29		0.17		0.64		0.12		1.85		0.298	
RCRA Characteristics and Indicators														
Corrosivity (pH)	SU												-	
Cyanide (Reactivity)	mg/Kg		0.0015	U	0.00386		0.00548		0.002	U	0.01033		0.0015	
Total Organic Carbon	mg/Kg	160000												

TABLE B-17 HISTORICAL ANALYTICAL RESULTS - SEDIMENT SAMPLES (1991) STANDARD CHLORINE SITE KEARNY, NEW JERSEY

Constituent of Interest	Units	S-1 01/01/9 [,] 0 Primary		S-2 01/01/9 0 Primary	
Volatile Organics					
Benzene	mg/Kg	0.016	U	0.0584	
Chlorobenzene	mg/Kg	0.021	U	1.95	
Ethylbenzene	mg/Kg	0.026	U	0.095	U
Methylene chloride	mg/Kg	0.01	U	0.0611	L.,
Toluene	mg/Kg	0.021	U	0.079	U
Semivolatile Organics	" "				
1,2,4-Trichlorobenzene	mg/Kg	0.776		60.2	
1,2-Dichlorobenzene	mg/Kg	0.68	U	125	
1,3-Dichlorobenzene	mg/Kg	1.47		109	
1,4-Dichlorobenzene	mg/Kg	2.09		202	
2,4-Dimethylphenol	mg/Kg	0.96	U	3.5	U
Acenaphthene	mg/Kg	0.68	U	2.5	U
Anthracene	mg/Kg	0.68	J	2.5	U
Benzo(a)anthracene	mg/Kg	2.8	U	10	U
Benzo(a)pyrene	mg/Kg	0.89	U	3.3	U
Benzo(b)fluoranthene	mg/Kg	1.7	U	6.3	U
Benzo(ghi)perylene	mg/Kg	1.5	U	5.3	C
Bis(2-ethylhexyl)phthalate	mg/Kg	17.8		13	U
Chrysene	mg/Kg	0.89	U	3.3	U
Di-n-butyl phthalate	mg/Kg	8.6	U	13	U
Fluoranthene	mg/Kg	0.78	U	2.9	U
Fluorene	mg/Kg	0.68	U	2.5	U
Indeno(1,2,3-cd)pyrene	mg/Kg	1.3	U	4.8	U
Naphthalene	mg/Kg	0.57	J	2.1	U
Phenanthrene	mg/Kg	1.9	U	7	U
Phenol	mg/Kg	0.53	\supset	2	U
Pyrene	mg/Kg	0.68	J	2.5	U
Metals					
Antimony	mg/Kg	0.026		0.0079	U
Arsenic	mg/Kg	0.0052		0.0084	
Beryllium	mg/Kg	0.00036	U	0.00025	
Cadmium	mg/Kg	0.0021		0.0018	
Chromium	mg/Kg	3.44		0.1	
Copper	mg/Kg	0.04		0.066	
Lead	mg/Kg	0.051		0.39	
Mercury	mg/Kg	0.00083		0.00019	
Nickel	mg/Kg	0.014		0.024	
Selenium	mg/Kg	0.0018	U	0.00066	U
Silver	mg/Kg	0.0036	U	0.0013	U
Thallium	mg/Kg	0.0036	U	0.0013	U
Zinc	mg/Kg	0.098		0.738	
RCRA Characteristics and Indicators					
Cyanide (Reactivity)	mg/Kg	0.0018	U	0.00066	U

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

							ARNY, NEW JE									
Constituent		SED-A1	SED-A2	SED-A3	SED-A4	SED-B1	SED-B2	SED-B3	SED-C1	TPS-A1-1	TPS-A1-5	TPS-A1-10	TPS-A2-1	TPS-A2-5	TPS-A2-10	TPS-A3-1
of	Units	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	01/17/00	01/19/00	01/19/00	01/17/00	01/17/00	01/19/00	01/17/00
Interest		0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	Drive and	5 Drimow,	10	1 Drive	5 Drimon.	10	1 Drimowy
Valatila Organica		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organics		I 0.0004 II	11 0 040 1	11 0 044 111	J 0.0091 LU	I 0.044 II	11 0 0070 11	11 0 007 11	II 0 0070 III		т т	т т	т т	т т		
1,1,1-Trichloroethane 1,1,1,2-Tetrachloroethane	mg/Kg	0.0094 L 0.0094 L	U 0.012 U 0.012	U 0.014 U U 0.014 U		0.0		J 0.007 L J 0.007 L	J 0.0079 U J 0.0079 U	 						
	mg/Kg	0.0094 L	U 0.012	U 0.014 U	J 0.0091 U				J 0.0079 U							
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/Kg mg/Kg	0.0094 L		U 0.014 U	J 0.0091 U	0.011 U	J 0.0076 L J 0.0076 L		J 0.0079 U							
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg	0.0094														
1,1-Dichloro-1-propene	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L		J 0.0079 U							
1,1-Dichloroethane	mg/Kg	0.0094 L	U 0.012	U 0.014 U	0.0091 U	0.011			J 0.0079 U							
1,1-Dichloroethene	mg/Kg	0.0094 L	U 0.012	U 0.014 U	0.0091 U	0.011			J 0.0079 U			 		 	 	
1-Methylethyl-benzene	mg/Kg									 	 	 		 	 	
1,2-Dibromoethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	0.0091 U	0.011	J 0.0076 L		J 0.0079 U		 	 		 	 	
1.2-Dibromoethane	mg/Kg									 	 	 		 	 	
1,2-Dibromo-3-chloropropane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U						 	
1,2-Dichloroethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	0.0091 U	0.011	J 0.0076 L		J 0.0079 U						 	
1,2-Dichloroethene	mg/Kg															
1,2-Dichloropropane	mg/Kg	0.0094 L		U 0.014 U	0.0091 U	0.011	J 0.0076 L		J 0.0079 U							
1,2,4-Trimethylbenzene	mg/Kg	0.0094 L	J 0.00451	J 0.0404	0.0091 U	0.011		J 0.007 L							 	
1,3-Dichloropropane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	0.0091 U	0.011		J 0.007 L								
1,3,5-Trimethylbenzene	mg/Kg	0.0094 L		U 0.014 U	0.0091 U	0.011		J 0.007 L								
2-Butanone	mg/Kg															
2-Hexanone	mg/Kg		1													
2,2-Dichlororopane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
4-Methyl-2-pentanone	mg/Kg															
Acetone	mg/Kg		1													
Benzene	mg/Kg	0.0094 L	J 0.012	U 0.00468 J	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U	ND	ND	0.741	ND	ND	ND	ND
Bromobenzene	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Bromochloromethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Bromodichloromethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Bromoform	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Bromomethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Butylbenzne	mg/Kg	0.0094 L	J 6.52	J 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Carbon disulfide	mg/Kg															
Carbon tetrachloride	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Chlorobenzene	mg/Kg	0.0094 L	J 0.0336	0.0112 J	0.0091 U	0.011 l	J 0.0076 L	J 0.007 L	J 0.0079 U	ND	ND	5.71	ND	ND	ND	6.26
Chloroethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Chloroform	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L		J 0.0079 U							
Chloromethane	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
cis-1,2-Dichloroethene	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
cis-1,3-Dichloropropene	mg/Kg															
Cumene	mg/Kg	0.0094 L	J 0.00552	J 0.0173	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Cyclohexane	mg/Kg															
Dibromochloropropane	mg/Kg															
Dibromochloromethane	mg/Kg	0.0094 L	J 0.012		J 0.0091 U			J 0.007 L								
Dichlorodifluoromethane	mg/Kg	0.0001	J 0.012		J 0.0091 U			J 0.007 L								
Dibromomethane	mg/Kg	0.0094 L	J 0.012		J 0.0091 U				J 0.0079 U							
Ethylbenzene	mg/Kg	0.0094 L	J 0.012	U 0.0157	0.0091 U	0.011		J 0.007 L		ND			ND			ND
m - and p-Xylenes	mg/Kg	0.0094 L	J 0.012	U 0.00779 J	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							
Methyl Acetate	mg/Kg															
Methylcyclohexane	mg/Kg															
Methylene chloride	mg/Kg	0.0683	J 0.0093	J 0.0099 J	0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.00871							
Methyltert-butylether	mg/Kg															
n-Propylbenzene	mg/Kg	0.0094 L	J 0.012		J 0.0091 U			J 0.007 L								
o-Chlorotoluene	mg/Kg	0.0094 L	J 0.012		J 0.0091 U			J 0.007 L								
o-Xylene	mg/Kg	0.0094 L	J 0.012		J 0.0091 U				J 0.0079 U							
p_Chlorotoluene	mg/Kg	0.0094 L	J 0.012	U 0.014 U	J 0.0091 U	0.011	J 0.0076 L	J 0.007 L	J 0.0079 U							

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

Constituent		SED-A1	050.40													
Odlistituciit		JED-AI	SED-A2	SED-A3	SED-A4	SED-B1	SED-B2	SED-B3	SED-C1	TPS-A1-1	TPS-A1-5	TPS-A1-10	TPS-A2-1	TPS-A2-5	TPS-A2-10	TPS-A3-1
of	Units	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	08/29/96	01/17/00	01/19/00	01/19/00	01/17/00	01/17/00	01/19/00	01/17/00
Ψ.	Units	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	1	5	10	1	5	10	1
Interest		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
p_Cymene	mg/Kg	0.0094 U	J 0.00791 J	0.0428	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
sec-Butylbenzne	mg/Kg	0.0094 U	J 0.00184 J	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
Styrene	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
tert-Butylbenzene	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
Tetrachloroethene	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U	ND	ND	1.98	ND	ND	ND	ND
Toluene	mg/Kg	0.0094 U	J 0.012 U	0.00764 J	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U	ND			ND			ND
trans-1,2-Dichloroethene	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
trans-1,3-Dichloropropene	mg/Kg															
Trichloroethene	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
Trichlorofluoromethane	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
Vinyl chloride	mg/Kg	0.0094 U	J 0.012 U	0.014 U	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U							
Xylene (total)	mg/Kg									ND			ND			ND
Semivolatile Organics																
1,2,3-Trichlorobenzene	mg/Kg	0.0094 U	J 0.0111 J	0.0187	0.0091 U	0.011 U	0.0076 U		J 0.0079 U							
1,2,4-Trichlorobenzene	mg/Kg	0.0094 U	J 0.0405	0.0611	0.0091 U	0.011 U	0.0076 U	0.007 L	J 0.0079 U	ND	1.1	0.183	ND	ND	43.2	ND
1,2-Dichlorobenzene	mg/Kg	0.00419 J	0.16	0.164	0.00767 J	0.00478 J	0.00195 J	0.007 L	J 0.0079 U	ND	ND	13.4	ND	ND	766	0.64
1,3-Dichlorobenzene	mg/Kg	0.0187	0.145	0.0696	0.0315	0.00445 J	0.00162 J	0.007 L	0.00911	ND	ND	29.7	ND	ND	103	0.38
1,4-Dichlorobenzene	mg/Kg	0.0454	0.212	0.16	0.0791	0.0108 J	0.00373 J	0.00203	0.00617 J	ND	ND	26.4	ND	ND	759	0.42
2,4,5-Trichlorophenol	mg/Kg							T T								
2,4,6-Trichlorophenol	mg/Kg															
2,4-Dichlorophenol	mg/Kg															
2,4-Dimethylphenol	mg/Kg															
2,4-Dinitrophenol	mg/Kg															
2,4-Dinitrotoluene	mg/Kg															
2,6-Dinitrotoluene	mg/Kg															
2-Chloronaphthalene	mg/Kg															
2-Chlorophenol	mg/Kg															
2-Methylnaphthalene	mg/Kg							T T		ND	ND	ND	ND	ND	0.58	ND
2-Methylphenol	mg/Kg							T T								
2-Nitroaniline	mg/Kg															
2-Nitrophenol	mg/Kg															
3-Nitroaniline	mg/Kg															
4,6-Dinitro-2-methylphenol	mg/Kg															
4-Bromophenylphenyl ether	mg/Kg															
4-Chloroaniline	mg/Kg															
4-Chlorophenyl phenyl ether	mg/Kg															
4-Chloro-3-methylphenol	mg/Kg															
4-Methylphenol	mg/Kg															
4-Nitroaniline	mg/Kg															
4-Nitrophenol	mg/Kg															
Acenaphthene	mg/Kg						<u> </u>			ND	ND	ND	ND	ND	ND	0.25 J
Acenaphthylene	mg/Kg									ND	ND	ND	ND	ND	ND	2.22
Anthracene	mg/Kg									ND	ND	ND	ND	ND	ND	ND
Azobenzene	mg/Kg									ND	ND	ND	0.16 J	ND	ND	4.85
Benzo(a)anthracene	mg/Kg															
Benzo(a)pyrene	mg/Kg									ND	ND	ND	0.66	ND	ND	15
Benzo(b)fluoranthene	mg/Kg									0.77 J	ND	ND	0.54	ND	ND	13.2
Benzo(ghi)perylene	mg/Kg							T 1		ND	ND	ND	0.72	ND	ND	16.3
Benzo(k)fluoranthene	mg/Kg		1 1						T T	ND	ND	ND	0.4	ND	ND	4.5
Benzoic acid	mg/Kg							<u> </u>		ND	ND	ND	0.28	ND	ND	6.65
Benzyl alcohol	mg/Kg							1 1								
Bis(2-chloroethoxy)methane	mg/Kg		1					1 1	T T							
Bis(2-chloroethyl)ether	mg/Kg															
Bis(2-chloroisopropyl)ether	mg/Kg							<u> </u>								
	mg/Kg		 	<u> </u>	 		† <u></u> †	 	 	ND	ND	ND	ND	ND	ND	5.01

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

						KE	ARNY, NEW JE	KOET								
Constituent of	Units	SED-A1 08/29/96	SED-A2 08/29/96	SED-A3 08/29/96	SED-A4 08/29/96	SED-B1 08/29/96	SED-B2 08/29/96	SED-B3 08/29/96	SED-C1 08/29/96	TPS-A1-1 01/17/00	TPS-A1-5 01/19/00	TPS-A1-10 01/19/00	TPS-A2-1 01/17/00	TPS-A2-5 01/17/00	TPS-A2-10 01/19/00	TPS-A3-1 01/17/00
Interest	Offics	0-1 Primary	0-1 Primary	0-1 Primary	0-1 Primary	0-1 Primary	0-1 Primary	0-1 Primary	0-1 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary
Butyl benzyl phthalate	mg/Kg	T	T	1	T	<u> </u>	T	i i]	1	1			<u> </u>	i i	<u> </u>
Carbazole	mg/Kg															
Chrysene	mg/Kg									ND	ND	ND	0.53	ND	ND	11.2
Dibenzo(a,h)anthracene	mg/Kg									ND	ND	ND	ND	ND	ND	1.77
Dibenzofuran	mg/Kg					1		1		ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	mg/Kg							1								
Dimethyl phthalate	mg/Kg							1								
Di-n-butyl phthalate	mg/Kg					1		1 1								
Di-n-octyl phthalate	mg/Kg							1							I I	
Fluoranthene	mg/Kg							1		1.01	ND	ND	1.14	ND	ND	41.2
Fluorene	mg/Kg					1		1		ND	ND	ND	ND	ND	ND	0.61
Hexachlorobenzene	mg/Kg															
Hexachlorobutadiene	mg/Kg	0.0094 L	,		0.0091 U	0.011	U 0.0076 U	0.007	U	 			 	 	 	
Hexachlorocyclopentadiene	mg/Kg												 	 		
Hexachloroethane	mg/Kg		 	 	 	 		 	 	 	 	 	 	 	 	
Indeno(1,2,3-cd)pyrene	mg/Kg		+ +	† †	 	 		 	 	ND	ND	ND	0.36	ND	ND	4.91
Isophorone	mg/Kg		+ +	 	 	 		 	 							
Naphthalene	mg/Kg	0.00258 J	J 0.0335	0.367	0.00462 J	0.00357	J 0.00688 J	0.00744	J ND	200	0.323	ND	0.48	ND	40.9	0.64
Nitrobenzene	mg/Kg								3 ND							
N-Nitrosodiphenylamine	mg/Kg		 	 	 	 				 			 	 		
N-Nitrosodipropylamine	mg/Kg		 			 								 		
Pentachlorophenol	mg/Kg		 	 	 	 		 		 				 		
Phenanthrene	mg/Kg		 	 	+	 		 		ND ND	ND	ND	0.44	ND	ND	4.32
Phenol	mg/Kg				+											4.32
Pyrene	mg/Kg	 	+ +		+ +	 	+ +	+ +	 	1.01	ND	ND	0.97	ND	ND	26.9
2	i ng/kg									1.01	ן אט ן		0.97	I ND I	ן אט ן	20.9
Polychlorinated Dioxins and Furans 1,2,3,4,6,7,8-HpCDD	mg/Kg	I I	T T	Т Т	T T	T T	T T	1	T T	T T	T T	T T	Т Т	Т Т	T T	
1,2,3,4,6,7,8-HpCDF	mg/Kg		 		+ +		+ +							 		
1,2,3,4,0,7,8-HPCDF	mg/Kg		+ +						 	 				 		+
1,2,3,4,7,8,9-1 PCDF 1,2,3,4,7,8-HxCDD	mg/Kg			 				 		+ +				+ +		
1,2,3,4,7,8-HxCDF	mg/Kg		+ +	 	+ +					 		 	+		+ +	+
1,2,3,6,7,8-HxCDD	mg/Kg					 								+		
1,2,3,6,7,8-HxCDF	mg/Kg		 	 	+ +	 	 +	 	 +	+ +		 	+ +	 	 	
				 	 	 										
1,2,3,7,8,9-HxCDD	mg/Kg					 										
1,2,3,7,8-PCDD	mg/Kg					 										
1,2,3,7,8-PCDF	mg/Kg		 	 	 	 		 		 						
2,3,4,6,7,8-HxCDF	mg/Kg					 										
2,3,4,7,8-PCDF	mg/Kg					 				ND	 ND		ND	ND		 ND
2,3,7,8-TCDD	mg/Kg		 	 	 	 				ND	ND	ND	ND	ND	ND	ND
2,3,7,8-TCDF	mg/Kg					+		 		 						
OCDD	mg/Kg					 +		 		 						
OCDF T	mg/Kg															
Total HpCDD	mg/Kg												 	 		
Total HpCDF	mg/Kg					+										
Total HxCDD	mg/Kg															
Total HxCDF	mg/Kg															
T / LD 000	mg/Kg															
								<u> </u>				<u> </u>		<u> </u>		
Total PeCDF	mg/Kg															
Total PeCDD Total PeCDF PCBs	mg/Kg															
Total PeCDF PCBs Aroclor 1016			 		<u> </u>			<u></u>								
Total PeCDF PCBs Aroclor 1016 Aroclor 1221	mg/Kg			1												
Total PeCDF PCBs Aroclor 1016 Aroclor 1221	mg/Kg		<u> </u>		+ +	+	+ +	+	+ +	+ +	 	 	+	1	 	+ + 1
Total PeCDF PCBs Aroclor 1016 Aroclor 1221 Aroclor 1232	mg/Kg mg/Kg mg/Kg															
Total PeCDF PCBs	mg/Kg mg/Kg mg/Kg mg/Kg															

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

						KEA	RNY, NEW JEF	RSEY								
Constituent of Interest	Units	SED-A1 08/29/96 0-1	SED-A2 08/29/96 0-1	SED-A3 08/29/96 0-1	SED-A4 08/29/96 0-1	SED-B1 08/29/96 0-1	SED-B2 08/29/96 0-1	SED-B3 08/29/96 0-1	SED-C1 08/29/96 0-1	TPS-A1-1 01/17/00 1	TPS-A1-5 01/19/00 5	TPS-A1-10 01/19/00 10	TPS-A2-1 01/17/00 1	TPS-A2-5 01/17/00 5	TPS-A2-10 01/19/00 10	TPS-A3-1 01/17/00 1
Aroclor 1260	mg/Kg	Primary	Primary	Primary	Primary	Primary										
Total PCBs	mg/Kg										 					
Pesticides	IIIg/Kg						<u> </u>	<u> </u>			<u> </u>	<u> </u>				
4,4'-DDD	ma/ka		т т		T T		т т	г г	т т	т т	 		Т	т т	$\overline{}$	$\overline{}$
4,4'-DDE	mg/Kg mg/Kg						 				 					
4,4'-DDT	mg/Kg						 				 					
Aldrin	mg/Kg				+ +				 							
alpha-BHC	mg/Kg		 				 				 					
<u> </u>											 				 	
alpha-Chlordane	mg/Kg							 			 				 	
beta-BHC	mg/Kg										 					
Chlordane	mg/Kg						 				 				 	
delta-BHC	mg/Kg		 		 		 		 +		 				 	
Dieldrin	mg/Kg							 							 	
Endosulfan I	mg/Kg						 	 			 				 	
Endosulfan II	mg/Kg															
Endosulfan sulfate	mg/Kg															
Endrin	mg/Kg															
Endrin aldehyde	mg/Kg				 						 					
Endrin ketone	mg/Kg															
gamma-Chlordane	mg/Kg															
Heptachlor	mg/Kg															
Heptachlor epoxide	mg/Kg															
Lindane	mg/Kg															
Methoxychlor	mg/Kg															
Toxaphene	mg/Kg															
Metals																
Aluminum	mg/Kg															
Antimony	mg/Kg															
Arsenic	mg/Kg									19.5	0.443	1.97	8.8	76.4	1.9	31.4
Barium	mg/Kg															
Beryllium	mg/Kg									0.3	ND	ND	ND	ND	ND	0.6
Cadmium	mg/Kg									0.9	ND	ND	0.6	1.6	ND	2.4
Calcium	mg/Kg															
Chromium	mg/Kg									3207	9.5	24.7	3197	930	38.7	1280
Chromium (Hexavalent)	mg/Kg									ND	ND	ND	ND	73.1	3.81	ND
Cobalt	mg/Kg															
Copper	mg/Kg									45.4	29.9	6.48	17.4	199	10.7	150
Iron	mg/Kg															
Lead	mg/Kg									131	2.84	ND	81.4	236	3.9	178
Magnesium	mg/Kg															
Manganese	mg/Kg															
Mercury	mg/Kg									0.4	ND	ND	0.2	1.3	ND	4.4
Nickel	mg/Kg									208	2.68	5.34	173	107	8.8	68.4
Potassium	mg/Kg															
Selenium	mg/Kg															
Silver	mg/Kg									ND	ND	ND	ND	ND	ND	1.7
Sodium	mg/Kg															
Thallium	mg/Kg		1						1 1	ND	ND	0.091	ND	ND	0.2	ND
Vanadium	mg/Kg															
Zinc	mg/Kg									288	15.8	10	193	411	21.1	362
RCRA Characteristics and Indicators	<u> </u>															
	S.U.	6.88	6.63	6.2	7 7	7.52	7.5	7.50	4.46	T	T	Г	T T	T T	T T	T T
Corrosivity (pH)	3.0.	0.00	0.00	0.2	1 1	1.32 1	1 6.7	7.59	4.40 I		I I	I I			!	

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

						KE	ARNY, NEW	/ JERSEY								
Constituent of	Units	TPS-A3-5 01/17/00	TPS-A3-10 01/19/00	TPS-B1-1 01/17/00	TPS-B1-5 01/17/00	TPS-B1-10 01/18/00	TPS-B2-1 01/18/00	TPS-B2-5 01/18/00	01/18/00	TPS-B3-1 01/17/00	TPS-B3-5 01/17/00	TPS-B3-10 01/19/00	TPS-C1-1 01/17/00	TPS-C1-5 01/17/00	TPS-C1-10 01/19/00	TPS-C2-1 01/18/00
Interest		5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary
Volatile Organics		Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary	Filliary
1,1,1-Trichloroethane	mg/Kg	I I	T T		T T		I I	T T		T T	T T	T T	I I	I I		
1,1,1,2-Tetrachloroethane	mg/Kg				i i			 		i i						
1,1,2,2-Tetrachloroethane	mg/Kg				1 1			 		1 1						
1,1,2-Trichloroethane	mg/Kg				1											
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/Kg				1											
1,1-Dichloro-1-propene	mg/Kg															
1,1-Dichloroethane	mg/Kg															
1,1-Dichloroethene	mg/Kg															
1-Methylethyl-benzene	mg/Kg															
1,2-Dibromoethane	mg/Kg															
1,2-Dibromoethane	mg/Kg															
1,2-Dibromo-3-chloropropane	mg/Kg															
1,2-Dichloroethane	mg/Kg															
1,2-Dichloroethene	mg/Kg															
1,2-Dichloropropane	mg/Kg															
1,2,4-Trimethylbenzene	mg/Kg															
1,3-Dichloropropane	mg/Kg															
1,3,5-Trimethylbenzene	mg/Kg															
2-Butanone	mg/Kg															
2-Hexanone	mg/Kg															
2,2-Dichlororopane	mg/Kg															
4-Methyl-2-pentanone	mg/Kg															
Acetone	mg/Kg															
Benzene	mg/Kg	ND	ND	ND			ND			ND			ND			ND
Bromobenzene	mg/Kg															
Bromochloromethane	mg/Kg															
Bromodichloromethane	mg/Kg				 			 			 					
Bromoform	mg/Kg							 			 					
Bromomethane	mg/Kg			 	 			 			 					
Butylbenzne	mg/Kg			 	 			 			 					
Carbon disulfide	mg/Kg			 	 			 		 	 					
Carbon tetrachloride	mg/Kg	 ND														
Chlorobenzene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	0.69 J	ND	ND				
Chloroethane	mg/Kg				 			 		 	 					
Chloroform	mg/Kg							 		 	 					
Chloromethane cis-1,2-Dichloroethene	mg/Kg							 								
cis-1,2-Dichloroethene	mg/Kg															
Cumene	mg/Kg mg/Kg							 								
Cyclohexane	mg/Kg				 											
Dibromochloropropane	mg/Kg							 								
Dibromochloromethane	mg/Kg							 								
Dichlorodifluoromethane	mg/Kg				 			 								
Dibromomethane	mg/Kg				 			 			 					
Ethylbenzene	mg/Kg			ND ND	 		ND	+ +		ND	 	 	ND ND			ND
m - and p-Xylenes	mg/Kg				 			 			 					
Methyl Acetate	mg/Kg				 			 			 	 				
Methylcyclohexane	mg/Kg	 	 		 		+	+ +		 	 	 				
Methylene chloride	mg/Kg				 			+ +				 				
Methyltert-butylether	mg/Kg				 			 			 	 				
n-Propylbenzene	mg/Kg		 		 			 			 	 				
o-Chlorotoluene	mg/Kg		 		 			 			 	 				
o-Xylene	mg/Kg		 		 			 			 	 				
p_Chlorotoluene	mg/Kg							 								
P_011101010100110	ı mg/rvg		1									1				

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

Commerce Unite Street Commerce Com							KE	EARNY, NEV	V JERSEY								
Description		Units		01/19/00	1		01/18/00			01/18/00		1	01/19/00	1		01/19/00	TPS-C2-1 01/18/00
September 1990 - - - - - - - - -	.		5 Primary	1	1 Primary	1	1	1 Primary	1		1 Primary	1	1	1 Primary	1 *	1	1 Primary
Syrete	p_Cymene	mg/Kg				[T	T			1					
See Subfinishment	sec-Butylbenzne	mg/Kg															
February February	Styrene	mg/Kg															
Flat concentration																	
Tourise			ND	ND	ND	1 1		ND			ND			ND			ND
Trans-1_2-Decision Trans-1				 	+ + +	ND	0.22 J		ND	ND		ND	ND				ND
Italian-13-Dickinderpropoperate mg/kg					+ +		 			 	1	 	+ + + + + + + + + + + + + + + + + + + +	 	<u> </u>	 	
TimeNationApproximation	,		 		 	 	 	 	 		 	 			 	 	
Treatmentatementations							 	 	 			 	+ +		 	 	
Virgit childred mg/Kg				+ +	+ +	+ +	+	-		+ +	+ +	+ +	+ +	_	 	+	
Expense (redail) mg/Kg - m NO m m m NO m m m m m m m m m				+	 	+ +	+ +	_		+	+ +	+ +	+ +		+ +		
Semination Capanics Capanic	•			+		 	+ +			- 			+ +				ND
12.3 Tirkinotobranzen		I mg/Ng			I ND I						I ND I			I ND I			IND
12.4-Firefoloscherzene		ma/l/a	1	T T	T T	1 1	T T	, , , , , , , , , , , , , , , , , , ,	1	T T	T T	T T	T T	1	 	T	
1.2-Delinfordenzeme					 	+ +			+	+	+	+ +	+ + + + + + + + + + + + + + + + + + + +		+ +	+	
1.3-Dichlorobenzene														 	+ +		
1.4-Dishipothenenenenenenenenenenenenenenenenenenen	•														 	 	
24.6 Trichlorophenol																 	
2.4 Enterlorophenol			ND _	0.86	ND	ND L	ND	ND	ND I	0.47	ND	ND	ND			 	
2.4-Dintrophenol mg/Kg -	· ·																
2.4-Directlyphenol		mg/Kg															
24-Dinitrophenol mg/Kg	· · · · · · · · · · · · · · · · · · ·	mg/Kg															
2.4-Dinitrotoluene	2,4-Dimethylphenol	mg/Kg															
28-Dintrotoluene	2,4-Dinitrophenol	mg/Kg															
2-Chloropathalene	2,4-Dinitrotoluene	mg/Kg															
2-Chlorophenol mg/Kg ND ND ND ND ND ND ND N	2,6-Dinitrotoluene	mg/Kg															
2-Chlorophenol mg/Kg ND ND ND ND ND ND ND N	2-Chloronaphthalene	mg/Kg															
2-Methy/haphthalene	2-Chlorophenol																
2-Methylphenol mg/Kg			ND	ND	ND	ND	ND	ND	ND	4.8	0.35 J	ND	ND	4.4	J ND	ND	7 J
2-Nitropaniline					t t	+ +	1 1	 	1 1	<u> </u>	1 1	1 1		1	1 1	1 1	
2-Nitrophenol mg/Kg							+ +		 		+ +	 	1 1		 	 	
3-Nitroanline			 	 	 	 	 	 	 		† †	 	 	 	 	 	
4.6-Dinitro-2-methylphenol mg/Kg				+		 			1		+	+	+			+ +	
4-Chlorophenyl phenyl ether mg/Kg			+	+	 	 		+		- 	+	 	+ +	 			
4-Chlorophenyl phenyl ether mg/Kg			+	+ +	+ +	+ +	+ +	 	+	+ +	+ +	+ +	+ +	 	+ +	+	
4-Chlorophenyl phenyl ether				+ +	+ +	+ +	+ +		+	+ +	+ +	+ +	+ +	 	+ +	 	
4-Chloro-3-methylphenol mg/Kg				+	 	 				- 		 	+ + + + + + + + + + + + + + + + + + + +				
4-Methylphenol mg/Kg				+	 	+ +	+ +			- 	+	 	1 1		+ +		
4-Nitroaniline mg/Kg Image: control of the contro	, i			+ +	+ +	+ +	+			+ +	+ +	+ +	+ +	 	+ +	+	
4-Nitrophenol mg/Kg				+ +	+	+ +	+ +	-		+ +	+ +	+ +	+ +		+ +	+	
Acenaphthene mg/Kg ND ND ND ND ND ND ND N				+ +		 	+ +				+ +	 	+ +			†	
Acenaphthylene mg/Kg 0.33 J ND																	
Anthracene mg/Kg ND																	15.4
Azobenzene mg/Kg 0.3 ND	· · ·													50.4	0.4	ND	39.8
Benzo(a)anthracene mg/Kg																	
Benzo(a)pyrene mg/Kg 1.06 ND 0.76 ND ND ND 0.66 ND ND 4.31 ND ND 304 1.4 ND ND Benzo(b)fluoranthene mg/Kg 1.1 ND 1.07 ND ND ND ND 0.61 ND ND 0.61 ND ND 2.79 ND ND ND 281 2 ND ND Senzo(ghi)perylene mg/Kg 1.07 ND 2.67 ND ND ND 1.14 ND ND 2.76 ND ND ND 391 2.3 ND ND Senzo(k)fluoranthene mg/Kg 0.67 ND 0.63 ND ND 0.22 J ND ND 1.36 ND ND ND 219 1.5 ND ND Senzo(acid mg/Kg 0.33 J ND 1.93 ND ND ND 0.63 ND ND ND 1.13 ND ND ND 1.30 0.9 ND Senzyl alcohol mg/Kg	Azobenzene	mg/Kg	0.3	ND	ND	ND	ND	ND	ND	ND	1.98	ND	ND	75.2	0.4	ND	127
Benzo(b)fluoranthene mg/Kg 1.1 ND 1.07 ND ND ND 0.61 ND ND 2.79 ND ND 281 2 ND	Benzo(a)anthracene	mg/Kg															
Benzo(ghi)perylene mg/Kg 1.07 ND 2.67 ND ND 1.14 ND ND 2.76 ND ND 391 2.3 ND Benzo(k)fluoranthene mg/Kg 0.67 ND 0.63 ND ND ND ND 1.36 ND ND ND 219 1.5 ND Benzoic acid mg/Kg 0.33 J ND	Benzo(a)pyrene	mg/Kg	1.06	ND	0.76	ND	ND	0.66	ND	ND	4.31	ND	ND	304	1.4	ND	260
Benzo(k)fluoranthene mg/Kg 0.67 ND 0.63 ND ND 0.22 J ND ND 1.36 ND ND 219 1.5 ND Benzoic acid mg/Kg 0.33 J ND 1.93 ND ND ND ND 1.13 ND ND ND 130 0.9 ND Benzyl alcohol mg/Kg	Benzo(b)fluoranthene	mg/Kg	1.1	ND	1.07	ND	ND	0.61	ND	ND	2.79	ND	ND	281	2	ND	217
Benzo(k)fluoranthene mg/Kg 0.67 ND 0.63 ND ND 0.22 J ND ND 1.36 ND ND 219 1.5 ND Benzoic acid mg/Kg 0.33 J ND 1.93 ND ND ND ND 1.13 ND ND ND 130 0.9 ND Benzyl alcohol mg/Kg			1.07	ND	2.67	ND	ND	1.14	ND	ND	2.76	ND	ND	391	2.3	ND	310
Benzoic acid mg/Kg 0.33 J ND 1.93 ND ND 0.63 ND ND 1.13 ND ND 130 0.9 ND ND Benzyl alcohol mg/Kg	,																99.4
Benzyl alcohol mg/Kg	\ /																114
Bis(2-chloroethoxy)methane mg/Kg			1		1 1	1 1	 			- - - - - - - - - - 	1 -	1 1	 	1 1	1 1	1 1	
Bis(2-chloroethyl)ether mg/Kg				+ +	 	+ +	+ +	 		+ +	+ +	+ +	+ +		+ +		
	•			+ +		+ +	+ +			+ +		 	+ +		+ +		
	Bis(2-chloroisopropyl)ether	mg/Kg			 	 					 	+ +	 	 			
Bis(2-ethylhexyl)phthalate mg/Kg ND ND 0.33 J ND 0.51 0.96 ND ND 0.78 ND ND ND 0.4 ND																	5.8

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

						KE	ARNY, NEW	JERSEY								
Constituent of	Units	TPS-A3-5 01/17/00	TPS-A3-10 01/19/00	TPS-B1-1 01/17/00	TPS-B1-5 01/17/00	TPS-B1-10 01/18/00	TPS-B2-1 01/18/00	TPS-B2-5 01/18/00	01/18/00	TPS-B3-1 01/17/00	TPS-B3-5 01/17/00	TPS-B3-10 01/19/00	TPS-C1-1 01/17/00	TPS-C1-5 01/17/00	TPS-C1-10 01/19/00	TPS-C2-1 01/18/00
Interest		5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	1 Primary
Butyl benzyl phthalate	mg/Kg	1	1		1		1	<u> </u>	1	1	1	1			1	1
Carbazole	mg/Kg												27.1	ND	ND	32.9
Chrysene	mg/Kg	0.56	ND	0.6	ND	ND	0.34	ND	ND	2.97	ND	ND	259	0.8	ND	200
Dibenzo(a,h)anthracene	mg/Kg	ND	ND	ND U	ND	ND	ND	ND	ND	0.88	ND	ND	61.2	0.5	ND	37.8
Dibenzofuran	mg/Kg	ND	ND	ND U	ND	ND	ND	ND	0.68	ND	ND	ND	18.7	ND	ND	20.8
Diethyl phthalate	mg/Kg															
Dimethyl phthalate	mg/Kg															
Di-n-butyl phthalate	mg/Kg												ND	0.2 J	ND	ND
Di-n-octyl phthalate	mg/Kg															
Fluoranthene	mg/Kg	1.29	ND	1.28 J	ND	ND	0.79	ND	ND	4.41	ND	ND	740	2.2	ND	733
Fluorene	mg/Kg	ND	ND	ND	ND	ND	ND	ND	0.28	0.51	ND	ND	37.5	ND	ND	45.7
Hexachlorobenzene	mg/Kg															
Hexachlorobutadiene	mg/Kg															
Hexachlorocyclopentadiene	mg/Kg															
Hexachloroethane	mg/Kg															
Indeno(1,2,3-cd)pyrene	mg/Kg	0.55	ND	0.44 J	ND	ND	0.21 J	ND	ND	1.38	ND	ND	190	1.3	ND	94.4
Isophorone	mg/Kg															
Naphthalene	mg/Kg	0.34 J	J 0.29	4570	26.3	ND	0.73	ND	2.57	3.94	0.13	ND	28.3	0.4	ND	21.1
Nitrobenzene	mg/Kg															
N-Nitrosodiphenylamine	mg/Kg															
N-Nitrosodipropylamine	mg/Kg															
Pentachlorophenol	mg/Kg															
Phenanthrene	mg/Kg	0.85	ND	0.49 J	ND	ND	ND	ND	0.19 J	2.25	ND	ND	414	1	ND	521
Phenol	mg/Kg															
Pyrene	mg/Kg	1.81	ND	0.89	ND	ND	0.56	ND	ND	5.26	ND	ND	581	2.8	ND	503
Polychlorinated Dioxins and Furans																
1,2,3,4,6,7,8-HpCDD	mg/Kg															
1,2,3,4,6,7,8-HpCDF	mg/Kg															
1,2,3,4,7,8,9-HpCDF	mg/Kg															
1,2,3,4,7,8-HxCDD	mg/Kg															
1,2,3,4,7,8-HxCDF	mg/Kg															
1,2,3,6,7,8-HxCDD	mg/Kg															
1,2,3,6,7,8-HxCDF	mg/Kg															
1,2,3,7,8,9-HxCDD	mg/Kg															
1,2,3,7,8-PCDD	mg/Kg															
1,2,3,7,8-PCDF	mg/Kg															
2,3,4,6,7,8-HxCDF	mg/Kg															
2,3,4,7,8-PCDF	mg/Kg															
2,3,7,8-TCDD	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,7,8-TCDF	mg/Kg															
OCDD	mg/Kg															
OCDF	mg/Kg															
Total HpCDD	mg/Kg															
Total HpCDF	mg/Kg															
Total HxCDD	mg/Kg															
Total HxCDF	mg/Kg							 								
Total PeCDD	mg/Kg							 								
Total PeCDF	mg/Kg	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	
PCBs	1 00		1	,	,	,	,	, ,			1 '	1	1	· ·	1	
Aroclor 1016	mg/Kg															
Aroclor 1221	mg/Kg							 								
Aroclor 1232	mg/Kg															
Aroclor 1242	mg/Kg															
Aroclor 1248	mg/Kg							 								
Aroclor 1254	mg/Kg															

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

						KE	EARNY, NEW	/ JERSEY								
Constituent of Interest	Units	TPS-A3-5 01/17/00 5 Primary	TPS-A3-10 01/19/00 10 Primary	TPS-B1-1 01/17/00 1 Primary	TPS-B1-5 01/17/00 5 Primary	TPS-B1-10 01/18/00 10 Primary	TPS-B2-1 01/18/00 1 Primary	TPS-B2-5 01/18/00 5 Primary		TPS-B3-1 01/17/00 1 Primary	TPS-B3-5 01/17/00 5 Primary	TPS-B3-10 01/19/00 10 Primary	TPS-C1-1 01/17/00 1 Primary	TPS-C1-5 01/17/00 5 Primary	TPS-C1-10 01/19/00 10 Primary	TPS-C2-1 01/18/00 1 Primary
Aroclor 1260	mg/Kg															
Total PCBs	mg/Kg			 							 					
Pesticides																
4,4'-DDD	mg/Kg	I I	T T	T T			I I	T T		T T	T T		I	I I		T
4,4'-DDE	mg/Kg			I I												
4,4'-DDT	mg/Kg			I I							 					
Aldrin	mg/Kg															
alpha-BHC	mg/Kg															
alpha-Chlordane	mg/Kg															
beta-BHC	mg/Kg															
Chlordane	mg/Kg															
delta-BHC	mg/Kg															
Dieldrin	mg/Kg															
Endosulfan I	mg/Kg															
Endosulfan II	mg/Kg															
Endosulfan sulfate	mg/Kg															
Endrin	mg/Kg			 												
Endrin aldehyde	mg/Kg						+				 					
Endrin ketone	mg/Kg									 	 					
gamma-Chlordane	mg/Kg						 				 					
Heptachlor	mg/Kg						 	 			 					
Heptachlor epoxide	mg/Kg									 						
Lindane	mg/Kg		 +	 												
Methoxychlor Toxaphene	mg/Kg mg/Kg															
Metals	I IIIg/Ng															
Aluminum	mg/Kg	T T	T T	T T	T T	T T	T T	T T	T T	Т Т	Т Т	T T	I I	I I	T T	T T
Antimony	mg/Kg	 	 	 	 		 	+ +	 	 	 		 			
Arsenic	mg/Kg	112	2.03	7.91	6.21	0.28	38.9	0.78	1.38	105	2.06	2.6	15.1	14.6	0.75	10.5
Barium	mg/Kg															
Beryllium	mg/Kg	0.8	0.404	2	ND	ND	0.62	0.43	ND	0.869	ND	0.609	ND	ND	0.32	0.5
Cadmium	mg/Kg	1.5	ND	1.27	ND	ND	1.3	ND	ND	2.21	ND	0.259	1.3	ND	ND	3.3
Calcium	mg/Kg										 					
Chromium	mg/Kg	257	14.3	1079	143	6.59	5240	34.2	12.8	376	27	43	11700	14400	14.8	2790
Chromium (Hexavalent)	mg/Kg	4.29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.1	ND	ND	ND
Cobalt	mg/Kg															
Copper	mg/Kg	317	13.8	37	ND	1.44	110	4.78	15	295	7.34	20.7	50.7	12.4	9.78	115
Iron	mg/Kg															
Lead	mg/Kg	339	11.7	51.6	ND	3.46	192	7.84	4.27	337	5.63	11.8	119	25.6	5.34	118
Magnesium	mg/Kg															
Manganese	mg/Kg															
Mercury	mg/Kg	6.4	ND	0.098	0.159	0.03	6.5	0.1	ND 0.00	2.47	0.032	ND	1.2	2.2	ND 10.0	2.9
Nickel	mg/Kg	62.3	22	50.6	8.07	2.49	308	7.3	2.06	64.5	7.72	39.8	241	138	12.2	72.1
Potassium	mg/Kg						 				 					
Selenium	mg/Kg				 ND	 ND		 ND	 ND		 ND		 ND		 ND	
Silver	mg/Kg	2.2	ND	ND	ND	ND	0.86	ND	ND	2.31	ND	ND	ND	ND	ND	0.6
Sodium Thallium	mg/Kg	 ND	0.104	ND	ND	ND	0.29	ND	ND	0.42	ND	0.093	 ND	 ND	ND	0.2
Vanadium	mg/Kg mg/Kg		 	+ +			 		 	 	 		 		 	
Zinc	mg/Kg	388	 55	162	37.6	3.84	420	11.7	3.6	499	18.4	72.3	343	114	31.1	300
RCRA Characteristics and Indicators		300	<u> </u>	102	37.0	3.04	420	11./	3.0	1 499	10.4	12.3	343	114	31.1	300
Corrosivity (pH)	S.U.	T T	T T	Т Т	T T	T T	T T	T T	T T	Т Т	Т Т	T T	I I	I I	Т Т	T T
Total Organic Carbon	mg/Kg	19000	2300	58000	71000	45000	11000	18000	ND ND	18000	1400	3100	59000	49000	1000	40000
rotal Organic Carbon	i ilig/r\g	13000	2000	00000	7 1000	70000	11000	10000	ואט	10000	1700	0100	00000	70000	1000	70000

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

							EARNY, NEW		
Constituent		TPS-C2-5 01/18/00	TPS-C2-10 01/19/00	TPS-C3-1 01/18/00	TPS-C3-5 01/18/00		SC-SED-01 01/02/02	SC-SED-02 01/02/02	SC-SED-03 01/02/02
of	Units		10	1 01/10/00	5	10	01/02/02	01/02/02	01/02/02
Interest		5 Deimos:					Duimour	Deimoni	Duiman
Valatila Organica		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organics		т т	т т	т т	т т		T ND T	I ND I	L ND
1,1,1-Trichloroethane	mg/Kg	 		 			ND	ND	ND
1,1,1,2-Tetrachloroethane	mg/Kg	 		 	 		 ND	ND	 ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/Kg			 	 		ND ND	ND	ND
	mg/Kg			 			ND ND	ND ND	ND ND
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloro-1-propene	mg/Kg mg/Kg			++				I ND	IND
1,1-Dichloroethane	mg/Kg						ND	ND	ND
1,1-Dichloroethene	mg/Kg		 	+	+		ND ND	ND ND	ND
1-Methylethyl-benzene	mg/Kg			 	 		ND ND	ND ND	ND ND
1,2-Dibromoethane	mg/Kg			+ +	++		ND ND	ND ND	ND
1,2-Dibromoethane	mg/Kg	 		 	+ +				
1,2-Dibromo-3-chloropropane	mg/Kg	 	 	+ +	+ +		+ +		
1,2-Dichloroethane	mg/Kg	 	 	+ +	+ +		ND	ND	ND
1,2-Dichloroethene	mg/Kg	 		 	 		ND ND	ND ND	ND
1,2-Dichloropropane	mg/Kg	 	 	 	 		ND ND	ND ND	ND
1,2,4-Trimethylbenzene	mg/Kg	 	+ +	+ +	+ +	 			
1,3-Dichloropropane	mg/Kg	 		+ +	+ +		+ +		
1,3,5-Trimethylbenzene	mg/Kg	 		 	 		 		
2-Butanone	mg/Kg	 		 	 	 	ND	ND	ND
2-Hexanone	mg/Kg	 		 	 		ND ND	ND	ND
2,2-Dichlororopane	mg/Kg			 	 	 			
4-Methyl-2-pentanone	mg/Kg	 		 	 		ND	ND	ND
Acetone	mg/Kg	 		 	 		ND	ND	ND
Benzene	mg/Kg	 		ND	 		ND	ND	ND
Bromobenzene	mg/Kg								
Bromochloromethane	mg/Kg			1					
Bromodichloromethane	mg/Kg			 			ND	ND	ND
Bromoform	mg/Kg						ND	ND	ND
Bromomethane	mg/Kg						ND	ND	ND
Butylbenzne	mg/Kg								
Carbon disulfide	mg/Kg						ND	ND	ND
Carbon tetrachloride	mg/Kg						ND	ND	ND
Chlorobenzene	mg/Kg						ND	ND	ND
Chloroethane	mg/Kg						ND	ND	ND
Chloroform	mg/Kg						ND	ND	ND
Chloromethane	mg/Kg						ND	ND	ND
cis-1,2-Dichloroethene	mg/Kg						ND	ND	ND
cis-1,3-Dichloropropene	mg/Kg						ND	ND	ND
Cumene	mg/Kg								
Cyclohexane	mg/Kg						ND	ND	ND
Dibromochloropropane	mg/Kg						ND	ND	ND
Dibromochloromethane	mg/Kg						ND	ND	ND
Dichlorodifluoromethane	mg/Kg						ND	ND	ND
Dibromomethane	mg/Kg								
Ethylbenzene	mg/Kg			ND			ND	ND	ND
m - and p-Xylenes	mg/Kg								
Methyl Acetate	mg/Kg						ND	ND	ND
Methylcyclohexane	mg/Kg						ND	ND	ND
Methylene chloride	mg/Kg						ND	ND	ND
Methyltert-butylether	mg/Kg						ND	ND	ND
n-Propylbenzene	mg/Kg								
o-Chlorotoluene	mg/Kg								
o-Xylene	mg/Kg								
p_Chlorotoluene	mg/Kg								

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002)

	SEDIMENT SAMPLES - HACKENSACK RIVER (1996-) STANDARD CHLORINE SITE							(1000 2002)		
						KE	ARNY, NEW	JERSEY		
Constituent of	Units	TPS-C2-5 01/18/00	TPS-C2-10 01/19/00	TPS-C3-1 01/18/00	TPS-C3-5 01/18/00	TPS-C3-10 01/19/00	SC-SED-01 01/02/02	SC-SED-02 01/02/02	SC-SED-03 01/02/02	
Interest		5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	Primary	Primary	Primary	
p_Cymene	mg/Kg							1		
sec-Butylbenzne	mg/Kg							 		
Styrene	mg/Kg						ND	ND	ND	
tert-Butylbenzene	mg/Kg									
Tetrachloroethene	mg/Kg			ND			ND	ND	ND	
Toluene	mg/Kg			ND			ND	ND	ND	
trans-1,2-Dichloroethene	mg/Kg							1 1		
trans-1,3-Dichloropropene	mg/Kg						ND	ND	ND	
Trichloroethene	mg/Kg									
Trichlorofluoromethane	mg/Kg						ND	ND	ND	
Vinyl chloride	mg/Kg						ND	ND	ND	
Xylene (total)	mg/Kg			ND			ND	ND	ND	
Semivolatile Organics								= 1		
1,2,3-Trichlorobenzene	mg/Kg								I	
1,2,4-Trichlorobenzene	mg/Kg						ND	ND	ND	
1,2-Dichlorobenzene	mg/Kg						ND ND	ND ND	ND ND	
1,3-Dichlorobenzene	mg/Kg				 	 	ND	ND I	ND ND	
1,4-Dichlorobenzene	mg/Kg								J 0.59 J	
2,4,5-Trichlorophenol	mg/Kg						ND ND	ND ND	ND ND	
2,4,6-Trichlorophenol	mg/Kg	 	 		 	 	ND	ND ND	ND ND	
2,4-Dichlorophenol	mg/Kg	 			 	 	ND	ND ND	ND ND	
2,4-Dimethylphenol	mg/Kg					 	ND	ND ND	ND ND	
2,4-Dinitrophenol	mg/Kg		 		 	 	ND	ND ND	ND ND	
2,4-Dinitrophenol	mg/Kg		 		 	 	ND	ND ND	ND ND	
2,6-Dinitrotoluene	mg/Kg		 		 	 	ND	ND ND	ND ND	
2-Chloronaphthalene	mg/Kg					 	ND ND	ND ND	ND ND	
2-Chlorophenol	mg/Kg					 	ND	ND ND	ND ND	
2-Methylnaphthalene	mg/Kg	ND	ND	ND	ND	ND	1.9		J 0.55 J	
2-Methylphenol	mg/Kg						ND	ND ND	ND 8	
2-Nitroaniline	mg/Kg				 	 	ND	ND ND	ND ND	
2-Nitrophenol	mg/Kg					 	ND ND	ND ND	ND ND	
3-Nitroaniline	mg/Kg						ND	ND ND	ND ND	
4,6-Dinitro-2-methylphenol	mg/Kg	 			+ +		ND ND	ND ND	ND ND	
							ND ND	ND ND	ND ND	
4-Bromophenylphenyl ether	mg/Kg					+ +	ND ND	ND ND	ND ND	
4-Chloroaniline	mg/Kg									
4-Chlorophenyl phenyl ether	mg/Kg						ND ND	ND ND	ND ND	
4-Chloro-3-methylphenol	mg/Kg									
4-Methylphenol	mg/Kg							J ND ND	ND	
4-Nitroaniline	mg/Kg					 	ND		ND ND	
4-Nitrophenol	mg/Kg	 ND			 ND		ND 5.0	ND 1.0	ND ND	
Acenaphthene	mg/Kg	ND	ND	ND	ND	ND	5.6	1.2		
Acenaphthylene	mg/Kg	ND	ND	ND	ND	ND	10	2.5	5.7	
Anthracene	mg/Kg				 ND	ND				
Azobenzene	mg/Kg	0.2	ND	0.35	ND	ND	23 ND	4.6	7.4	
Benzo(a)anthracene	mg/Kg						ND C4	ND	ND 47	
Benzo(a)pyrene	mg/Kg	0.9	ND	1.66	0.2	ND ND	61	11	17	
Benzo(b)fluoranthene	mg/Kg	0.5	ND	1.76	0.1	ND ND	63	10	15	
Benzo(ghi)perylene	mg/Kg	0.8	ND	2.56	0.2	ND	74	13	20	
Benzo(k)fluoranthene	mg/Kg	0.3	ND	0.75	ND	ND	41	6.6	7.7	
Benzoic acid	mg/Kg	0.4	ND	1.08	ND	ND	27	5.2	5.7	
Benzyl alcohol	mg/Kg						ND	ND ND	ND	
Bis(2-chloroethoxy)methane	mg/Kg						ND	ND	ND	
Bis(2-chloroethyl)ether	mg/Kg						ND	ND	ND	
Bis(2-chloroisopropyl)ether	mg/Kg						ND	ND	ND	
Bis(2-ethylhexyl)phthalate	mg/Kg	ND	ND	7.04	ND	ND	4.7	ND	ND	

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

	KEARNY, NEW JERSEY									
Constituent of	Units	TPS-C2-5 01/18/00	01/19/00	TPS-C3-1 01/18/00	TPS-C3-5 01/18/00	TPS-C3-10 01/19/00	SC-SED-01 01/02/02	SC-SED-02 01/02/02	SC-SED-03 01/02/02	
Interest	Onits	5 Primary	10 Primary	1 Primary	5 Primary	10 Primary	Primary	Primary	Primary	
Butyl benzyl phthalate	mg/Kg	T	T	<u> </u>	T	1	ND I	ND I	ND I	
Carbazole	mg/Kg	ND	ND	ND	ND	ND	T T			
Chrysene	mg/Kg	0.4	ND	1.61	0.1	ND	60	11	15	
Dibenzo(a,h)anthracene	mg/Kg	ND	ND	0.23	ND	ND	2.3	0.71 J		
Dibenzofuran	mg/Kg	ND	ND	ND	ND	ND	6	1.1 J		
Diethyl phthalate	mg/Kg						0.21	ND	1	
Dimethyl phthalate	mg/Kg						ND	ND	ND	
Di-n-butyl phthalate	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	
Di-n-octyl phthalate	mg/Kg						ND	ND	ND	
Fluoranthene	mg/Kg	1.4	ND	3.61	ND	ND	97	20	31	
Fluorene	mg/Kg	ND	ND	ND	ND	ND	8.3	1.6	2.5	
Hexachlorobenzene	mg/Kg						ND	ND	ND	
Hexachlorobutadiene	mg/Kg						ND	ND	ND	
Hexachlorocyclopentadiene	mg/Kg						ND	ND	ND	
Hexachloroethane	mg/Kg						ND	ND	ND	
Indeno(1,2,3-cd)pyrene	mg/Kg	0.3	ND	0.75	ND	ND	43	7.2	9	
Isophorone	mg/Kg						ND I	ND ND	ND ND	
Naphthalene	mg/Kg	ND	ND	ND	ND	ND	7.1	2.8	3.6	
Nitrobenzene	mg/Kg						ND ND	ND ND	ND ND	
N-Nitrosodiphenylamine	mg/Kg	 	 	 	 		ND ND	ND ND	ND ND	
N-Nitrosodipropylamine	mg/Kg	 	 	 	+ +		ND ND	ND ND	ND	
Pentachlorophenol	mg/Kg	 	 	 	+ +		ND ND	ND ND	ND	
Phenanthrene	mg/Kg	0.4	ND	1.02	ND	ND	63	11	15	
Phenol	mg/Kg							J ND	ND ND	
Pyrene	mg/Kg	1.4	ND	2.96	0.4	ND ND	83	17	24	
Polychlorinated Dioxins and Furans	i iiig/Ng	1.4	IND	2.90	0.4	I ND	03	17		
1,2,3,4,6,7,8-HpCDD	mg/Kg	T T	T T	T T	Т Т	T T	0.102	0.218	0.244	
1,2,3,4,6,7,8-HpCDF	mg/Kg			+	+ +		0.102	1.86	1.6	
1,2,3,4,7,8,9-HpCDF	mg/Kg			 			0.0243	0.0621	0.052	
1,2,3,4,7,8-HxCDD	mg/Kg			 	+		0.0243	0.00462	0.00871	
1,2,3,4,7,8-HxCDF	mg/Kg		++	 	+		0.00400	0.525	0.548	
1,2,3,6,7,8-HxCDD			 	+ +	+ +	+	0.00984	0.0185	0.0249	
	mg/Kg			 	+		0.00964	0.0762	0.0249	
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	mg/Kg				+ +		0.042	0.0762	0.00	
	mg/Kg	 	+ +	+ +	+ +					
1,2,3,7,8-PCDD	mg/Kg		 +		 		0.00631	0.00802	0.00958	
1,2,3,7,8-PCDF	mg/Kg			 	 		0.0101	0.013	0.0144	
2,3,4,6,7,8-HxCDF	mg/Kg						0.0173	0.0446	0.0413	
2,3,4,7,8-PCDF	mg/Kg	 ND	 ND		 ND		0.0284	0.0602	0.06	
2,3,7,8-TCDD	mg/Kg	ND	ND	ND	ND	ND	0.0398	0.0961	0.0898	
2,3,7,8-TCDF	mg/Kg			 	 		0.0559	0.0937	0.101	
OCDD	mg/Kg						1.43	2.82	2.7	
OCDF	mg/Kg						1.06	2.95	2.67	
Total HpCDD	mg/Kg						0.0243	0.59	0.612	
Total HpCDF	mg/Kg						1.03	2.14	1.98	
Total HxCDD	mg/Kg						0.107	0.152	0.22	
Total HxCDF	mg/Kg						0.623	1.03	1.16	
Total PeCDD	mg/Kg						0.0255	0.0482	0.0533	
Total PeCDF	mg/Kg						0.233	0.544	0.575	
PCBs										
Aroclor 1016	mg/Kg						ND	ND	ND	
Aroclor 1221	ma/Ka						ND	ND	ND	
	mg/Kg									
Aroclor 1232	mg/Kg						ND	ND	ND	
		+ +					ND ND	ND ND	ND ND	
Aroclor 1232	mg/Kg									

HISTORICAL ANALYTICAL RESULTS

SEDIMENT SAMPLES - HACKENSACK RIVER (1996-2002) STANDARD CHLORINE SITE

			KEAKNY, NEW JE							-
Constituent		TPS-C2-5			I		TPS-C3-10	I		
of	Units	01/18/00	01/19/0	I	I		01/19/00 10	01/02/02	01/02/02	01/02/02
Interest		5	10	_ 1	· ·	5		1	1	1
	11.5	Primary	Primary	Prima	ary Prim	ary	Primary	Primary	Primary	Primary
Aroclor 1260	mg/Kg					_		ND	ND	ND
Total PCBs	mg/Kg	<u> </u>								
Pesticides			<u> </u>						1 1	1
4,4'-DDD	mg/Kg					_		ND	ND	ND
4,4'-DDE	mg/Kg				 	_		ND	ND	ND
4,4'-DDT	mg/Kg							ND	ND	ND
Aldrin	mg/Kg					_		ND	ND	ND
alpha-BHC	mg/Kg							ND	ND	ND
alpha-Chlordane	mg/Kg							ND	ND	ND
beta-BHC	mg/Kg							ND	ND	ND
Chlordane	mg/Kg							ND	ND	ND
delta-BHC	mg/Kg							ND	ND	ND
Dieldrin	mg/Kg					\perp		ND	ND	ND
Endosulfan I	mg/Kg							ND	ND	ND
Endosulfan II	mg/Kg					\perp		ND	ND	ND
Endosulfan sulfate	mg/Kg							ND	ND	ND
Endrin	mg/Kg							ND	ND	ND
Endrin aldehyde	mg/Kg							ND	ND	ND
Endrin ketone	mg/Kg							ND	ND	ND
gamma-Chlordane	mg/Kg							ND	ND	ND
Heptachlor	mg/Kg							ND	ND	ND
Heptachlor epoxide	mg/Kg							ND	ND	ND
Lindane	mg/Kg				T			ND	ND	ND
Methoxychlor	mg/Kg							ND	ND	ND
Toxaphene	mg/Kg				T			ND	ND	ND
Metals										
Aluminum	mg/Kg				T			8900	12000	11000
Antimony	mg/Kg							3.8	3.3	2.7
Arsenic	mg/Kg	0.6	2.36	13.5	0.5		0.75	20	12	12
Barium	mg/Kg							93	78	77
Beryllium	mg/Kg	ND	0.4	0.3	ND		0.32	0.59	0.77	0.73
Cadmium	mg/Kg	ND	ND	1.9	ND		ND	1.7	1.4	1.1
Calcium	mg/Kg							3400	6400	5800
Chromium	mg/Kg	51.3	25.5	4580	53		14.8	570	510	410
Chromium (Hexavalent)	mg/Kg	ND	ND	ND	ND		ND			
Cobalt	mg/Kg							9.4	62	11
Copper	mg/Kg	5.2	20.9	67.2	11.5		9.79	100	460	89
Iron	mg/Kg							21000	160000	29000
Lead	mg/Kg	3.1	7.52	100	2.7		5.34	160	540	97
Magnesium	mg/Kg							5100	600	7800
Manganese	mg/Kg							260	3300	440
Mercury	mg/Kg	0.1	ND	1.7	0.3	十	ND	1.7	200	0.59
Nickel	mg/Kg	2.2	15.3	94.1	2.1	\neg	12.2	31	8.8	34
Potassium	mg/Kg					十		1600	180	2100
Selenium	mg/Kg					十		0.77	ND	0.74
Silver	mg/Kg	ND	ND	0.6	ND	\top	ND	1.3	8.1	1.7
Sodium	mg/Kg				1	\dashv		4300	5000	8200
Thallium	mg/Kg	ND	ND	0.2	ND	十	ND	ND ND	ND ND	ND ND
Vanadium	mg/Kg					\top		36	250	36
Zinc	mg/Kg	8.3	39	224	94.2	\dashv	31.3	210	1100	190
RCRA Characteristics and Indicators					J 54.2		, 51.5		1 1100	100
Corrosivity (pH)	S.U.	T T	T				T T	T T		
Total Organic Carbon	mg/Kg	49000	890	17000		, 	450	39000	53000	39000
Total Organio Garbon	į ilig/rty	70000	000	17000	25000	<u> </u>	700	00000	00000	00000

SCSR ADDENDUM (MARCH 28, 2014)

SITE CHARACTERIZATION SUMMARY REPORT ADDENDUM

STANDARD CHLORINE CHEMICAL CO. INC. SUPERFUND SITE KEARNY, NEW JERSEY

Prepared for:

Performing Parties Group (Beazer East, Inc., Cooper Industries, LLC, Tierra Solutions, Inc. on behalf of Occidental Chemical Corporation, and Apogent Transition Corporation)

Prepared by:

Key Environmental, Inc.200 Third Avenue
Carnegie, Pennsylvania 15106

MARCH 2014

TABLE OF CONTENTS

1.0	INTRODUCTION							
	1.1	REPORT ORGANIZATION	1-2					
2.0	SITE	E CHARACTERIZATION ACTIVITIES	2-1					
	2.1	SURFACE SOIL SAMPLING AND ANALYSIS	2-1					
	2.2	SUBSURFACE SOIL CHARACTERIZATION	2-2					
	2.3	GROUNDWATER SAMPLING OF PZ-13L	2-4					
	2.4	FIELD QUALITY CONTROL SAMPLES	2-4					
	2.5	DATA VALIDATION	2-5					
	2.6	INVESTIGATION-DERIVED WASTE MANAGEMENT	2-6					
3.0	MOI	NITORING WELL/PIEZOMETER ABANDONMENT	3-1					
4.0	SUM	IMARY OF RESULTS	4- 1					
	4.1	SURFACE SOIL	4-1					
	4.2	SUBSURFACE SOIL						
		4.2.1 Meadow Mat and Sand Unit						
		4.2.2 Varved Clay Unit						
	4.3	GROUNDWATER ANALYTICAL RESULTS						
	4.4	DATA VALIDATION SUMMARY						
5.0	SUM	IMARY	5-1					
6.0	REF	ERENCES	 6- 1					

LIST OF FIGURES

- 1 Site Location Map
- 2 Delineation Boring Locations Map
- 3 Monitoring Well and Piezometer Abandonment Locations
- 4 Surface Soil Analytical Data
- 5 Meadow Mat and Sand Unit Soil Analytical Data
- 6 Delineation Borings DNAPL Observation
- 7 Varved Clay Surface Elevation Map
- 8 Varved Clay Surface Elevation Contour Map
- 9 Varved Clay Soil Analytical Data

LIST OF TABLES

- 1 Analytical Soil Sample Summary
- 2 Monitoring Well Abandonment
- 3 Surface Soils Volatile Organic Compounds
- 4 Surface Soils Semivolatile Organic Compounds
- 5 Surface Soils Metals
- 6 Surface Soils PCBs
- 7 Surface Soils PCDD/PCDF
- 8 Meadow Mat/Sand Unit Volatile Organic Compounds
- 9 Meadow Mat/Sand Unit –Semivolatile Organic Compounds
- 10 Meadow Mat/Sand Unit PCBs
- 11 Meadow Mat/Sand Unit PCDD/PCDF
- 12 Varved Clay Volatile Organic Compounds
- 13 Varved Clay Semivolatile Organic Compounds
- 14 Varved Clay Metals
- 15 PZ-13L Analytical Results

LIST OF APPENDICES

Appendix A Soil Boring Logs

ACROYNYMS

Agreement Administrative Settlement Agreement and Order on Consent for Remedial

Investigation/Focused Feasibility Study

AST Above-ground Storage Tank

BHHRA Baseline Human Health Risk Assessment

CSM Conceptual Site Model

DNAPL Dense Non-Aqueous Phase Liquid

Group Performing Parties Group

HCTS Hydraulic Control Treatment System

IDW Investigation Derived Waste IRM Interim Remedial Measure KEY Key Environmental, Inc.

MS/MSD Matrix Spike/Matrix Spike Duplicate
NJAC New Jersey Administrative Code

NJDEP New Jersey Department of Environmental Protection

ORP Oxidation Reduction Potential

PAHs Polynuclear Aromatic Hydrocarbons

PCBs Polychlorinated biphenyls

PCDD/PCDF Polychlorinated dibenzodioxins/Polychlorinated dibenzofurans

PDM Processed Dredge Material
PID Photoionization Detector

QA Quality Assurance QC Quality Control

RI/FFS Remedial Investigation/Focused Feasibility Study

RPD Relative Percent Difference RSL Regional Screening Level

SCCC Standard Chlorine Chemical Co. Inc.
SCSR Site Characterization Summary Report

SCSRA Site Characterization Summary Report Addendum

SOP Standard Operating Procedures

SOW Statement of Work

SVOC Semi-volatile Organic Compounds

TCDD Tetrachlorodibenzo-p-dioxin

TCL Target Compound List

TEQ Toxicity Equivalency Quotient

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

1.0 INTRODUCTION

This Site Characterization Summary Report Addendum (SCSRA) for the Standard Chlorine Chemical Co. Inc. (SCCC) Site (Site) located in Kearny, New Jersey has been prepared by Key Environmental, Inc. (KEY), on behalf of the Performing Parties Group ("Group"). The Group is comprised of Beazer East, Inc., Cooper Industries, LLC, Tierra Solutions, Inc., on behalf of Occidental Chemical Corporation, and Apogent Transition Corporation. The Site location is shown on Figure 1. The purpose of this SCSRA is to present supplemental site characterization data that were collected to address the data needs for the Site as identified in the original Site Characterization Summary Report (SCSR). These data, along with data acquired during previous Site investigations will be more fully evaluated in the Remedial Investigation Report and associated risk assessments.

The SCSR was finalized and submitted to USEPA on March 27, 2013 and was prepared to address a specific requirement of a draft Remedial Investigation/Focused Feasibility Study (RI/FFS) Statement of Work (SOW) issued by the United States Environmental Protection Agency (USEPA) as Appendix A of a proposed Administrative Settlement Agreement and Order on Consent for Remedial Investigation/Focused Feasibility Study (Agreement) for the SCCC Site. Specifically, this SCSR was prepared to address the requirements listed in Section II (Task 1 – Site Characterization Summary Report) of the draft USEPA RI/FFS SOW dated July 2012. The purpose of the SCSR was to consolidate historical site information and characterization data to facilitate the development of a Conceptual Site Model (CSM) and the identification of remaining data needs. The SCSR was first submitted to USEPA on December 7, 2012. The Group made a presentation of the SCSR to USEPA and the New Jersey Department of Environmental Protection (NJDEP) on January 8, 2013. The NJDEP indicated its approval of the SCSR by letter dated January 9, 2013 and USEPA provided comments on the SCSR by letter dated February 7, 2013. On March 22, 2013, the Group submitted revised SCSR pages to USEPA which addressed the USEPA comments. The USEPA approved the SCSR by email dated March 26, 2103. On March 27, 2013, a final version of the approved SCSR was submitted to USEPA.

The scope of work for addressing the additional data needs for the Site, as identified in the SCSR, was proposed in the Final RI/FFS Work Plan for the SCCC Site (KEY, 2013). This RI/FFS Work Plan was prepared pursuant to the Agreement. Specifically, the RI/FFS Work Plan was prepared to address the requirements listed in Section III: TASK 2 – RI/FFS Work Plan of the RI/FFS Statement of Work, which is Appendix A of the Agreement. The RI/FFS Work Plan was approved by USEPA by letter dated September 27, 2013. The data needs were developed based upon an evaluation of the historical analytical data and current Site conditions as summarized in the (SCSR, KEY 2012) and the CSM presented in Section 3.0 of the RI/FFS Work Plan.

The RI/FS Work Plan field work focused on the following data collection activities:

- Sampling and analysis of surface soils on the SCCC Site;
- DNAPL (dense non-aqueous phase liquid) delineation on the western portion of the SCCC property;
- DNAPL delineation in the vicinity of boring D-4 on the adjacent Former Koppers Seaboard Site property; and
- Sampling and analysis of the varved clay to verify the vertical extent of impacts.

KEY supervised these soil sampling and monitoring well/piezometer abandonment activities from October 14 through November 1, 2013. These soil samplings and monitoring well and piezometer abandonment activities were conducted in accordance with the USEPA-approved RI/FFS Work Plan.

Based on observations made during the soil sampling program, KEY recommended that a groundwater sample be collected for analysis from piezometer PZ-13L which is located at the southwest property boundary and outboard of the slurry wall. The collection of this groundwater sample was completed on November 11, 2013. This additional sampling activity is discussed in Section 2.4 and the groundwater analytical results are discussed in Section 4.0.

1.1 REPORT ORGANIZATION

This report is divided into the following seven sections:

- Section 1.0 Introduction: presents relevant background information and objectives.
- Section 2.0 Site Characterization Activities: provides a summary of the soil sampling activities, samples submitted for analysis, and the scope of the data quality review.
- Section 3.0 Monitoring Well/Piezometer Abandonment Activities: provides a summary of the well abandonment activities performed.
- Section 4.0 presents the results of surface soil and subsurface soil sample analyses, a summary of DNAPL observations and the results of the analyses of the groundwater sample collected from piezometer PZ-13L.
- Section 5.0 Summary of the Site Characterization: presents a summary of the conclusions of the study and recommendations for future RI/FFS activities.
- Section 6.0 References: Lists the references used in the preparation of this report.

2.0 SITE CHARACTERIZATION ACTIVITIES

This section provides a description of the protocols and methodologies used during the implementation of the investigation. The surface and subsurface soil sampling activities completed to further characterize surface soil conditions, subsurface DNAPL delineation, and vertical extent of impact in the varved clay are described. The collection of the groundwater sample from piezometer PZ-13L is also summarized. A discussion of ancillary activities such as data validation and management of investigation derived waste (IDW) is included as well.

Surface and subsurface soil samples were collected from 14 DNAPL delineation borings and five (5) varved clay delineation borings. The locations of the DNAPL delineation borings and the varved clay delineation borings are shown on Figure 2. The soil boring installation and soil sampling activities were conducted in accordance with the RI/FFS Work Plan. Table 1 provides a listing of samples submitted for analysis along with information on lithology and DNAPL observations.

2.1 SURFACE SOIL SAMPLING AND ANALYSIS

Surface soil samples were collected from the DNAPL delineation borings (D-14 through D-22) and from the varved clay borings (VC-1 through VC-5) located on the SCCC property (Figure 2). Surface soil samples were not collected for analysis from the adjacent Seaboard site as part of this investigation as several feet of processed dredge material (PDM) have recently been placed in this area. Surface soil samples were collected for analysis by the Group prior to PDM placement at the Seaboard site and the results are presented in the SCSR. The surface soil samples were collected from the 0 to 6 inch interval directly beneath the IRM cover material (comprised of either asphalt and sub-base or stone and geomembrane lining) to target the soil-like fill layer beneath¹. The purpose of this activity was to characterize the chemical constituents occurring within the surface soil throughout the Site and supplement data collected from previous investigations for use in the forthcoming Baseline Human-Health Risk Assessment (BHHRA).

Surface soil samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs), including all three trichlorobenzene isomers (1,2,3-, 1,2,4-, and 1,3,5-), TCL Semi-Volatile Organic Compounds (SVOCs), Target Analyte List (TAL) metals, hexavalent chromium, oxidation-reduction potential (ORP), pH, Polychlorinated Biphenyls (PCBs) and Polychlorinated-dibenzo-p-dioxins and furans (PCDD/PCDF), as indicated in Table 1. The samples were submitted for analysis to Test America Laboratory in Edison, NJ (NJDEP (NELAP) Certification # 12028) except for the samples for hexavalent chromium, ORP, and pH

ENVIRONMENTAL INCORPORATED

-

These IRMs were installed to prevent direct contact exposure to surface soils. These IRMs are currently in place and have been continuously inspected and maintained.

analyses. These samples were shipped to Eurofins Lancaster Laboratories Environmental, LLC in Lancaster PA (NJ Certification # PA011). A summary of the surface soil analytical results is provided in Section 4.0.

2.2 SUBSURFACE SOIL CHARACTERIZATION

The primary objective of the subsurface soil characterization is to identify the extent of DNAPL impacts in the western area of the Site and in the vicinity of existing soil boring D-4, located on the Seaboard Site. The data collected supplements the existing DNAPL delineation information for the Site which is summarized in the SCSR.

Fourteen (14) soil borings (D-14 through D-27) were completed to further delineate the horizontal extent of DNAPL on the SCCC and Seaboard Sites and five (5) soil borings (VC-1 through VC-5) were completed to further delineate the vertical extent of DNAPL on the SCCC Site. The DNAPL delineation borings were located around the perimeter of Buildings 2, 3, and 4 on the SCCC site, in the vicinity of previous DNAPL delineation boring D-4 on the Seaboard site, and in various other locations of interest as depicted on Figure 2.

Borings were advanced into the top of the varved clay utilizing Sonic drilling and sampling methods. Temporary steel casing was keyed and sealed into the meadow mat prior to advancement beneath the fill materials to eliminate the potential for downward migration of constituents to the deep sand unit. A second sealed casing was keyed into the varved clay to eliminate the possibility of downward migration of DNAPL or dissolved constituents from the sand unit. The top of the varved clay layer ranged from approximately 14.5 (VC-1) to 19 (VC-03) feet below ground surface (bgs) on the SCCC Site and from 17 (D-24) to 20.25 (D-27) feet bgs (from the top of the PDM) on the Seaboard Site.

Continuous soil samples (sonic cores) were obtained throughout the entire depth of each borehole to accommodate visual determination of the presence/absence of DNAPL. The soil samples were field screened and logged by the supervising field geologist. Soil samples obtained for laboratory analysis were collected from discrete 6-inch intervals. Surface soil samples were obtained for each of the DNAPL borings completed on the SCCC site as discussed in the preceding section. Additional subsurface samples were obtained for analysis at depth according to the following protocol.

If the presence of residual or free-phase DNAPL was not noted in a given boring, a confirmatory sample was obtained from the base of the deep sand unit (i.e., the interval immediately above the contact with the varved clay) for laboratory analysis to confirm the absence of DNAPL. Additionally, a soil sample was collected for laboratory analysis from the upper one (1) foot of the varved clay from each borehole to confirm the absence or presence of DNAPL-related

constituents within this unit. A second deeper varved clay sample was also obtained in the event that the upper clay sample contained constituents at concentrations greater than applicable screening criteria. The lower varved clay samples were collected approximately five feet beneath the top of the varved clay. The deeper sample was kept on hold by the laboratory pending receipt and review of preliminary analytical results for the upper varved clay sample. Where impacts to the upper varved clay sample were confirmed, analysis of the lower varved clay sample was conducted.

If presence of residual or free-phase DNAPL was noted based on field observation, then a sample from the DNAPL-impacted zone was collected for laboratory analysis. The presence of residual or free-phase DNAPL was determined via visual inspection. Visual evidence of free-phase DNAPL was based on observation of a high degree of continuous saturation or free draining conditions in the soil cores. The presence of residual DNAPL was based on the observation of disconnected, discrete globules that do not drain freely. In addition, selected samples exhibiting visual staining or elevated photoionization detector (PID) readings were field screened for DNAPL presence using the soil test kit "OIL-IN-SOIL TM". Screening results from the "OIL-IN-SOIL TM" field screen assisted in determining the presence/absence of residual DNAPL and discrete sample intervals to be submitted for laboratory analysis.

A DNAPL ranking system was employed as defined in the RI/FFS Work Plan. Samples assigned a DNAPL rank of 2 (residual DNAPL) or 3 (free-phase DNAPL) were submitted for analysis based upon the Work Plan criteria (maximum one sample from the fill/meadow mat and one from the deep sand per boring). A DNAPL ranking of 1 indicates the presence of staining or an odor and a ranking of 0 is indicative of no evidence of impact. Samples collected from the fill/meadow mat and/or deep sand (Lower Zone) were discrete grab samples from the interval exhibiting the most significant DNAPL impacts.

Subsurface soil samples—were analyzed for TCL VOCs (including all three trichlorobenzene isomers) and TCL SVOCs. Additionally, selected soil (the first ten) samples exhibiting residual or free-phase DNAPL were also analyzed for PCBs and PCDDs/PCDFs. In addition, the upper varved clay samples collected from borings VC-1 through VC-5 were also analyzed for TAL metals and hexavalent chromium, pH, and ORP. The NJDEP has quality assurance/quality control requirements for hexavalent chromium analysis in soils that are above and beyond those required by the USEPA SW-846 7199 method. These requirements consist of oxidizing or reducing condition characterization and hexavalent chromium spiking. Hexavalent chromium analyses were completed subject to these additional NJDEP requirements.

Upon the completion of sampling activities, all borings were abandoned with a cement-bentonite mixture using the tremie pipe method. Any IRM geomembrane liners that were penetrated were

repaired. Soil cuttings from drilling activities were containerized and managed as described in Section 2.3. All boring locations and ground surface elevations were surveyed by a registered professional land surveyor licensed in the state of New Jersey. The survey data are referenced to the New Jersey State Plane Coordinate System and the 1983 North American horizontal datum (NAD83). Elevations are referenced to mean sea level in accordance with the 1988 North American Vertical Datum (NAVD88).

2.3 GROUNDWATER SAMPLING OF PZ-13L

Collection of a groundwater sample from piezometer PZ-13L with attendant analyses was recommended to provide water quality data for the area outside of the slurry wall beyond the southwest corner of the SCCC Site. This recommendation was based upon the observed DNAPL presence in the lower sand unit at delineation borings D-23, D-24 and D-25. Figure 2 shows the location of piezometer PZ-13L relative to delineation borings D-23, D-24, and D-25.

Prior to purging, the well was checked for the presence of DNAPL. No DNAPL was measured in the piezometer and none was observed during purging and sampling. PZ-13L was sampled by the low flow purge method on November 11, 2013. The sample was submitted to Test America Laboratories for analysis of VOCs (8260B and 8260B SIM), and SVOCs (8270C and 8270C SIM). Sampling results are discussed in Section 4.0.

2.4 FIELD QUALITY CONTROL SAMPLES

Quality control (QC) for field sampling efforts was assessed via the collection of field QC samples, which consisted of the following:

- Field duplicates;
- Equipment blanks; and,
- Trip blanks.

Field duplicates are used to evaluate the sample collection and analyses effects on the reproducibility of data. Field duplicates were collected by splitting a sample evenly between the primary sample and QC sample containers. Field duplicates of soil samples for all analyses except volatile organics were taken by homogenizing the soil in a stainless steel bowl and then placing replicate portions into the sample containers. Field duplicates for volatile analyses were collected as separate discrete grab samples from the same location and boring depth. One field duplicate was collected per every 20 primary samples.

Equipment blank data are used to evaluate field decontamination procedures. Equipment blanks were collected by pouring analyte-free water supplied by the analytical laboratory over

decontaminated soil sampling utensils into the sample bottles. Equipment blanks were collected at a frequency of one per day.

Trip blank data are used to evaluate exposure to volatile organic constituents during sampling, shipping and storage at the laboratory. Trip blanks were prepared by the analytical laboratory and shipped with the VOC vials. One set of trip blanks were included in each cooler containing VOC sample vials and were analyzed for the same list of VOCs as the primary samples.

2.5 DATA VALIDATION

To assess the usability of the sample results, a review of the analytical data corresponding to USEPA Level II data validation was completed. The analytical results generated via SW-846 Method 8260B, 8270C, and 6020 were reviewed in accordance with specific critical components of relevant USEPA guidance for data validation. Specifically, the following information was evaluated:

- Sample holding time compliance
- Acceptable surrogate spike recoveries
- Equipment, field, and trip blank contamination
- Laboratory method blank artifacts
- MS/MSD RPDs and recoveries
- Field duplicate RPDs

The laboratory data packages were reviewed to ensure that samples were analyzed within an acceptable time frame (based on the date of sample collection). Surrogate recoveries were reviewed to determine if the Gas Chromatography/Mass Spectrometry instrumentation was performed adequately. Equipment, field, and trip blank results were reviewed to determine potential extraneous sources of sample contamination. Method blank results were reviewed to identify the possibility of laboratory contamination of the samples. The Matrix Spike/Matrix Spike Duplicate (MS/MSD) results provide an indication regarding the precision of the analytical method, given the potential for matrix interference effects. Field duplicate results were checked to document the precision of the sampling process.

The data usability assessment was completed in accordance with applicable sections of the following guidance documents: USEPA's Contract Laboratory Program, National Functional Guidelines for Organic Data Review, and National Functional Guidelines for Inorganic Data Review. As required, this guidance document was utilized in addition to the laboratory Standard Operating Procedures (SOPs) for the respective analytical methods. Professional judgment was exercised throughout the data assessment effort, particularly for situations that are not addressed or clearly specified in the SOPs or in the guidance documents.

No major data quality issues were noted. In some instances, method detection limits were greater than the Regional Screening Levels (RSLs) that the data were screened against. This was in some cases due to the necessary dilution of samples that contained concentrations of constituents at levels greater than the instrument calibration range. Also, in other cases the RSLs are lower than any level that can be accurately measured by laboratory instrumentation and methods. The results of the data quality review were provided to USEPA along with the electronic data deliverable and validated data on February 11, 2014.

2.6 INVESTIGATION-DERIVED WASTE MANAGEMENT

Various types of Investigation-Derived Waste (IDW) were generated during the course of the supplemental field investigation activities. IDW consisted of the following:

- Drill cuttings
- Drilling fluids
- Purge water
- Decontamination fluids
- Personnel protective equipment
- Disposable sampling equipment
- Plastic sheeting

Management of IDW was conducted in accordance with the protocol established in the RI/FFS Work Plan. Cuttings generated from above the meadow mat were segregated from those occurring beneath the meadow mat. Each segregated zone was containerized in 55 gallon steel drums and labeled accordingly. Likewise, drilling fluids were segregated based upon the same criteria. The free liquids contained in the drilling fluid drums were decanted off and then transferred at the onsite hydraulic control treatment system (HCTS) for treatment. Purge water from the sampling of PZ-13L was also transferred to the onsite HCTS for treatment.

Personal protective equipment and sampling equipment were containerized together and staged for offsite disposal. Decontamination water was transferred from the decontamination pad into a polyethylene storage tank or other suitable container and subsequently transported to and treated at the onsite HCTS. All drums containing IDW were staged in a secure Conex Box located on Site. IDW drums were disposed off-site on February 20, 2014 pursuant to the notification given to USEPA on January 16, 2014. The drums of soil were transported to Environmental Recovery Corporation in Lancaster, PA where the soils were stabilized and landfilled. The DNAPL removed from monitoring well MW-3L prior to well abandonment was combined with DNAPL recovered from DNAPL Recovery Well DRWL-9 and was transported to the Veolia Environmental Services facility in Port Arthur, Texas for incineration.

3.0 MONITORING WELL/PIEZOMETER ABANDONMENT

The implementation of interim response action activities in 2010 - 2011 included a fully-enclosing barrier wall system and the installation of 16 DNAPL recovery wells, 26 hydraulic controls wells and 28 piezometers throughout the SCCC and neighboring Diamond and Seaboard sites. Thus, in light of the completion of the interim response action, many of the previously existing monitoring wells and piezometers, which were installed for site characterization purposes, were deemed to be applicable for decommissioning. A total of eight (8) monitoring wells and seven (7) piezometers located on the SCCC Site were abandoned as specified in the RI/FFS Work Plan. Figure 3 provides the locations of these wells and piezometers.

Prior to well abandonment, the total depth of each well was measured for comparison to the drilled depth reported on well construction forms. This ensured that the correct well is located and that no significant collapse or sediment buildup had occurred. Table 2 provides the well gauging information prior to abandonment. Wells SC-MW-1L, SC-MW-5L, SC-PZ-3U, SC-PZ-3D, SC-MW-6L, SC-MW-7L, SC-PZ-4U, and SC-PZ-2U required hydraulic jetting prior to abandonment to achieve original installation depth. Well MW-3L contained DNAPL at the time of abandonment activities; approximately 2.5 gallons of DNAPL was removed from this well prior to abandonment. Recovery well DRWL-7 was installed immediately adjacent to the location of monitoring well MW-3L to provide for future DNAPL recovery from the deep sand unit in this area of the Site.

Abandonment was completed by tremie grouting cement-bentonite slurry from the base of the well to ground surface. The slurry was mixed in accordance with N.J.A.C. 7:9D. After the cement-bentonite grout cured for approximately 24 hours, any settling of the grout was topped off and the well casing capped with concrete. The decommissioning was performed by a NJ-licensed driller certified to abandon wells. Purge water generated was contained and handled as described above in Section 2.3. DNAPL pumped from MW-3L was placed in a 55 gallon drum, labeled accordingly, and staged with DNAPL drums generated during the ongoing DNAPL recovery program (e.g. DRWL-9, DRWL-11). This drum was managed and disposed of in accordance with the ongoing DNAPL recovery program procedures.

4.0 SUMMARY OF RESULTS

Soil samples were collected for analysis from all of the test boring locations (D-14 through D-27 and VC-1 through VC-5). Sampling locations are depicted on Figure 2. The laboratory analytical reports, electronic data deliverables, data validation reports and spreadsheets containing the validated data were previously submitted to USEPA and NJDEP on February 11, 2014.

The results of the samples collected for analysis were compared with RSLs for Industrial Soils. Additionally, for the three test borings drilled outside of the slurry wall (D-23, D-24, and D-25), the soil sample results for the sand unit were also compared to USEPA Protection of Groundwater RSLs. The soil samples collected from the underlying varved clay were compared to both the USEPA RSLs for Industrial Use and the USEPA Protection of Groundwater soil screening levels. The RSLs used for comparison are based on a target 1x10⁻⁶ excess lifetime carcinogenic risk level and a target hazard quotient of 0.1. All data will be further evaluated in the BHHRA and RI Report.

4.1 SURFACE SOIL

Surface soil samples were collected from the fill materials overlying the meadow mat on the SCCC Site. All samples collected for analysis represented the zero to one-half foot interval beneath ground surface (bgs) or the IRM cover material except at location D-21, where the fill material beneath the IRM cover occurred at a depth of seven feet. At this location, the surface sample represented the interval from 7.0 -7.5 feet. The surface soil sampling results for VOC, SVOC, metals, PCBs, and PCDD/PCDF are summarized in Table 3 through Table 7, respectively. In addition, graphical portrayals of the surface soil analytical data for Site-related constituents are depicted on Figure 4. The constituents selected for analytical data portrayal on Figure 4 include the chlorobenzene compounds (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, and chlorobenzene), naphthalene, PCB 1260, dioxins/furans and total and hexavalent chromium. These constituents represent those that have been detected most frequently throughout the various investigations completed at the Site.

Within the surface soils, the Site-related constituents that exceeded USEPA RSLs for Industrial Soil were several chlorinated benzene compounds (1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, and chlorobenzene), hexavalent chromium and dioxin/furans (based on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Toxicity Equivalent Quotient (TEQ)).

Chlorinated benzene exceedances occurred at 5 of 14 sampling locations. The location exhibiting the greatest concentrations of chlorinated benzenes was in the southwest portion of the Site at location D-21 (Figure 7). At this location, the concentrations of 1,2-dichlorobenzene (1,000)

mg/kg), 1,4-dichlorobenzene (2,000 mg/kg), and chlorobenzene (280 mg/kg) all exceeded their respective RSLs for Industrial Use. However, D-21 is the location where the uppermost soil-like fill material was encountered at a depth of 7 feet-bgs. In general, the surface soil data do not indicate that substantial surficial releases occurred at the locations investigated.

Other locations exceeding screening criteria for 1,4-dichlorobenzene occurred within the western portion of the Site at locations D-15, D-16, and D-18. At D-19, 1,2,4-trichlorobenzene also exceeded its RSL. Other SVOCs that exceeded screening levels were primarily polycyclic aromatic hydrocarbons (PAHs). The most common PAHs that exceeded screening criteria were benzo(a)pyrene, benzo(a)anthracene, and benzo(b)fluoranthene. These constituents are likely associated with the placed fill materials that occupy the Site (See Table 4). This conclusion is based on the low levels detected for the individual PAHs (generally on the order of one part per million or less and the lack of any sort of spatial correlation.

Hexavalent chromium exceeded the RSL at 10 of the 14 soil sample locations. The exceedances were relatively evenly distributed throughout the western portion of the Site. The maximum concentration of hexavalent chromium that was detected was 3,390 mg/kg at boring D-16. Other metals that exceed RSLs were cobalt at nine locations and, vanadium and arsenic (see Table 5), at eight locations each. The detections of cobalt and vanadium at concentrations greater than the screening criterion were located sporadically over the western half of the Site as well as along the western boundary of the former lagoon and process areas. Many of the arsenic exceedances were at a concentration of approximately 10 mg/kg or less, and likely reflect natural or anthropogenic sources associated with the placed fill materials.

Lead exceeded the screening criterion at two locations (D-19 and D-22)². The logs for both of these borings note the presence of slag and brick fragments in the near surface fill materials at these locations. Zinc also exceeded the RSL in the D-19 sample but was less than the RSL in all other surface soil samples. Antimony exceeded the screening criterion in two samples (D-22 and VC-3).

One surface soil location exhibited a RSL exceedance for PCBs. This occurred at location D-18 where PCB Aroclor 1260 was detected at a concentration of 4.2 mg/kg.

Twelve of the 14 samples submitted for PCDD/PCDF analysis exceeded the RSL of 1.8×10^{-5} mg/kg 2,3,7,8-TCDD TEQ. Concentrations, expressed as 2,3,7,8-TCDD TEQs, in these samples ranged from 4.33×10^{-5} mg/kg to 1.15×10^{-3} mg/kg.

It is noted that the lead concentration in the duplicate sample collected from location VC-2 also exceeds the RSL. However, the lead concentration reported for the primary sample from this location is less than the RSL.

-

No further characterization of Site surface soils is deemed necessary at this time to support the BHHRA and FFS. Should the BHHRA conclude that unacceptable risks exist and remediation of surface soils is warranted, then additional characterization work may be necessary in support of the remedial design.

4.2 SUBSURFACE SOIL

Subsurface soil samples were collected for analysis from the meadow mat, the sand unit and varved clay unit. The analytical results are summarized in the following subsections. The discussion regarding the meadow mat and sand unit also includes information regarding DNAPL observations and the varved clay topography.

4.2.1 Meadow Mat and Sand Unit

Subsurface soil samples were collected from 19 locations (D-14 through D-22, VC-1 through VC-5). A total of 21 samples were collected and submitted for analysis from the 19 locations. Samples of the fill or meadow mat were submitted for analysis if DNAPL was observed in the sample. One sample of the meadow mat (D-16 9-9.5 ft-bgs) and one sample of fill material (D-27 10-10.5 ft-bgs) were submitted for analysis based on the observation of DNAPL. It should be noted that the field geologist interpreted the DNAPL at location D-27 on the Seaboard Site to be of a coal tar origin based on visual and odorous observations and therefore not related to the SCCC Site. The analytical results for this sample are supportive of that inference. Samples from the sand unit were selected for analysis if residual or free-phase DNAPL was observed in the sample, otherwise the sample collected from immediately above the varved clay contact was submitted for analysis.

All samples were analyzed for VOCs, SVOCs, and select DNAPL-impacted samples were also analyzed for PCB, and PCDD/PCDF. The analytical results are summarized on Tables 8 through 11, respectively. Figure 5 presents the soil analytical data for Site-related constituents for the samples submitted from the meadow mat and sand unit.

Free phase DNAPL was not observed within the meadow mat. Residual DNAPL was observed in the meadow mat at only one location (D-16) on the SCCC Site. This boring was located in the vicinity of a former above-ground storage tank (AST) farm that existed west of Building 2. The meadow mat sample from this location was submitted for analysis. This sample exhibited 1,2-dichlorobenzene, concentrations that exceeded RSLs for 1,4-dichlorobenzene, chlorobenzene, and naphthalene. A deeper sample from boring D-16 representing the lower sand unit did not exhibit exceedances of RSLs for any these or any other Site-related constituents. Residual DNAPL, suspected to be coal-tar like material derived from an off-site source, was observed in fill material and Meadow Mat at Boring location D-27 located on the Seaboard Site.

Analytical data for the sample of the fill material from Boring D-27 support the inference that the material observed at this location is derived from a coal-tar like source.

For the samples collected from the lower sand unit, at least one chlorinated benzene compound exceeded RSLs from 17 of the 19 locations. The areas exhibiting the highest concentrations correspond to the locations where possible free-phase or residual DNAPL was observed within the lower sand unit.

These locations consist of the following:

- The southwest portion of the Site near Building 2 (Borings D-15, D-16, D-18, D-21, D-22)
- The area immediately to the southwest of the Site (D-23, D-24, and D-25); and,
- The area immediately west of the former process area (Borings VC-3, VC-4, and VC-5).

The soil concentrations provide information that is indicative of the DNAPL composition. In general, the DNAPL in the southwestern portion of the Site is comprised primarily of dichlorobenzene isomers. The DNAPL in the eastern portion of the Site near the process area is comprised of naphthalene and 1,2,4-trichlorobenzene as well as the dichlorobenzenes.

As presented in Table 9 various PAHs also exceeded USEPA RSLs for Industrial Use in the borings that exhibited possible free-phase or residual DNAPL (D-23, D-24, D-25, D-27, VC-3, VC-4, and VC-5).

Analytical results for PCBs and PCDD/PCDF are summarized on Tables 10 and 11, respectively. PCBs did not exceed RSLs at any of the locations where samples were submitted for analysis. PCDD/PCDF concentrations expressed as 2,3,7,8-TCDD TEQs exceeded the RSL for the sand unit samples exceed the RSL of 1.8 x 10⁻⁵ mg/kg in 9 of the 10 samples analyzed.

For the borings drilled outside of the slurry wall containment (D-23, D-24, and D-25), constituents were also compared to Protection of Groundwater screening criteria. At these locations, dichlorobenzene isomers and chlorobenzene were found to exceed the groundwater criteria. Napthalene also exceeds groundwater criteria at D-23 and 2,3,7,8–TCDD TEQs exceeded groundwater criteria at D-24. Figure 5 provides the locations for each of these areas.

Figure 6 presents DNAPL field observations, documented in accordance with the ranking protocol described in Section 2.2, for each of the 19 delineation borings completed pursuant to the RI/FFS Work Plan and pre-existing locations on the SCCC and the Seaboard Sites. Figure 7 depicts the surface elevation on the top of the varved clay unit at certain boring locations. The boring locations used in the evaluation of the varved clay topography were those where

continuous samples or information (i.e., cone penetrometer test soundings) regarding subsurface soils were obtained. The varved clay unit is continuous beneath the Site. The thickness of this unit beneath the SCCC Site is estimated at greater than 40 feet based on subsurface data acquired from geotechnical borings completed during the IRA Pre-Design Investigation in 2008. The vertical permeability of the varved clay unit, based on laboratory testing of Shelby tube samples collected at the Seaboard Site, averaged approximately 2.8 x 10⁻⁷ centimeters per second (cm/sec) (KEY, 1998). The varved clay therefore acts as an effective barrier to the downward migration of DNAPL and groundwater from the sand unit above.

Figure 8 is a surface elevation contour map of the varved clay. Given the physical properties of the Site DNAPLs (high density and low viscosity) and the low permeability of the clay, it is likely that the clay surface influenced the movement of the DNAPL. As shown on Figure 8 a low spot in the clay surface exists near the south-central property boundary extending onto the Seaboard Site to the south. This low spot corresponds to the locations of DNAPL Recovery Wells DRWL-9 and DRWL-11 where the highest volumes of DNAPL have been recovered to date. Borings where free phase DNAPL was observed during the recent investigation (VC-3, VC-4, D-22) also appear to be located within topographic low spots on the varved clay surface.

Further characterization of conditions within the sand unit is not warranted at this time. The information gained from this and previous investigations regarding constituent concentrations and DNAPL presence will be further evaluated in the risk assessment and the FFS.

4.2.2 Varved Clay Unit

Soil sample results for the samples submitted for analysis from the varved clay unit are summarized in Table 12 through Table 14 for VOC, SVOC, and metals, respectively. In addition, graphical portrayals of the varved clay soil analytical results for Site related constituents are depicted on Figure 9. Samples were collected for analysis from the interval from 0.5 to one foot below the contact with the overlying sand unit. A second sample collected from approximately 5 feet below the sand contact was submitted to the laboratory and was held for analysis pending the results of the VOC analyses for the shallower varved clay sample. Where one or more VOC constituent was detected at concentrations greater than the Groundwater Protection RSL in the upper varved clay sample, the second varved clay sample was taken off of hold and was analyzed for VOCs and SVOCs. Both varved clay samples from borings VC-1 through VC-5 and Boring D-20 were also analyzed for metals.

The concentrations of Site-related constituents, if detected, within the varved clay were several orders of magnitude lower than the samples analyzed from the overlying sand unit. Additionally, visual inspection of the retrieved core samples did not indicate the presence of residual or free-phase DNAPL within the clay unit. The lack of observable DNAPL in the varved clay occurred

even where the overlying lower sand unit was observed to contain free-phase DNAPL directly on top of the clay. This observation supports the position that the varved clay is an effective confining layer and impedes downward migration of DNAPL.

To evaluate the potential for constituent leaching to groundwater, the samples submitted for analysis from the varved clay were also compared to the USEPA Protection of Groundwater RSLs. The Site-related VOCs exceeding Protection of Groundwater criteria in the uppermost varved clay sample include: 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, and chlorobenzene. For all of these constituents, the Protection of Groundwater RSLs are less than 1 mg/kg. In general, where DNAPL was observed in the deeper sand unit, concentrations of one or more chlorinated benzene compounds exceed the Protection of Groundwater regional screening criteria in the upper varved clay sample. These constituents are rapidly attenuated in the clay as evidenced by the concentrations reported in the deeper varved clay sample which are less than the screening criteria, except for one location (D-25).

In addition to the chlorinated benzenes, several SVOC constituents, including naphthalene, exceeded Protection of Groundwater RSLs, primarily at locations VC-3, VC-4, and VC-5 which are located at the western perimeter of the former process area. Other locations where various SVOC constituents exceeded regional Protection of Groundwater screening criteria included: D-15, D-20, D-22, D-25, and D-27 (See Table 13).

The USEPA Protection of Groundwater RSL for hexavalent chromium of 0.00059 mg/kg was exceeded in all of the upper varved clay samples (VC-1 through VC-5). Concentrations ranged from 0.23J to 8.9 mg/kg. It is noted that the Protection of Groundwater RSL for hexavalent chromium is lower than any concentration that can be measured by current laboratory methods and equipment. Thus any positive detection of hexavalent chromium will exceed the Protection of Groundwater RSL. Vanadium also exceeded the Protection of Groundwater RSL within the upper varved clay sample locations.

The vast majority of the Protection of Groundwater RSL exceedances within the clay occurred within the upper varved clay sample. The lower varved clay samples analyzed did not exhibit Protection of Groundwater RSL exceedances except for hexavalent chromium at VC-2 and VC-3, vanadium (at all five locations), and naphthalene and several SVOCs at VC-4. At all of these locations, the upper varved clay sample exhibited higher constituent concentrations than the lower sample (with the exception of the metal vanadium).

The analytical results confirm the effectiveness of the varved clay as a barrier to vertical migration of DNAPL and dissolved constituents. No further characterization activities for this unit are warranted. Surface and subsurface soil data will be further evaluated in the BHHRA and FFS.

4.3 GROUNDWATER ANALYTICAL RESULTS

Groundwater analytical results for the sample collected from piezometer PZ-13L are summarized in Table 15. The sample was analyzed for VOCs (8260B and SVOCs (8270B). With regard to VOCs, detected constituents include 1,2-dichlorobenzene (19,000 ug/l), 1,3-dichlorobenzene (15,000 ug/l), 1,4-dichlorobenzene (24,000 ug/l), chlorobenzene (1,800 ug/l), benzene (190 ug/l), and dichlorofluoromethane (590 ug/l). The following SVOC constituents were also detected: naphthalene (11J ug/l), 2,4-dichlorophenol (86 ug/l), 2-chlorophenol (14J ug/l), and bis(2-chloroethyl)ether (0.62 ug/l). The results corroborate the DNAPL observations made in this area and soil sample results from D-24 and D-25.

As indicated previously, free-phase DNAPL was not observed in the groundwater in PZ-13L during purging and sampling even though adjacent soil samples indicated the presence of potential free-phase DNAPL. Installation of the slurry wall, prevents further migration of DNAPL by containing the source. The groundwater data will be further evaluated in the BHHRA and the FFS.

4.4 DATA VALIDATION SUMMARY

This section presents the results of the limited review of the analytical data for field and laboratory quality assurance/quality control (QA/QC) samples collected during the Standard Chlorine RI/FFS 2013 sampling event. Data were reviewed for completeness, hold times, laboratory blank contamination, field blank contamination, field duplicate precision, surrogate recoveries, MS/MSD, and laboratory control sample recoveries.

Dioxins were sampled outside of the hold time in samples VC-3 18.2-18.7, VC-4 0-6, VC-4 18.5-19, and D-102 5-5.5 but all were sampled within 2X the hold time and therefore considered usable results. Field personnel collected QA/QC samples including eleven trip blanks, ten equipment blanks, five blind field duplicates, and eleven MS/MSD's.

1,3-dichlorobenzene and 1,4-dichlorobenzene were detected in trip blank TB-10. No constituents were detected in any other trip blanks. Constituents detected in equipment blanks included several dioxins and furans, cobalt, iron, bis(2-ethylhexyl)phthalate, 1,3-dichlorobenzene, and, 1,4-dichlorobenzene. Constituents detected in the blanks are qualified with a "B" in the data tables if the associated sample results for each constituent are detected below the field blank, or trip blank action level. The action level is five (5) times the maximum concentration detected in the field/trip blank.

Field duplicate samples were collected for samples VC-2 0-6, VC-1 15-15.5, VC-4 18.5-19, VC-4 19.5-20, and D-26 17.25-17.75. Several results were outside of their associated target relative

percent difference (RPD) range (\leq 50%) and qualified with a "J" (estimated) in the data tables for the applicable constituents in the samples and their respective duplicates. Only detectable results were compared and not the variation in method detection limits between the sample and its associated duplicate.

Several dioxins and furans, methylene chloride, chloroform, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene were detected in the method blanks. Groundwater samples that are associated with these method blanks that contain detections of any of the analytes are qualified with a "U" if a concentration is detected below the laboratory blank action level. The laboratory blank action level is five (5) times the maximum concentration detected in the blank.

The recovery of the pre-digestion spike sample and the laboratory duplicate sample analysis were outside of the control limits and hexavalent chromium results were all qualified as estimated, "J". All results evaluated in this data set were considered usable and are presented in this report. The significance, if any, of concentrations reported as non-detect at detection limits greater than the RSLs and the constituent concentrations reported at levels greater than the RSLs will be further evaluated in the BHHRA and FFS.

5.0 SUMMARY

The activities conducted during the supplemental Site Characterization activities were designed to address the decisions identified in the RI/FFS Work Plan as described in Section 4.1 Data Quality Objectives. The data collected during the supplemental assessment addresses the following key decision points as provided in the RI/FFS Work Plan:

1) Are additional response actions necessary to control the potential for vertical movement of DNAPL into the varved clay beneath the site to ensure that migration of DNAPL beyond the barrier walls (which are keyed into the varved clay to a minimum depth of 3 feet) does not occur?

Observations made during test boring drilling and the analytical data collected from the clay unit indicate that the varved clay is an effective confining layer that prevents vertical migration of DNAPL. In particular, the analytical results generated from the shallow and deep varved clay samples collected at boring locations illustrate the lack of DNAPL within the clay and the diminishing constituent concentrations with depth for Site-related constituents (Figure 9 and Tables 12 through 14).

2) Based on the assumption that institutional controls will preclude residential land use as does the most recent Redevelopment Plan adopted for the Site and its vicinity, are additional response actions (including institutional, engineering, or administrative controls) necessary to prevent potential organic and inorganic chemical exposure of relevant receptors (commercial/industrial workers or construction/utility workers) in a portion of Lot 50 which has heretofore been subjected to relatively more limited characterization?

The analytical data collected from the test borings completed characterization of surface soils on the SCCC Site. The analytical results indicate limited exceedances of screening levels for Site-related constituents based on industrial use; most of these exceedances are present at locations at which asphalt and/or stone IRM covers prevent exposure to the surface soils. These data will be evaluated further in the BHHRA to define the need for additional response actions (if any).

3) Is modification of the DNAPL recovery operations appropriate to control potential lateral DNAPL movement given the potential presence of DNAPL at depth in the portion of Lot 50 which has been subjected to limited historical investigation primarily via indirect measurement of potential DNAPL presence (i.e., via use of a Rapid Optical Sensing Tool and Laser-Induced Fluorescence)?

5-1

The analytical data generated and the observations made during test boring drilling identify areas of observed residual DNAPL in the meadow mat unit at one location (D-16) in the area of the former tank farm on the west side of Building #2. Residual DNAPL occurrence within the lower sand unit was observed in the area of the former AST farm west of Building #2 and in the area to the south of and adjacent to Building #2. Free phase DNAPL was observed adjacent to the southeast corner of Building #2 (Boring D-22) and adjacent to the former location of the central drainage ditch (Boring D-19). Free phase DNAPL in the sand unit was also observed in the area immediately west of the former lagoon and process areas (Borings VC-3, VC-4 and VC-5). The data generated from the characterization activities will be utilized in the FFS to determine the need, if any, for modification of the DNAPL recovery operations within this area.

4) Is an additional response necessary to remediate or control potential DNAPL migration (laterally and vertically) beyond the limits of the slurry wall in a discrete portion of the Seaboard Site where soil sampling indicated the potential presence of DNAPL at the western property line along the barrier wall alignment, specifically near DNAPL delineation boring D-4)?

The subsurface samples collected and the visual observations made from the test borings (D-23, D-24, and D-25) installed outside of the containment wall near D-4 confirm the presence of DNAPL in this area. The groundwater sample results from PZ-13L show elevated concentrations of constituents which are consistent with a nearby DNAPL source. Although the field geologist described the DNAPL observed in these borings as free phase, it is likely that this DNAPL is no longer able to migrate as the DNAPL source is contained within the slurry wall installation. The data from this area will be evaluated in the BHHRA and an additional response action to address this area will be developed during the FFS, if necessary.

6.0 REFERENCES

KEY (Key Environmental, Inc.), April 1998. Remedial Action Work Plan, Former Koppers Seaboard Site, Kearny, New Jersey.

KEY (Key Environmental, Inc.), December 7, 2012. Site Characterization Summary Report, Standard Chlorine Chemical Company Inc. Site (SCCC), Kearny, New Jersey. Carnegie, PA

KEY (Key Environmental, Inc.), March 22, 2013. "Response to Comments – Site Characterization Summary Report - Standard Chlorine Chemical Co., Inc. Site – Kearny, Hudson County, NJ". Carnegie, PA.

KEY (Key Environmental, Inc.), March 27, 2013. Final Site Characterization Summary Report - Standard Chlorine Chemical Co., Inc. Site – Kearny, Hudson County, NJ. Carnegie, PA.

KEY (Key Environmental, Inc.), September 2013. Final Remedial Investigation/Focused Feasibility Study Work Plan, Standard Chlorine Chemical Company, Kearny, New Jersey.

USEPA (United States Environmental Protection Agency), February 7, 2013. USEPA's February 7, 2012 Comments on December 2012 Site Characterization Summary Report - Standard chlorine Chemical Co. Site. USEPA Region 2. New York, NY.

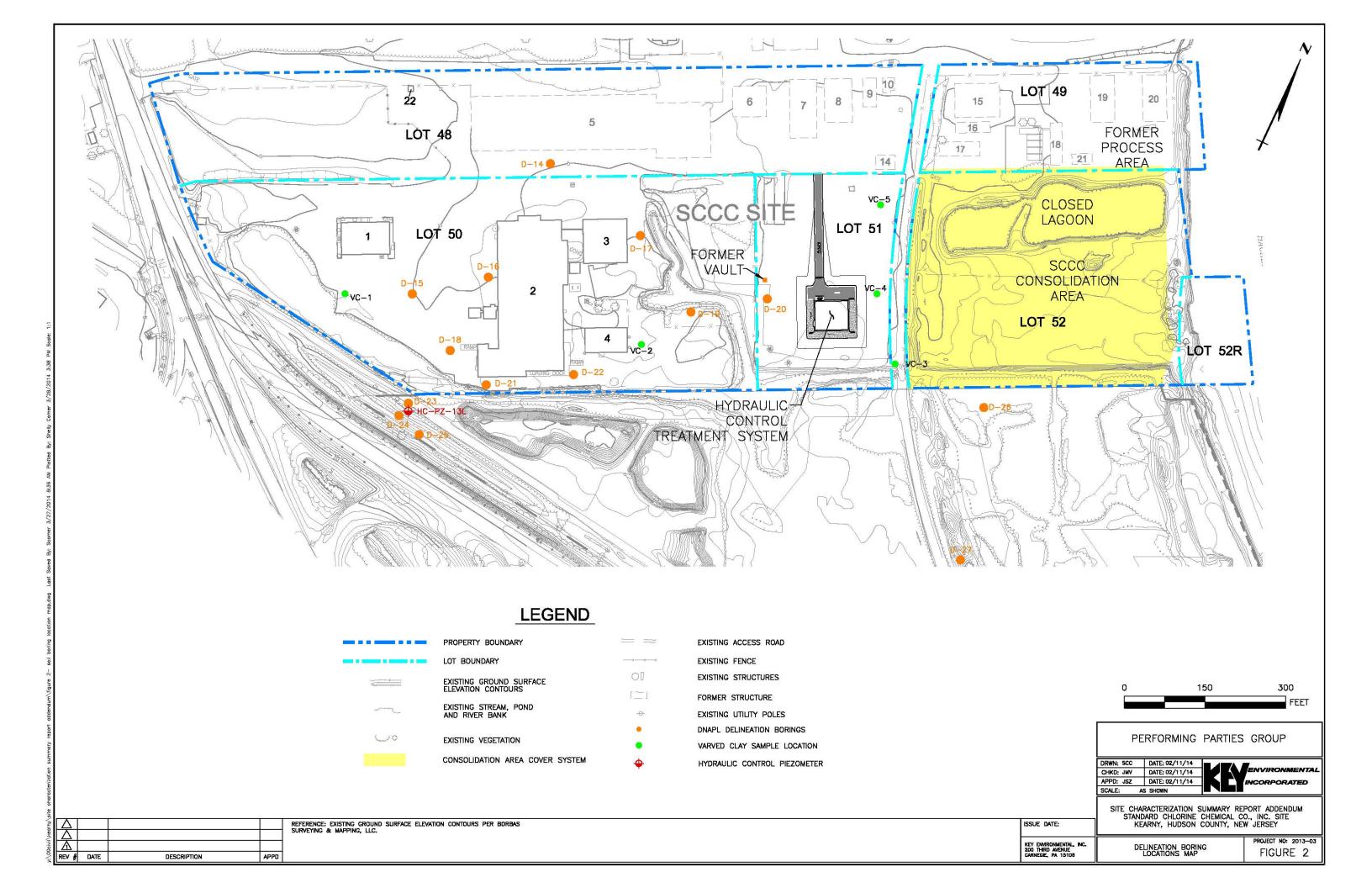
USEPA (United States Environmental Protection Agency), July 2011. Appendix A - Statement of Work for Remedial Investigation and Focused Feasibility Study - Standard Chlorine Chemical Company Superfund Site – Kearny, Essex County, New Jersey.

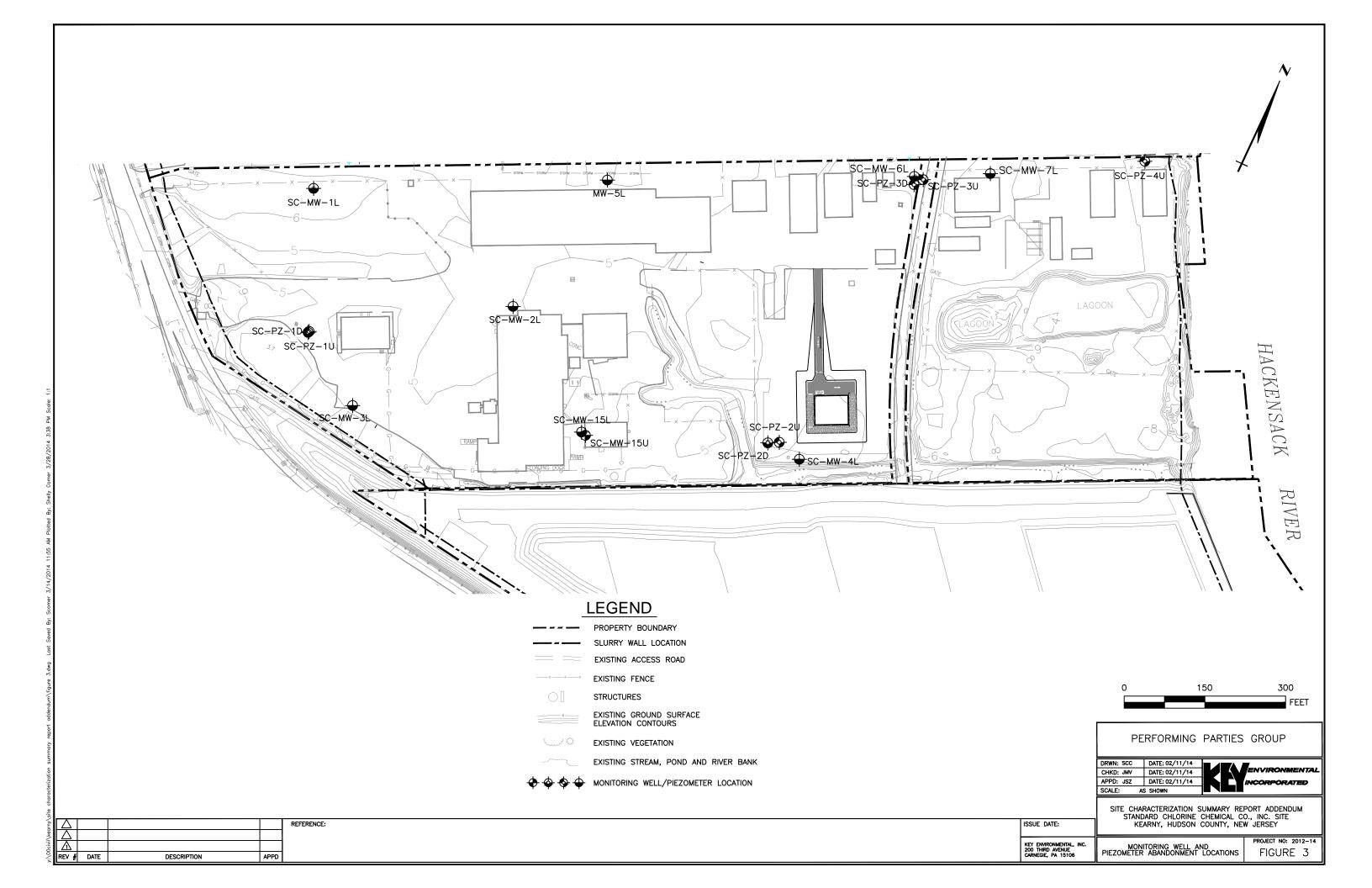
REFERENCE: USGS 7.5 MINUTE TOPDGRAPHIC QUADRANGLES OF JERSEY CITY, AND WEEHAWKEN, NEW JERSEY

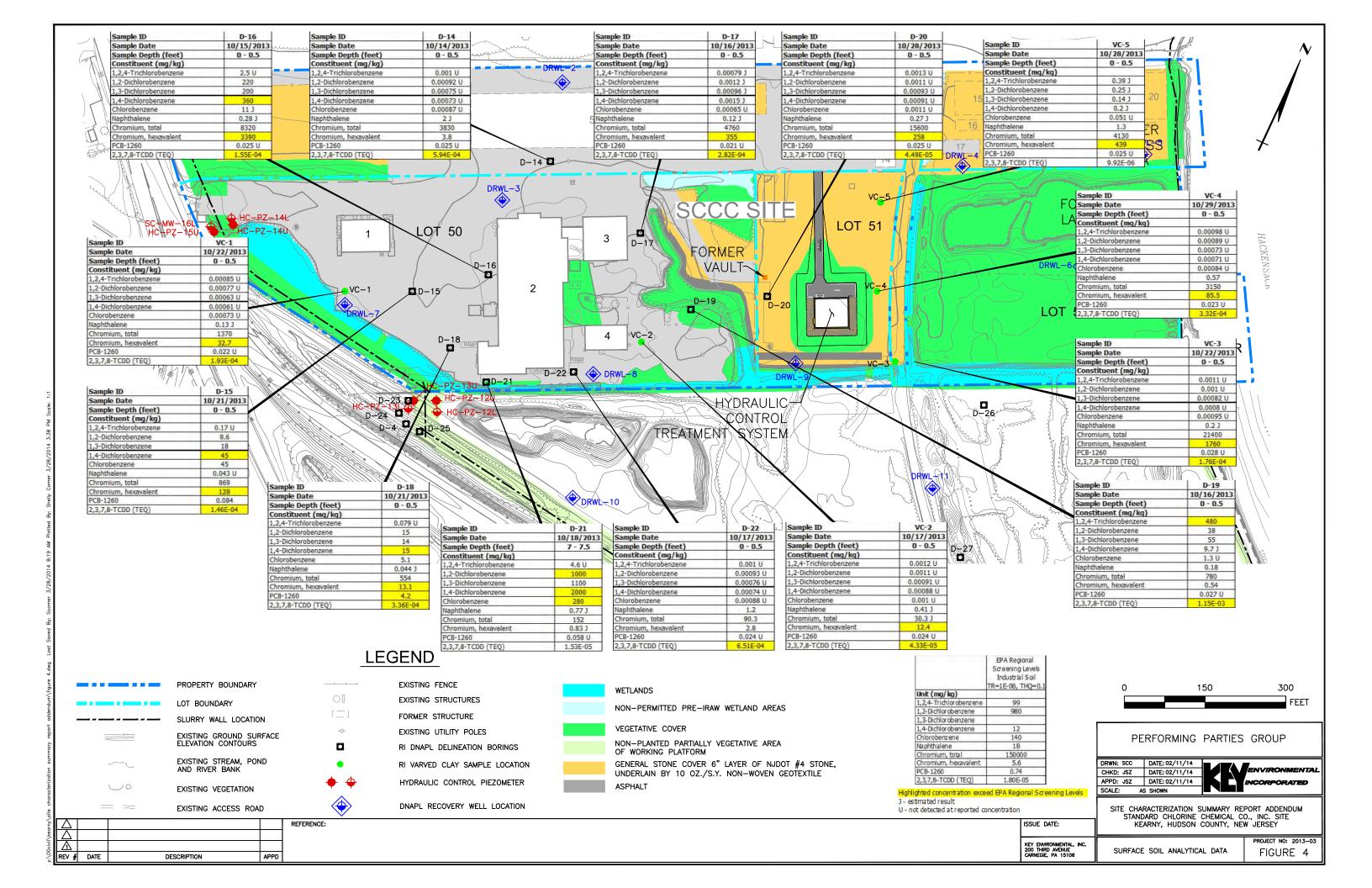
ISSUE DATE:

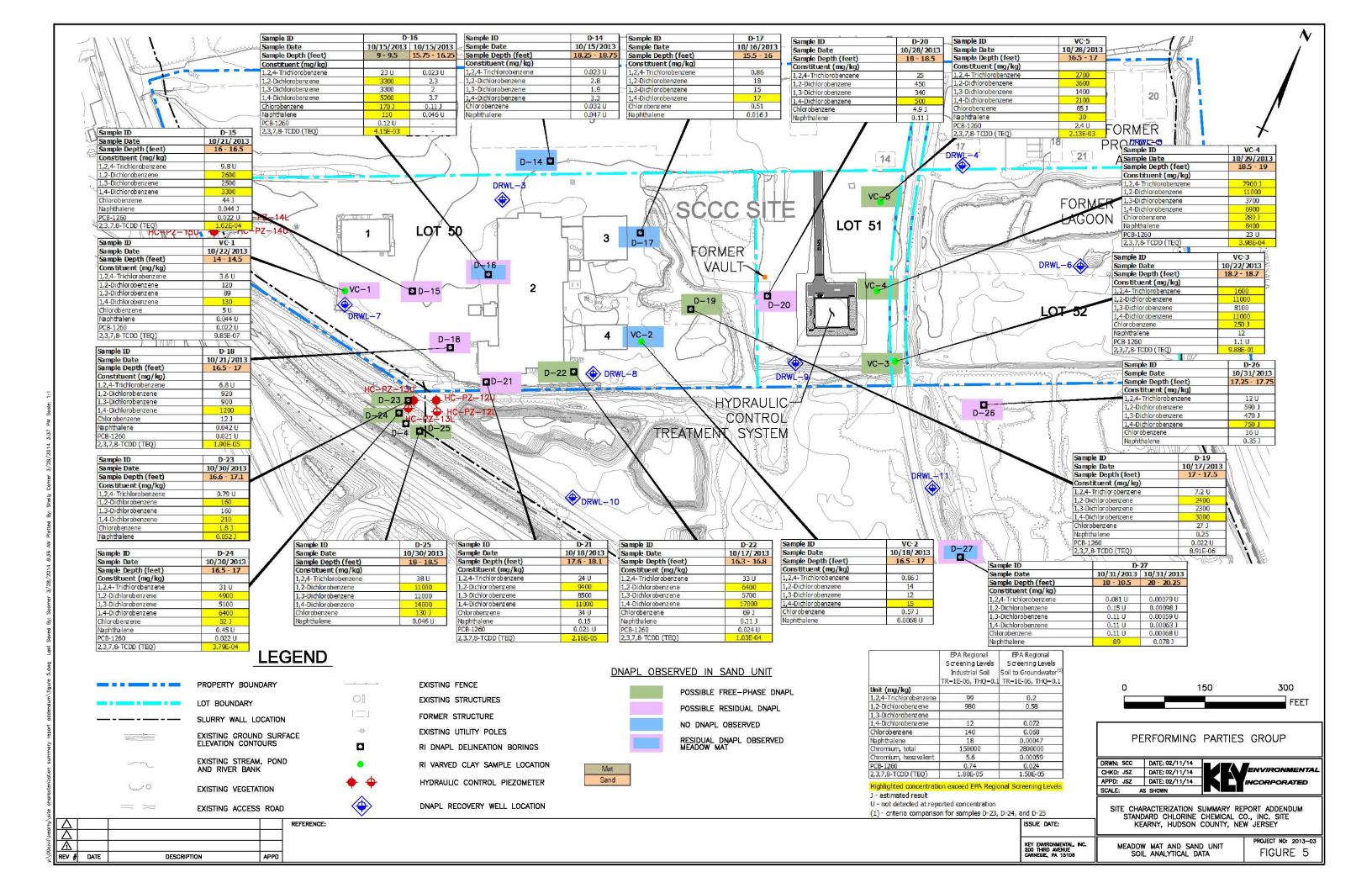
KEY ENVIRONMENTAL, INC. 200 THIRD AVENUE CARNEGIE, PA 15106

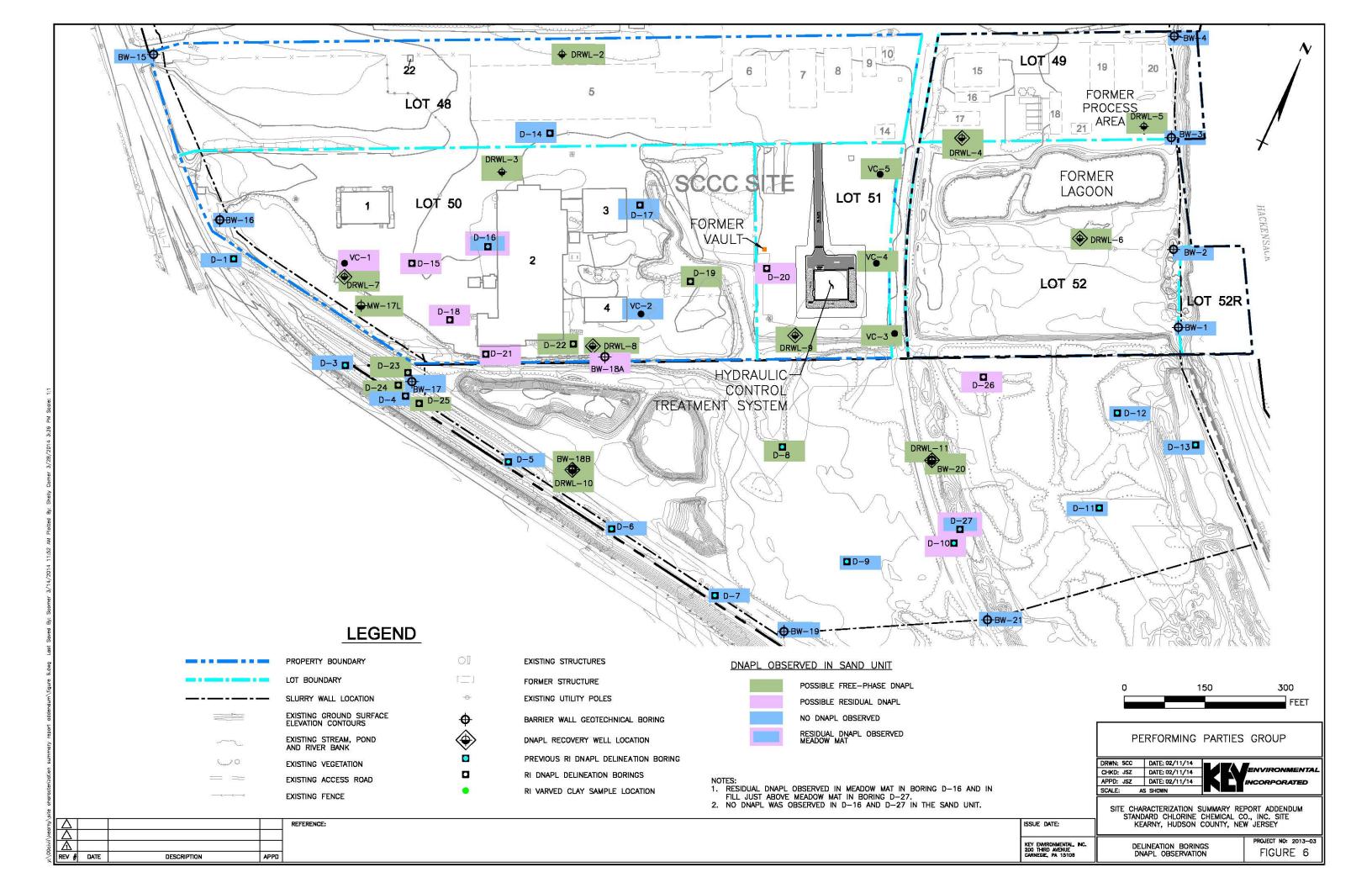
PERFORMING PARTIES GROUP

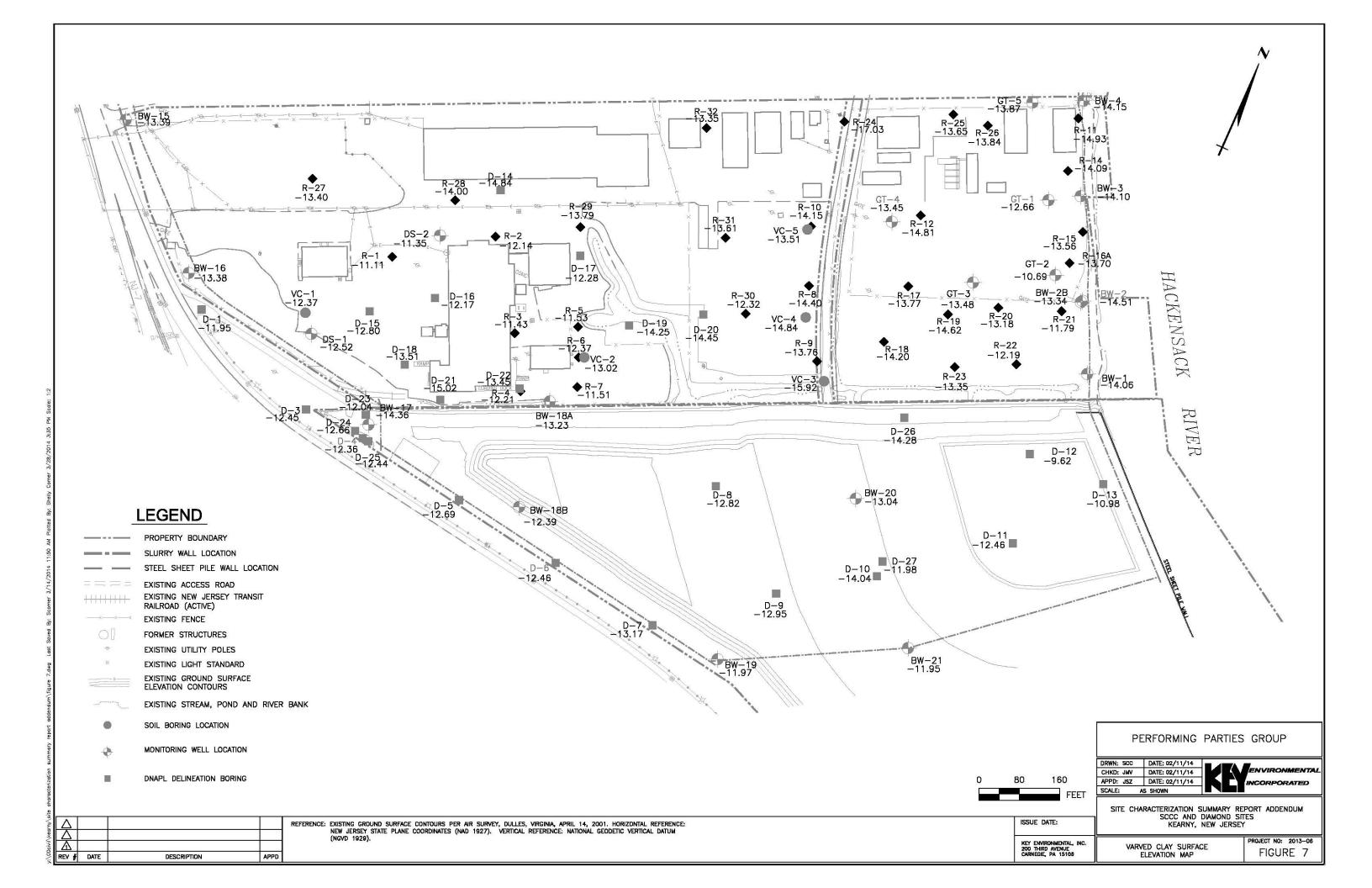

DRWN: SCC DATE: D2/11/14
CHKD: JMV DATE: D2/11/14
APPD: JSZ DATE: D2/11/14
SCALE: 1"- 2000"

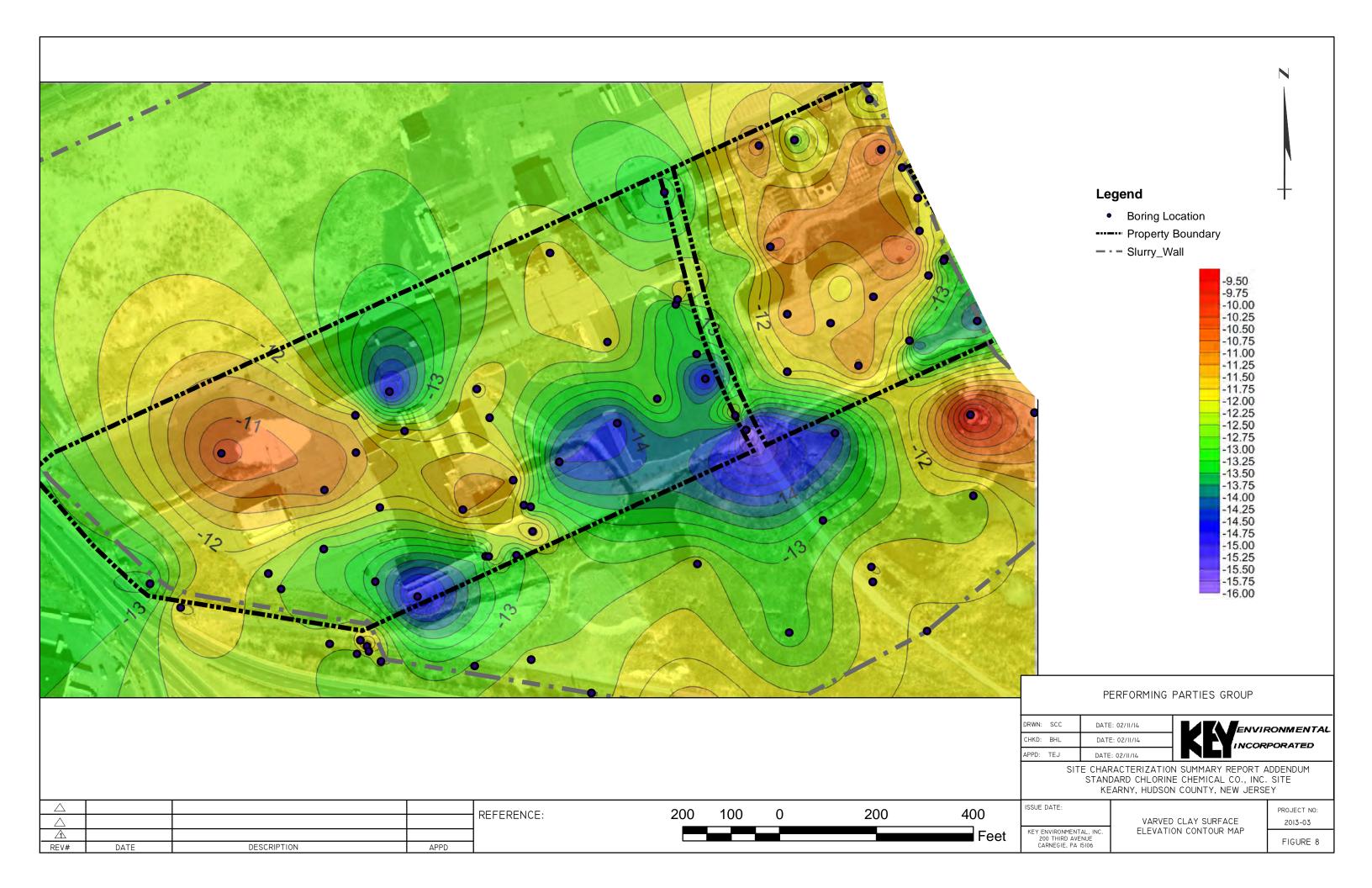

ENVIRONMENTAL INCORPORATED

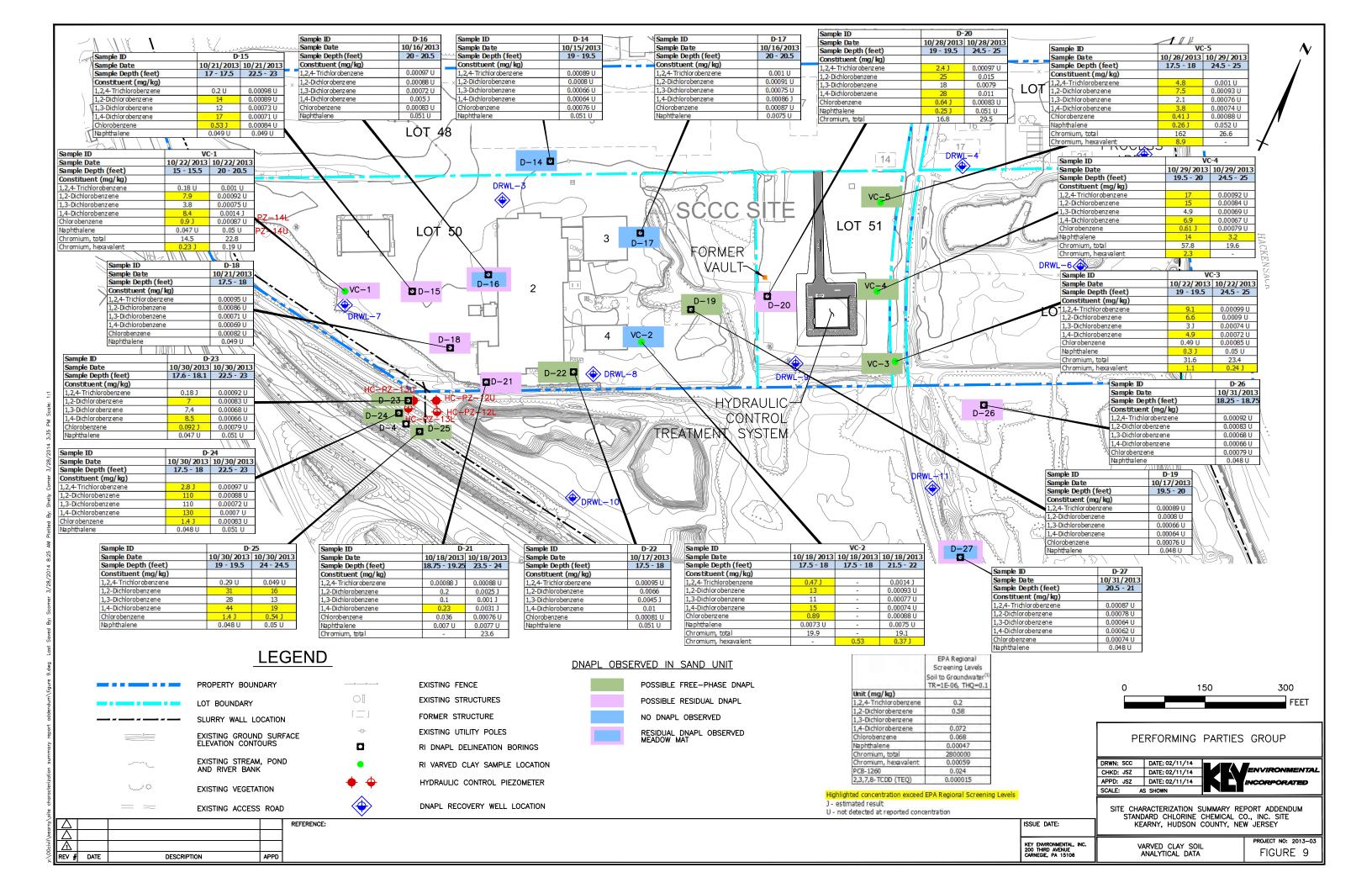

SITE CHARACTERIZATION SUMMARY REPORT ADDENDUM STANDARD CHLORINE CHEMICAL CO., INC. SITE KEARNY, HUDSON COUNTY, NEW JERSEY


SITE LOCATION MAP


PROJECT NO: 2013-03 FIGURE 1







TABLES

45
Fill
Mat
Sand
Varved Clay

Result exceeds relevant Regional Screening Level Fill Material Sample Meadow Mat Sample Deep Sand Sample Varved Clay Sample

TABLE 1 ANALYTICAL SOIL SAMPLE SUMMARY STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNEY, NEW JERSEY

Boring No.	Depth	Stratum	DNAPL Observation	VOCs/SVOCs	Metals	Cr+6/Ph/ORP	PCBs	PCDD/PCDI
D 14	0 - 0.5 ft 18.25 - 18.75 ft	Fill Sand	None None	X	Х	Х	Х	Х
D-14	19 - 19.5 ft	Clay	None	X		+		
		•			V		V	
	0 - 0.5 ft	Fill	None	X	Х	Х	X	X
D-15	16 - 16.5 ft	Sand	Residual	X		+	X	Х
	17 - 17.5 ft	Clay	None	X		+		
	22.5 - 23 ft	Varved Clay	None	Х		.		
	0 - 0.5 ft	Fill	None	Х	Х	Х	Х	X
D-16	9 - 9.5 ft	Mat	Residual	X			Х	Х
-	15.75 - 16.25 ft	Sand	None	X				
	20 - 20.5 ft	Clay	None	X				
	0 - 0.5 ft	Fill	None	X	X	Х	Х	X
D-17	15.5 - 16 ft	Sand	None	X				
	20 - 20.5 ft	Clay	None	X				
	0 - 0.5 ft	Fill	None	X	Х	Х	Х	Х
D-18	16.5 - 17 ft	Sand	Residual	Х			Х	Х
	17.5 - 18 ft	Clay	None	Х				
	0 - 0.5 ft	Fill	None	Х	Х	Х	Х	Х
D-19	17 - 17.5 ft	Sand	Free	Х			Х	Х
-	19.5 - 20 ft	Clay	None	X		†		
	0 - 0.5 ft	Fill	None	X	Х	Х	Х	Х
	18 - 18.5 ft	Sand	Residual	X	^	, · · · ·		
D-20	19 - 19.5 ft	Clay	None	X	Х	+		
	24.5 - 25 ft	Varved Clay	None	X	X	+		1
	7 - 7.5 ft	,		X		V	v	
	7 - 7.5 ft 17.6 - 18.1 ft	Fill	None	X	Х	X	X X	X
D-21		Sand	Residual			+	Х	X
	18.75 - 19.25 ft	Clay	None	X	.,	+		
	23.5 - 24 ft	Varved Clay	None	X	X	.		
	0 - 0.5 ft	Fill	None	X	Х	Х	Х	Х
D-22	16.3 - 16.8 ft	Sand	Free	X			Χ	Х
	17.5 - 18 ft	Clay	None	X				
	16.6 - 17.1 ft	Sand	Free	X				
D-23	17.6 - 18.1 ft	Clay	None	X				
	22.5 - 23 ft	Varved Clay	None	X				
	16.5 - 17 ft	Sand	Free	Х			Х	Х
D-24	17.5 - 18 ft	Clay	None	X				
	22.5 - 23 ft	Varved Clay	None	Х				
	18 - 18.5 ft	Sand	Residual/Free	Х				
D-25	19 - 19.5 ft	Clay	None	Х				
	24 - 24.5 ft	Varved Clay	None	Х				
	17.25 - 17.75 ft	Sand	Residual	Х				
D-26	17.25 - 17.75 ft *	Sand	Residual	X		+		
D 20	18.25 - 18.75	Clay	None	X				
	10 - 10.5 ft	Fill	None	X				
D-27	20 - 20.25 ft	Sand	None	X		+		
D-27				X		+		
	20.5 - 21 ft	Clay	None		.,		.,	
	0 - 0.5 ft	Fill	None	X	Х	Х	X	X
	14 - 14.5 ft	Sand	Residual	Х			Х	Х
VC-1	15 - 15.5 ft	Clay	None	X	Х	X		
	15 - 15.5 ft *	Clay	None	X				
	20 - 20.5 ft	Varved Clay	None	Х	Х	Х		
	0 - 0.5 ft	Fill	None	X	Х	Х	Х	Х
	0 - 0.5 ft *	Fill	None	X	Х	X	Х	Х
VC-2	16.5 - 17 ft	Sand	None	X				
V C-2	17 - 18 ft	Clay	None	X	Х			
	17.5 - 18 ft	Varved Clay	None			Х		
	21.5 - 22 ft	Varved Clay	None	X	Х	Х		
	0 - 0.5 ft	Fill	None	X	Х	Х	Χ	Х
VC 2	18.2 - 18.7 ft	Sand	Residual/Free	Х			Х	Х
VC-3	19 - 19.5 ft	Clay	None	Х	Х	Х		
	24.5 - 25 ft	Varved Clay	None	Х	Х	Х		
	0 - 0.5 ft	Fill	None	X	X	X	Х	Х
	18.5 - 19 ft	Sand	Free	X		 	X	X
	18.5 - 19 ft *	Sand	Free	X		+ +	X	X
VC-4	19.5 - 20 ft	Clay	None	X	Х	Х	^	
				^				+
	19.5 - 20 ft *	Clay	None	V	X	Х		1
	24.5 - 25 ft	Varved Clay	None	X	X	 	,.	
	0 - 0.5 ft	Fill	None	Х	Х	Х	Х	Х
VC-5	16.5 - 17 ft	Sand	Residual	X			Х	Х
	17.5 - 18 ft	Clay	None	X	X	X		
	24.5 - 25 ft	Varved Clay	None	X	X	1 7		

^{*} Field Duplicate Sample

TABLE 2 MONITORING WELL ABANDONMENT STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

Well ID	Abandon Date	Total Well Depth at Installation (ft- bgs)	Total Depth Prior to Abandonment (ft- bgs)	Riser Stickup (ft)	Depth to Water (ft-toc)	Depth to Product (ft)	Product Thickness (ft)	Product Removed (gallons)	Comments (1)
					SCCC Si	te Wells			
SC-MW-1L	10/19-20/2013	21	18.2	1.6	5.85	NP	NA	NA	Well grouted/abandoned (2)
SC-PZ-1U	10/19-20/2013	8	7.8	3.0	5.2	NP	NA	NA	Well grouted/abandoned
SC-PZ-1D	10/19-20/2013	16	15.9	2.8	4.95	NP	NA	NA	Well grouted/abandoned
SC-MW-15U	10/19-20/2013	6	6.4	1.6	4.08	NP	NA	NA	Well grouted/abandoned
SC-MW-15L	10/19-20/2013	16	15.6	1.7	4.06	NP	NA	NA	Well grouted/abandoned
SC-MW-2L	10/19-20/2013	18	18.0	2.2	4.83	NP	NA	NA	Well grouted/abandoned
SC-MW-5L	10/19-20/2013	17	15.8	3.2	1.27	NP	NA	NA	Well grouted/abandoned (2)
SC-PZ-3U	10/19-20/2013	8.5	7.2	2.7	4.58	NP	NA	NA	Well grouted/abandoned (2)
SC-PZ-3D	10/19-20/2013	17	16.0	3.2	5.03	NP	NA	NA	Well grouted/abandoned (2)
SC-MW-6L	10/19-20/2013	16	15.0	2.0	3.9	NP	NA	NA	Well grouted/abandoned (2)
SC-MW-7L	10/19-20/2013	16	14.6	1.6	3.71	NP	NA	NA	Well grouted/abandoned (2)
SC-PZ-4U	10/19-20/2013	8	2.8	2.7	Dry @ 5.5	NP	NA	NA	Well grouted/abandoned (3)
SC-PZ-2U	10/19-20/2013	8.25	7.9	2.7	6.21	NP	NA	NA	Well grouted/abandoned (2)
SC-PZ-2D	10/19-20/2013	16.5	16.3	2.7	6.17	NP	NA	NA	Well grouted/abandoned
SC-MW-4L	10/19-20/2013	18	17.7	1.2	4.86	NP	NA	NA	Well grouted/abandoned
SC-MW-3L	8/19-21/2013	18	18.9	1.3	2.09	17	3.2	2.5	Product removed prior to grouting/abandonment

Notes:

- (1) Well decommissioned via tremie pipe from the bottom of the well. Borehole sealed in accordance with NJDEP regulations N.J.A.C. 7:9D
- (2) Indicates well jetted down to original well installation depth prior to grouting
- (3) Indicates well jetted through obstruction at 5.5 ft and down to original well installation depth prior to grouting
- toc depth to water measured from top of casing
- bgs below ground surface
- toc depth to water measured from top of casing
- ft feet

TABLE 3
SURFACE SOILS - VOLATILE ORGANIC COMPOUNDS
STANDARD CHLORINE CHEMICAL CO. INC. SITE
KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	D-14	D-15	D-16		D-17		D-18	D-19		D-20	D-21	D-22	VC-1
	sample depth	Screening Levels	0 - 6 in	0 - 6 in	0 - 6 in		0 - 6 in		0 - 6 in	0 - 6 in		0 - 6 in	7 - 7.5 ft	0 - 6 in	0 - 6 in
	stratum	Industrial Soil	Fill	Fill	Fill		Fill		Fill	Fill		Fill	Fill	Fill	Fill
	sample_date	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013	10/15/2013		10/16/2013		10/21/2013	10/16/2013		10/28/2013	10/18/2013	10/17/2013	10/22/2013
chemical_name	Units		_												
1,1,1-Trichloroethane	mg/kg	3800	< 0.00056 U	< 0.45 U	< 6.9	U		U	< 0.22 U	< 2.6	U	< 0.00069 l	J < 13	U < 0.00057 U	< 0.00047 U
1,1,2,2-Tetrachloroethane	mg/kg	2.8	< 0.00083 U	< 0.41 U	< 6.2	U	< 0.00062	U	< 0.19 U	< 2.3	U	< 0.001 l	J < 11	U < 0.00084 U	< 0.00069 U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	18000	< 0.0012 U		< 2.2	U	< 0.00091	U	< 0.069 U	< 0.82	U	< 0.0015 l	J < 4	U < 0.0012 U	< 0.001 U
1,1,2-Trichloroethane	mg/kg	0.68	< 0.00096 U	< 0.51 U	< 7.8	U	< 0.00071	U	< 0.24 U	< 2.9	U	< 0.0012 l	J < 14	U < 0.00097 U	< 0.0008 U
1,1-Dichloroethane	mg/kg	17	< 0.00066 U	< 0.44 U	< 6.8	U		U	< 0.21 U	< 2.5	U	< 0.00082 l	J < 12	U < 0.00067 U	< 0.00055 U
1,1-Dichloroethene	mg/kg	110	< 0.00098 U		< 7.1	U		U	< 0.22 U	< 2.7	U	< 0.0012 l	J < 13	U < 0.00099 U	< 0.00082 U
1,2,3-Trichlorobenzene	mg/kg	49	< 0.00097 U	. 0.20	< 4.2	U		U	< 0.13 U	210		< 0.0012 l	J < 7.7	U < 0.00098 U	< 0.00081 U
1,2,4-Trichlorobenzene	mg/kg	27	< 0.001 U		< 2.5	U	0.00077	J	< 0.079 U	480		< 0.0013 l	J < 4.6	U < 0.001 U	< 0.00085 U
1,2-Dibromo-3-chloropropane	mg/kg	0.069	< 0.00086 U		< 2.4	U		U	< 0.074 U	< 0.88	U	< 0.0011 l	1.0	U < 0.00087 U	< 0.00072 U
1,2-Dibromoethane	mg/kg	0.17	< 0.00099 U		< 4.1	U		U	< 0.13 U	< 1.5	U	< 0.0012 l	J < 7.5	U < 0.001 U	< 0.00083 U
1,2-Dichlorobenzene	mg/kg	980	< 0.00092 U		220		0.00.12	J	15	38		< 0.0011 l		< 0.00093 U	< 0.00077 U
1,2-Dichloroethane	mg/kg	2.2	< 0.00071 U		< 6.4	U		U	< 0.2 U	< 2.4	U	< 0.00087 l	12	U < 0.00071 U	< 0.00059 U
1,2-Dichloropropane	mg/kg	4.7	< 0.00062 U		< 8.5	U		U	< 0.27 U	< 3.2	U	< 0.00077 l	, 10	U < 0.00063 U	< 0.00052 U
1,3,5-Trichlorobenzene	mg/kg		< 0.0011 U		< 3.1	U		U	< 0.097 U	< 1.2	U	< 0.0014 l	J < 5.7	U < 0.0011 U	< 0.00093 U
1,3-Dichlorobenzene	mg/kg	40	< 0.00075 U		200		0.00096	J	14	55	\vdash	< 0.00093 l		< 0.00076 U	< 0.00063 U
1,4-Dichlorobenzene	mg/kg	12	< 0.00073 U		360	1.		J	15	9.7	J	< 0.00091 l		< 0.00074 U	< 0.00061 U
1,4-Dioxane	mg/kg	17	< 0.32 U		< 660	U		U	< 20 U	< 240	U	< 0.39 l		U < 0.32 U	< 0.27 U
2-Butanone	mg/kg	20000	< 0.001 U < 0.00079 U		< 7.3	U		U	< 0.23 U	< 2.7	U	< 0.0013 l		U < 0.001 U	< 0.00085 U
2-Hexanone	mg/kg	140			< 3.8	U		U	< 0.12 U	< 1.4	U	< 0.00098 L		U < 0.0008 U	< 0.00066 U
4-Methyl-2-Pentanone (MIBK)	mg/kg	5300	< 0.00075 U		< 4	U		U	\ 0.1Z	< 1.5	U	1 0.00070		U < 0.00076 U	< 0.00063 U
Acetone	mg/kg	63000	< 0.0057 U < 0.00078 U		< 33 7.8	U		U	< 1 U	< 12 < 2.5	U	< 0.0071 L < 0.00096 L	J < 61 J < 12	U < 0.0058 U U < 0.00078 U	< 0.0048 U < 0.00065 U
Benzene Bromochloromethane	mg/kg	5.4 68	< 0.00078 U	<u> </u>		IJ		U	< 0.21 U	< 2.5	U	< 0.00098 U	J < 12 J < 12	U < 0.00078 U	< 0.00065 U
Bromodichloromethane	mg/kg mg/kg	1.4	< 0.00079 U		< 6.7 < 6.2	U		U	< 0.21 U	< 2.5	U	< 0.00098 U	J < 12 J < 11	U < 0.00065 U	< 0.00066 U
Bromoform	mg/kg	220	< 0.00065 U	1 2111	< 7.2	IJ		U	< 0.19 U	< 2.3	U	< 0.00063 U	J < 13	U < 0.00051 U	< 0.00034 U
Bromomethane	mg/kg	3.2	< 0.00031 U		< 11	II		U	< 0.33 U	< 3.9	U	< 0.0003 C	J < 19	U < 0.00086 U	< 0.00043 U
Carbon Disulfide	mg/kg	370	< 0.00059 U		< 7.2	U		U	< 0.22 U	< 2.7	U	< 0.00073	J < 13	U < 0.0006 U	< 0.00071 U
Carbon Tetrachloride	mg/kg	3	< 0.00057 U		< 7.3	U		U	< 0.23 U	< 2.7	U	< 0.00073 C		U < 0.00052 U	< 0.00047 U
Chlorobenzene	mg/kg	140	< 0.00087 U		11	ī		U	5.1	< 1.3	U	< 0.0011 U		< 0.00088 U	< 0.00073 U
Chloroethane	mg/kg	6100	< 0.0018 U	+	< 5	IJ		U	< 0.16 U	< 1.9	U	< 0.0022 U	J < 9.1	U < 0.0018 U	< 0.00075 U
Chloroform	mg/kg	1.5	0.00073 J	< 0.44 U	< 6.7	U		U	< 0.21 U	< 2.5	Ü	0.00086	< 12	U < 0.00068 U	< 0.00056 U
Chloromethane	mg/kg	50	< 0.00098 U		< 9.3	U		U	< 0.29 U	< 3.5	Ü	< 0.0012 U		U < 0.00099 U	< 0.00082 U
cis-1,2-Dichloroethene	mg/kg	200	< 0.00081 U		< 4.5	U		U	< 0.14 U	< 1.7	U	< 0.001 U	J < 8.1	U < 0.00082 U	< 0.00068 U
cis-1,3-Dichloropropene	mg/kg	8.3*	< 0.00078 U		< 4.9	U		U	< 0.15 U	< 1.8	U	< 0.00097 U	J < 8.9	U < 0.00079 U	< 0.00065 U
Cyclohexane	mg/kg	2900	< 0.00043 U		< 4	U	< 0.00032	U	< 0.12 U	< 1.5	U	< 0.00053 U	J < 7.3	U < 0.00043 U	< 0.00036 U
Dibromochloromethane	mg/kg	3.3	< 0.00082 U	t	< 4.3	U		U	< 0.14 U	< 1.6	U	< 0.001 l	+	U < 0.00082 U	< 0.00068 U
Dichlorodifluoromethane	mg/kg	40	< 0.00077 U	< 0.28 U	< 4.3	U	< 0.00057	U	< 0.13 U	< 1.6	U	< 0.00095 l	J < 7.8	U < 0.00077 U	< 0.00064 U
Ethylbenzene	mg/kg	27	< 0.00074 U	< 0.27 U	< 4.2	U	< 0.00055	U	< 0.13 U	< 1.5	U	< 0.00092 l	J < 7.6	U < 0.00075 U	< 0.00062 U
Isopropylbenzene	mg/kg	1100	< 0.00078 U		< 3.6	U		U	< 0.11 U	< 1.3	U	< 0.00097 l	J < 6.5	U < 0.00079 U	< 0.00065 U
m,p-Xylenes	mg/kg	255**	< 0.0017 U		< 8.6	U		U	< 0.27 U	< 3.2	U	< 0.0021 l	J < 16	U < 0.0017 U	< 0.0014 U
Methyl Acetate	mg/kg	100000	< 0.001 U	< 0.54 U	< 8.2	U	< 0.00077	U	< 0.26 U	< 3.1	U	< 0.0013 l	J < 15	U < 0.001 U	< 0.00087 U
Methyl tert_butyl ether	mg/kg	220	< 0.00086 U	< 0.45 U	< 6.9	U	< 0.00064	U	< 0.21 U	< 2.6	U	< 0.0011 l	J < 13	U < 0.00087 U	< 0.00072 U
Methylcyclohexane	mg/kg		< 0.00083 U	< 0.24 U	< 3.7	U	< 0.00062	U	< 0.12 U	< 1.4	J	< 0.001	J < 6.8	U < 0.00084 U	< 0.0007 U
Methylene Chloride	mg/kg	310	0.0011 U	0.93 J	< 7.3	U	0.00074	U	< 0.23 U	< 2.7	U	0.0098 l	J < 13	U 0.0021 U	0.0017 U
o-Xylene	mg/kg	300	< 0.0009 U		< 4.9	U		U	< 0.15 U	< 1.8	U	< 0.0011 l		U < 0.00091 U	< 0.00075 U
Styrene	mg/kg	3600	< 0.00081 U		< 4.3	U		U	< 0.13 U	< 1.6	U	< 0.001 l		U < 0.00082 U	< 0.00068 U
Tetrachloroethene	mg/kg	41	< 0.00078 U		< 5.5	U		U	< 0.17 U	< 2.1	U	< 0.00097 l		U < 0.00079 U	< 0.00065 U
Toluene	mg/kg	4500	< 0.00084 U		< 5.7	U		U	< 0.18 U	< 2.1	U	< 0.001 l		U < 0.00085 U	< 0.0007 U
trans-1,2-Dichloroethene	mg/kg	69	< 0.00069 U		< 5	U		U	< 0.16 U	< 1.9	U	< 0.00085 l	J < 9.2	U < 0.00069 U	< 0.00057 U
trans-1,3-Dichloropropene	mg/kg	8.3*	< 0.00069 U		< 3.9	U		U	< 0.12 U	< 1.5	U	< 0.00085 l	J < 7.1	U < 0.00069 U	< 0.00057 U
Trichloroethene	mg/kg	2	< 0.00076 U		< 5.4	U		U	< 0.17 U	< 2	U	< 0.00094 l		U < 0.00076 U	< 0.00063 U
Trichlorofluoromethane	mg/kg	340	< 0.0011 U		< 7.5	U		U	< 0.23 U	< 2.8	U	< 0.0013 l	J < 14	U < 0.0011 U	< 0.00088 U
Vinyl Chloride	mg/kg	1.7	< 0.00054 U	< 0.57 U	< 8.6	U	< 0.0004	U	< 0.27 U	< 3.2	U	< 0.00067	J < 16	U < 0.00055 U	< 0.00045 U

Notes:

- U not detected at reported concentration
- J estimated result
- * value is for total 1,3-dichloropropene
- ** value is average of m-xylene and p-xylene

TABLE 3 SURFACE SOILS - VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

	sys_loc_code	EPA Regional	VC-2		VC-2 DUP		VC-3		VC-4		VC-5	
	sample depth	Screening Levels	0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in	
	stratum	Industrial Soil	Fill		Fill		Fill		Fill		Fill	
shaminal name	sample_date	TR=1E-06, THQ=0.1	10/17/2013		10/17/2013		10/22/2013		10/29/2013		10/28/2013	<u>3</u>
chemical_name .1.1-Trichloroethane	Units	3800	< 0.00067	Ιυ	< 0.00058	U	< 0.00061	U	< 0.00054	ΙU	< 0.1	
,1,2,2-Tetrachloroethane	mg/kg mg/kg	2.8	< 0.00087	U	< 0.00085	U	< 0.0009	U	< 0.00054	U	< 0.1	_
,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	18000	< 0.00033	U	< 0.00083	U	< 0.0009	U	< 0.0008	U	< 0.032	_
,1,2-Trichloroethane		0.68	< 0.0013	U	< 0.0013	U	< 0.0013	U	< 0.0012	U	< 0.032	_
,1-Dichloroethane	mg/kg mg/kg	17	< 0.0011	U	< 0.00099	U	< 0.001	U	< 0.00042	U	< 0.11	_
,1-Dichloroethane ,1-Dichloroethene	mg/kg	110	< 0.00079	U	< 0.0008	U	< 0.00072	U	< 0.00064	U	< 0.098	_
,2,3-Trichlorobenzene	mg/kg	49	< 0.0012	U	< 0.001	U	< 0.0011	U	< 0.00094	U	0.29	_
,2,4-Trichlorobenzene	mg/kg	27	< 0.0012	U	< 0.001	U	< 0.0011	U	< 0.00098	U	0.29	_
,2-Dibromo-3-chloropropane	mg/kg	0.069	< 0.0012	U	< 0.00089	U	< 0.00011	U	< 0.00048	U	< 0.034	_
,2-Dibromoethane	mg/kg	0.069	< 0.001	U	< 0.00089	U	< 0.00093	U	< 0.00083	U	< 0.054	_
,2-Dichlorobenzene		980	< 0.0012	U	< 0.0001	U	< 0.0011	U	< 0.00098	U	0.25	_
	mg/kg	2.2						U				_
,2-Dichloroethane	mg/kg		< 0.00085	U	< 0.00073	U	< 0.00077	U	< 0.00068	U	< 0.093	_
,2-Dichloropropane	mg/kg	4.7	< 0.00075	U	< 0.00065	U	< 0.00068	U	< 0.0006 < 0.0011	U	< 0.12 < 0.045	_
,3,5-Trichlorobenzene	mg/kg		< 0.0013		< 0.0011 < 0.00078		< 0.0012			U		_
,3-Dichlorobenzene	mg/kg	10	< 0.00091	U		U	< 0.00082	U	< 0.00073	U	0.14	_
,4-Dichlorobenzene	mg/kg	12	< 0.00088	U	< 0.00076	U	< 0.0008	U	< 0.00071	U	0.2	_
,4-Dioxane	mg/kg	17	< 0.38	U	< 0.33	U	< 0.34	U	< 0.31	U	< 9.5	_
-Butanone	mg/kg	20000	< 0.0012	U	< 0.001	U	< 0.0011	U	< 0.00098	U	< 0.1	_
-Hexanone	mg/kg	140	< 0.00095	U	< 0.00082	U	< 0.00086	U	< 0.00077	U	< 0.055	_
-Methyl-2-Pentanone (MIBK)	mg/kg	5300	< 0.0009	U	< 0.00078	U	< 0.00081	U	< 0.00072	U	< 0.057	_
cetone	mg/kg	63000	< 0.0069	U	< 0.0059	U	< 0.0062	U	< 0.0056	U	< 0.48	_
enzene	mg/kg	5.4	< 0.00093	U	< 0.0008	U	< 0.00084	U	< 0.00075	U	< 0.096	
romochloromethane	mg/kg	68	< 0.00095	U	< 0.00082	U	< 0.00086	U	< 0.00076	U	< 0.097	
romodichloromethane	mg/kg	1.4	< 0.00078	U	< 0.00067	U	< 0.0007	U	< 0.00062	U	< 0.09	
romoform	mg/kg	220	< 0.00061	U	< 0.00053	U	< 0.00055	U	< 0.00049	U	< 0.1	
romomethane	mg/kg	3.2	< 0.001	U	< 0.00088	U	< 0.00092	U	< 0.00082	U	< 0.15	
Carbon Disulfide	mg/kg	370	< 0.00071	U	< 0.00061	U	< 0.00064	U	< 0.00057	U	< 0.1	
Carbon Tetrachloride	mg/kg	3	< 0.00062	U	< 0.00053	U	< 0.00056	U	< 0.0005	U	< 0.1	
Chlorobenzene	mg/kg	140	< 0.001	U	< 0.0009	U	< 0.00095	U	< 0.00084	U	< 0.051	
Chloroethane	mg/kg	6100	< 0.0021	U	< 0.0018	U	< 0.0019	U	< 0.0017	U	< 0.072	
Chloroform	mg/kg	1.5	< 0.00081	U	< 0.0007	U	< 0.00073	U	< 0.00065	U	< 0.098	
Chloromethane	mg/kg	50	< 0.0012	U	< 0.001	U	< 0.0011	U	< 0.00095	U	< 0.13	
is-1,2-Dichloroethene	mg/kg	200	< 0.00097	U	< 0.00084	U	< 0.00088	U	< 0.00078	U	< 0.064	
is-1,3-Dichloropropene	mg/kg	8.3*	< 0.00094	U	< 0.00081	U	< 0.00085	U	< 0.00075	U	< 0.07	
Cyclohexane	mg/kg	2900	< 0.00051	U	< 0.00044	U	< 0.00046	U	< 0.00041	U	< 0.058	
Dibromochloromethane	mg/kg	3.3	< 0.00098	U	< 0.00084	U	< 0.00089	U	< 0.00079	U	< 0.063	
Dichlorodifluoromethane	mg/kg	40	< 0.00092	U	< 0.00079	U	< 0.00083	U	< 0.00074	U	< 0.061	
thylbenzene	mg/kg	27	< 0.00089	U	< 0.00076	U	< 0.0008	U	< 0.00071	U	< 0.06	
sopropylbenzene	mg/kg	1100	< 0.00094	U	< 0.00081	U	< 0.00085	U	< 0.00075	U	< 0.051	_
n,p-Xylenes	mg/kg	255**	< 0.002	U	< 0.0017	U	< 0.0018	U	< 0.0016	U	< 0.12	
Methyl Acetate	mg/kg	100000	< 0.0012	U	< 0.0011	U	< 0.0011	U	< 0.001	U	< 0.12	_
Methyl tert butyl ether	mg/kg	220	< 0.001	U	< 0.00089	U	< 0.00093	U	< 0.00083	U	< 0.099	_
lethylcyclohexane	mg/kg		< 0.001	U	< 0.00086	U	< 0.00091	Ü	< 0.00081	U	< 0.054	_
Methylene Chloride	mg/kg	310	0.0019	U	0.0019	U	0.0026	Ü	0.0025	U	0.11	_
-Xylene	mg/kg	300	< 0.0011	Ü	< 0.00093	U	< 0.00097	U	< 0.00087	U	< 0.071	-
tyrene	mg/kg	3600	< 0.00097	U	< 0.00084	U	< 0.00088	U	< 0.00078	U	< 0.062	_
etrachloroethene	mg/kg	41	< 0.00094	U	< 0.00081	U	< 0.00085	U	< 0.00076	U	< 0.08	-
oluene	mg/kg	4500	< 0.001	U	< 0.00087	U	< 0.00091	U	< 0.00070	U	< 0.082	-
rans-1,2-Dichloroethene	mg/kg	69	< 0.0001	U	< 0.00087	U	< 0.00071	U	< 0.00066	U	< 0.062	_
rans-1,3-Dichloropropene	mg/kg	8.3*	< 0.00082	U	< 0.00071	U	< 0.00074	U	< 0.00066	U	< 0.073	-
richloroethene	mg/kg	2	< 0.00083	U	< 0.00071	U	< 0.00075	U	< 0.00073	U	< 0.038	_
				U		U		U		U		_
Frichlorofluoromethane	mg/kg	340	< 0.0013		< 0.0011		< 0.0011		< 0.001		< 0.11	_
/inyl Chloride	mg/kg	1.7	< 0.00065	U	< 0.00056	U	< 0.00059	U	< 0.00052	U	< 0.12	

- U not detected at reported concentration
- J estimated result
- * value is for total 1,3-dichloropropene
- ** value is average of m-xylene and p-xylene

			T _	T _	1			, I							T _	1
	sys_loc_code	EPA Regional	D-14	D-15		D-16		D-17	D-18	D-19		D-20		D-21	D-22	VC-1
	sample depth	Screening Levels	0 - 6 in	0 - 6 in		0 - 6 in		0 - 6 in	0 - 6 in	0 - 6 in		0 - 6 in		7 - 7.5 ft	0 - 6 in	0 - 6 in
	stratum	Industrial Soil	Fill	Fill		Fill		Fill	Fill	Fill		Fill		Fill	Fill	Fill
	sample_date	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013		10/15/2013		10/16/2013	10/21/2013	10/16/2013		10/28/2013	_	10/18/2013	10/17/2013	10/22/2013
chemical_name	Units													1		
1,1'-Biphenyl	mg/kg	21	< 0.29 L			< 0.059	U	0.23	J < 0.049 I	J 14	+	. 01007	U	,		0.063 J
1,2,4,5-Tetrachlorobenzene	mg/kg	18	< 0.29 L			0.98		0.12	0.13	J 4.2	++	< 0.059	U	210	0.11 J	< 0.051 L
2,2'-Oxybis(1-Chloropropane)	mg/kg	22	< 0.24 L			< 0.049	U			J < 0.01	U	< 0.049	U	< 0.33 U	< 0.093 U	< 0.042 L
2,3,4,6-Tetrachlorophenol	mg/kg	1800	< 0.28 L			< 0.058	U	< 0.096 l	J < 0.048 I	J < 0.03	U	< 0.057	U	< 0.98 U	< 0.11 U	< 0.049 L
2,4,5-Trichlorophenol	mg/kg	6200	< 0.28 L			< 0.057	U	< 0.16 l	J < 0.048 I	J < 0.05	U	< 0.057	U	< 1.6 U	< 0.11 U	< 0.049 L
2,4,6-Trichlorophenol	mg/kg	62	< 0.25 L		<u>'</u>	< 0.052	U	< 0.22 l	J < 0.043 I	J < 0.07	U	< 0.051	U	< 2.3 U	< 0.098 U	< 0.044 L
2,4-Dichlorophenol	mg/kg	180	< 0.32 L		<u>'</u>	0.34	J	< 0.03 l	J < 0.054 I	J 0.047	I J	< 0.064	U	4.3	< 0.12 U	< 0.055 L
2,4-Dimethylphenol	mg/kg	1200	< 0.53 L			< 0.11	U	< 0.23 l		J < 0.073	U	< 0.11	U	< 2.4 U	< 0.21 U	< 0.093 L
2,4-Dinitrophenol	mg/kg	120	< 1.2 L			< 0.25	U	< 1.8 l		J < 0.56	U	< 0.25	U	< 18 U	< 0.48 U	< 0.21 L
2,4-Dinitrotoluene	mg/kg	5.5	< 0.071 L			< 0.015	U			J < 0.038	U	. 0.0	U	, <u>.</u>	< 0.028 U	< 0.012 L
2,6-Dinitrotoluene	mg/kg	1.2	< 0.065 L			< 0.013	U	< 0.15 l	J < 0.011 I	J < 0.048	U	< 0.013	U	< 1.6 U	< 0.025 U	< 0.011 L
2-Chloronaphthalene	mg/kg	8200	< 0.24 L			< 0.049	U	< 0.031 l	J < 0.041 I	J < 0.0098	U	< 0.049	U	< 0.32 U	< 0.093 U	< 0.042 L
2-Chlorophenol	mg/kg	510	< 0.28 U		!	< 0.058	U	< 0.12 l	< 0.048	J < 0.038	U	< 0.058	U	< 1.2 U	< 0.11 U	< 0.05 L
2-Methylnaphthalene	mg/kg	220	0.28 J	< 0.048 L		0.07	J	0.03	J < 0.047 U	J 0.18	++	< 0.056	U	< 0.27 U	0.15 J	< 0.048 L
2-Methylphenol	mg/kg	3100	< 0.37 U			< 0.075	U			J < 0.033	U	< 0.075	U	< 1.1 U	< 0.14 U	< 0.064 L
2-Nitroaniline	mg/kg	600	< 0.9 L			< 0.18	U			J < 0.21	U	< 0.18	U	< 6.8 U	\ 0.55 U	< 0.16 L
2-Nitrophenol	mg/kg	2.0	< 0.24 U		1	< 0.049	U			J < 0.052	U	< 0.049	U	< 1.7 U	< 0.093 U	< 0.042 U
3,3'-Dichlorobenzidine	mg/kg	3.8	< 0.76 U		1	< 0.16	U	< 0.16 l		J < 0.05	U	< 0.15	U	< 1.6 U	< 0.29 U	< 0.13 U
3-Nitroaniline	mg/kg	4.0	< 0.76 U		<u>'</u>	< 0.16	U	< 0.61 l	J < 0.13	J < 0.19	U	< 0.16	U	< 6.3 U	< 0.3 U	< 0.13 U
4,6-Dinitro-2-Methylphenol	mg/kg	4.9	< 0.59 L			< 0.12	U	< 0.6	< 0.1	J < 0.19	U	< 0.12	U	< 6.1 U	< 0.23 U	< 0.1 U
4-Bromophenyl-phenylether	mg/kg	/200	< 0.21 U		<u>' </u>	< 0.044	U	< 0.13 l	< 0.037	J < 0.041	U	< 0.043	U	< 1.3 U	< 0.083 U	< 0.037 U
4-Chloro-3-methylphenol	mg/kg	6200	< 0.33 U			< 0.067	_			J < 0.043	U	< 0.066	U	< 1.4 U	< 0.13 U	< 0.057 U
4-Chloroaniline	mg/kg	8.6	< 0.57 L		<u>'</u>	< 0.12	U			J < 0.038	U	< 0.12	U	< 1.2 U	< 0.22 U	< 0.1 U
4-Chlorophenyl-phenylether	mg/kg	/200	< 0.25 U			< 0.052	U		+	J < 0.052		· 0.001	U	` 17	. 0.070	< 0.044 U
4-Methylphenol	mg/kg	6200	< 0.42 U			< 0.087	U	< 0.15 l	J < 0.072 I	J < 0.046	U	< 0.086	U	< 1.5 U	< 0.16 U	< 0.074 U
4-Nitroaniline	mg/kg	86	< 0.67 U		<u>' </u>	< 0.14	U	< 0.6	J < 0.11 L	J < 0.19	U	< 0.14	U	< 6.2 U	< 0.26 U	< 0.12 U
4-Nitrophenol	mg/kg	2200	< 1.4 U			< 0.28	U	< 0.54 l	J < 0.24 L	J < 0.17	U	< 0.28	U	< 5.6 U	< 0.54 U	< 0.24 U
Acenaphthene	mg/kg	3300	1.4 J	< 0.054 L		< 0.064	U		J < 0.054 U	J 0.087	J	0.068	J	< 0.29 U	< 0.12 U	< 0.055 U
Acenaphthylene	mg/kg	10000	< 0.25 U			< 0.052	ŭ	< 0.034 l	< 0.044	U 0.034 U < 0.039	Ŋ	< 0.052	U	< 0.35 U	< 0.099 U	< 0.045 U < 0.058 U
Actophenone	mg/kg	10000	< 0.33 U			< 0.068 < 0.054	U		J < 0.057 I J 0.085 .		U	< 0.067 0.13	U	< 1.3 U	< 0.13 U 0.22 J	
Atracina	mg/kg	17000 7.5	1.5 J	< 0.045 L	'	< 0.054	U			J 0.1 J < 0.046	+		J	< 0.3 U < 1.5 U		< 0.046 U < 0.058 U
Atrazine	mg/kg	10000			-	< 0.068	U	< 0.14 l	< 0.057		U	< 0.068 < 0.052	U		< 0.13 U	
Benzaldehyde	mg/kg		1 0.20		+	0.052	U	0.5	< 0.043	U < 0.07 0.8	10	< 0.052 0.91	U	< 2.3 U < 0.38 U	< 0.098 U	< 0.044 U
Benzo(a)anthracene	mg/kg	2.1	9.3	0.12	-			0.63	0.56				H		1.2	
Benzo(a)pyrene	mg/kg	0.21 2.1	17 19	0.16		0.054			0.98	0.8 1.4	+	1.4		< 0.3 U < 0.48 U		0.33
Benzo(b)fluoranthene	mg/kg	2.1	23	0.31 0.091	1	0.068	_	0.78 0.74	0.36	J 1.4 J 1.2	+	1.5 1.7	H	< 0.48 U < 0.3 U	2.1 1.7	0.42 0.47
Benzo(g,h,i)perylene	mg/kg	21		0.091	1	< 0.0034	J		0.36	0.58	+	0.68	H	< 0.62 U		0.47
Benzo(k)fluoranthene	mg/kg	180	6.4 < 0.28			< 0.0034	U			J < 0.031	U	< 0.057	Н		< 0.11 U	< 0.049 L
bis(2-Chloroethoxy) Methane	mg/kg	180			'	< 0.006	U			J < 0.031 J < 0.013	U		U	< 1 U		< 0.049 C
Bis-(2-Chloroethyl) Ether	mg/kg	120			'		U -			J 0.32		< 0.006	U	< 0.41 U < 2.5 U	< 0.011 U < 0.28 U	
bis(2-Ethylhexyl)phthalate	mg/kg	910	< 0.72 L < 0.2 L		-	0.24	J				J	< 0.15	U			< 0.13 L
Butylbenzylphthalate Caprolactum	mg/kg mg/kg	30000	< 0.2 U < 0.5 U		<u>'</u>	< 0.041 < 0.1	U	< 0.2 l	J < 0.034 I J < 0.085 I	U < 0.064 U < 0.35	U	< 0.04 < 0.1	U	< 2.1 U	< 0.077 U < 0.19 U	< 0.035 L < 0.087 L
Carbazole	mg/kg	30000	0.99 J	< 0.065 C	<u>'</u>	< 0.1	U			J < 0.0087	U	0.08	ı	< 0.28 U		< 0.087 C
		210	11	0.16	+	0.12	J	0.61	0.74	1.1	10	1	J	< 0.36 U		0.31 J
Chrysene Dibonz(a b)anthracono	mg/kg	0.21	3.5	0.026	1	0.12	J	0.12	J 0.097	0.29		0.19	${\sf H}$	< 0.36 U	0.34	0.31
Dibenz(a,h)anthracene Dibenzofuran	mg/kg mg/kg	100	0.39 J		1	< 0.052	U			J 0.29		< 0.051	 	< 0.34 U		< 0.044 L
Diethylphthalate	mg/kg mg/kg	49000	< 0.26		1	< 0.052	U			J < 0.051	U	< 0.051	IJ	< 1.5 U		< 0.044 C
Dimethylphthalate		47000			1	< 0.053	_			J < 0.051 J < 0.051			U		< 0.1 U 0.29 J	
	mg/kg	6200	< 0.26 U		1		U				U		U			< 0.045 L
Di-n-Butylphthalate Di-n-Octyl phthalate	mg/kg	6200	< 0.27 U		1	< 0.055 < 0.028		< 0.19 l	J 0.049 J < 0.023	J < 0.059 J < 0.05	U	< 0.054 < 0.028	U	< 1.9 U	0.54 J < 0.053 U	< 0.046 L
3 1	mg/kg	2200	< 0.14 U		1		U		0.87	1.3	U	< 0.028 1.2	U	< 1.6 U 0.77 J		< 0.024 U
Fluoranthene	mg/kg	2200	12	0.21	-	0.11	U	0.71			++		╁		1.5	-
Fluorene	mg/kg		0.65 J < 0.029 L	< 0.047 L	1	< 0.057 0.0098	U	< 0.039 L < 0.032 L		0.078	11	< 0.056	U	< 0.4 U < 0.32 U	< 0.11 U	< 0.048 L 0.042
Hexachlorobenzene	mg/kg	1.1	< 0.029 L	l < 0.0051 l	7[0.0098	J	< U.U32 l	0.089	0.095	1	< 0.006	U	< U.32 U	0.088	0.042

	sys_loc_code	EPA Regional	D-14	D-15	D-16	D-17	D-18	D-19	D-20	D-21	D-22	VC-1
	sample depth	Screening Levels	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	7 - 7.5 ft	0 - 6 in	0 - 6 in
	stratum	Industrial Soil	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
	sample_date	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013	10/15/2013	10/16/2013	10/21/2013	10/16/2013	10/28/2013	10/18/2013	10/17/2013	10/22/2013
chemical_name	Units											
Hexachlorobutadiene	mg/kg	22	< 0.053	U < 0.009	U < 0.011 U	< 0.033	< 0.009 U	J 0.027 J	< 0.011 U	< 0.34 U	< 0.02 U	< 0.0092 U
Hexachlorocyclopentadiene	mg/kg	370	< 0.25	U < 0.044	U < 0.052 U	< 0.16 U	< 0.043 U	J < 0.051 U	< 0.052 U	< 1.6 U	< 0.098 U	< 0.044 U
Hexachloroethane	mg/kg	43	< 0.024	U < 0.0041	U < 0.0049 U	< 0.11 U	< 0.0041 U	J < 0.034 U	< 0.0049 U	< 1.1 U	< 0.0093 U	< 0.0042 U
Indeno(1,2,3-cd)pyrene	mg/kg	2.1	21	0.092	0.046	0.57	0.39	0.93	1.7	< 0.31 U	1.9	0.38
Isophorone	mg/kg	1800	< 0.26	U < 0.045	U < 0.054 U	< 0.11 U	< 0.045 U	J < 0.035 U	< 0.053 U	< 1.1 U	< 0.1 U	< 0.046 U
Naphthalene	mg/kg	18	2	J < 0.043	U 0.28 J	0.12 J	0.044 J	0.18	0.27 J	0.77 J	1.2	0.13 J
Nitrobenzene	mg/kg	24	< 0.031	U < 0.0053	U < 0.0063 U	< 0.12 U	< 0.0052 U	J < 0.039 U	< 0.0062 U	< 1.3 U	< 0.012 U	< 0.0054 U
N-Nitroso-Di-N-Propylamine	mg/kg	0.25	< 0.036	U < 0.0062	U < 0.0074 U	< 0.035 U	< 0.0061 U	J < 0.011 U	< 0.0073 U	< 0.36 U	< 0.014 U	< 0.0063 U
N-Nitrosodiphenylamine	mg/kg	350	< 0.21	U < 0.036	U < 0.044 U	< 0.14 U	< 0.036 U	J < 0.044 U	< 0.043 U	< 1.4 U	< 0.082 U	< 0.037 U
Pentachlorophenol	mg/kg	2.7	< 0.64	U < 0.11	U < 0.13 U	< 0.13 U	< 0.11 U	J < 0.042 U	< 0.13 U	< 1.4 U	< 0.25 U	< 0.11 U
Phenanthrene	mg/kg		7.5	0.089	J 0.14 J	0.36	0.37	0.74	0.54	0.75 J	0.85	0.2 J
Phenol	mg/kg	18000	< 0.29	U < 0.05	U < 0.059 U	< 0.035	< 0.049 U	J < 0.011 U	< 0.059 U	< 0.36 U	< 0.11 U	< 0.051 U
Pyrene	mg/kg	1700	14	0.14	J 0.18 J	0.74	0.61	1	0.81	0.46 J	1.3	0.24 J

Notes:

U - not detected at reported concentration

J - estimated result

12.4 S. 1 entenchrotemerene mg/kg 18 < 0.086 U < 0.084 U < 0.055 U < 0.097 J < 0.088 U < 0.047 U < 0.089 U < 0.047 J < 0.088 U < 0.047 U < 0.053 U < 0.067 U < 0.077 U < 0.077 U < 0.059 U < 0.047 U < 0.053 U < 0.068 U < 0.055 U < 0.065 U < 0.055 U < 0.065 U < 0.055				KEARNY, NEV	V JE	NJET							
Chemical name Compile date Com		sys_loc_code	EPA Regional	VC-2		VC-2 DUP		VC-3		VC-4		VC-5	
Chemical_name		sample depth	Screening Levels	0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in	
1.1 Signary 1.2 1.2 1.2 1.3 1.4 0.066 1.5 1.5 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.071 1.2 0.072 1.2 0.088 1.2 0.075 1.2 0.088 1.2 0.086 1.2 0.085 1.2 0.097 1.2 0.088 1.2 0.088 1.2 0.086 1.2 0.097 1.2 0.088 1.2 0.08		stratum	Industrial Soil	Fill		Fill		Fill		Fill		Fill	
13-18-proving		sample_date	TR=1E-06, THQ=0.1	10/17/2013		10/17/2013		10/22/2013		10/29/2013		10/28/2013	
12.4 S. 1 entenchrotemerene mg/kg 18 < 0.086 U < 0.084 U < 0.055 U < 0.097 J < 0.088 U < 0.047 U < 0.089 U < 0.047 J < 0.088 U < 0.047 U < 0.053 U < 0.067 U < 0.077 U < 0.077 U < 0.059 U < 0.047 U < 0.053 U < 0.068 U < 0.055 U < 0.065 U < 0.055 U < 0.065 U < 0.055	chemical_name												
12.2 Oxylety (Chloroprograms) mg/kg 22	1,1'-Biphenyl				•		_		_		U		J
1.3.4 6-Trienthorupherent	1,2,4,5-Tetrachlorobenzene			< 0.056		< 0.054	_		_	0.097	J	< 0.058	U
A.6Trichtorphenent	2,2'-Oxybis(1-Chloropropane)	mg/kg					U		_	< 0.045	_	< 0.047	U
1.4.6 - Inchrophone	2,3,4,6-Tetrachlorophenol		1800		_		U		_		_		U
A-Dichirophonel mg/kg 1200 < 0.061 U < 0.071 U < 0.071 U < 0.089 U < 0.083 U < 0.011 U < 0.013 U < 0.013 U < 0.013 U < 0.013 U < 0.014 U < 0.013 U < 0.0101 U < 0.013 U < 0.011 U < 0.013 U < 0.013 U < 0.0101 U < 0.013 U < 0.0101 U < 0.0013 U < 0.0013 U < 0.0015 U < 0.005	2,4,5-Trichlorophenol						-		_				U
2.4-Dimotryphenol							_		_				U
2.4-Dilitrophenol	2,4-Dichlorophenol						_		_				U
A-Britarioluleme					_		-		_				U
1.6 Dilitrotobleme							_				_		U
College of the property of t							-		_		_		U
Chinorophenol mg/kg 200 0.265 U 0.055 U 0.062 U 0.063 U 0.065 U 0.085 U							_		_		_		U
Welthynphralehee							-				_		U
Methyphenol					-		-		_		U		U
Politrophenic Politropheni	· · ·				_		_				J		丰
2-Nitrophenel mg/kg					_		-		_		_		U
3.3-Dichorobenzidine			600		_		-		_				U
Shiftronaline	<u>'</u>						_		_		_		U
1.6-Dintrio-2-Methylphenol mg/kg			3.8				_		-				U
I-Bromophenyl-phenylether mg/kg 6200 < 0.041 U < 0.04 U < 0.048 U < 0.04 U < 0.043 U < 0.045 U < 0.045 U < 0.065 U < 0.061 U < 0.011 U < 0.015 U < 0.068 U < 0.069 U < 0.068 U < 0.069 U < 0.068 U < 0.061 U < 0.057 U < 0.068 U < 0.061 U < 0.060 U <							-		_				U
Inchloros-methylphenol mg/kg			4.9				_		_		_		U
E-Chiorophenyl-phenylether							_						U
III-Chlorophenyl-phenylether	2 1						_		_				U
I-Metrylphenol mg/kg			8.6				_				_		U
In-Nitrophenol mg/kg 86					_		_		_		-		U
Leitrophenol mg/kg							_		_				U
Acenaphthene mg/kg 3300 < 0.061 U < 0.059 U < 0.07 U 0.99 0.1			86				-		_		_		U
Accetophthylene mg/kg									_		U		U
Acetophenone mg/kg 10000 0.12 J 0.29 J < 0.074 U < 0.062 U < 0.066 L			3300				-		_		₩		 J
Anthracene mg/kg 17000 < 0.051 U < 0.049 U 0.11 J 1.1 < 0.052 L Atrazine mg/kg 7.5 < 0.064 U < 0.063 U < 0.075 U < 0.063 U < 0.066 L Senzaldehyde mg/kg 10000 < 0.049 U < 0.063 U < 0.075 U < 0.068 U < 0.066 L Senzaldehyde mg/kg 10000 < 0.049 U < 0.048 U < 0.057 U < 0.068 U < 0.068 U < 0.055 U < 0.068 U < 0.055 U < 0.066 L Senzaldehyde mg/kg 10000 < 0.049 U < 0.048 U < 0.057 U < 0.048 U < 0.055 U < 0.068 U < 0.055 U < 0.055 U < 0.068 U < 0.055 U < 0.064 U < 0.055 U < 0.064 U < 0.055 U < 0.062 U < 0.052 U < 0.062 U < 0.052 U < 0.062 U < 0.052 U < 0.062 U < 0.055 U < 0.065 U < 0.065 U < 0.064 U < 0.067			40000		-		U		_				U
Atrazine mg/kg 7.5	•						J		-		U		<u> U</u>
Benzaldehyde					-		_		_		H		+-
Senzo(a)anthracene mg/kg 2.1 0.23 0.13 1.2 0.25 0.073					-		+ -		_		-		U
Benzo(a)pyrene mg/kg					U		U		U		U		ᆛ
Benzo(b) Fluoranthene mg/kg 2.1 0.59 0.41 2.2 0.4 0.082	• • • • • • • • • • • • • • • • • • • •						+.		4		Н		+-
Senzo(g,h,i)perylene mg/kg 21 0.18 J 0.096 J 0.87 0.2 0.044 0.34 J 0.096 J 0.87 0.2 0.048 0.36(2-Chloroethoxy) Methane mg/kg 180 < 0.054 U < 0.052 U < 0.062 U < 0.055 U < 0.0062 U < 0.0055 U < 0.00					J		J		-		Н		+1
Senzo(k)fluoranthene mg/kg 21			2.1				+		_		H		+.
Dis(2-Chloroethoxy) Methane mg/kg 180			21		Н		J		+		J		+
Sis-(2-Chloroethyl) Ether mg/kg 1									_		Н		+
Discrimentable mg/kg 120 0.14 U 0.13 U 0.16 U 0.6 0.14 U 0.8													+:-
Sutylbenzylphthalate mg/kg 910 < 0.038 U < 0.037 U < 0.044 U < 0.037 U < 0.039 U Carpolactum mg/kg 30000 < 0.096 U < 0.093 U < 0.111 U < 0.094 U < 0.099 U < 0.099 U < 0.057 U < 0.048 U < 0.057 U < 0.048 U < 0.051 U < 0.055 U < 0.048 U < 0.057 U < 0.048 U < 0.051 U < 0.055 U < 0							_		_		U		븏
Caprolactum mg/kg 30000 < 0.096 U < 0.093 U < 0.11 U < 0.094 U < 0.099 U Carbazole mg/kg 210 0.53 0.48 U < 0.057	, , , , , , , , , , , , , , , , , , , ,						_		_		Н		1
Carbazole mg/kg < 0.049 U < 0.048 U < 0.058 U < 0.012 J Dibenzofuran mg/kg 100 < 0.049							_		_				+-
Chrysene			30000		_				_				+-
Dibenz(a,h)anthracene mg/kg 0.21 0.091 0.083 0.26 0.058 0.012 John Dibenzofuran mg/kg 100 < 0.049 U < 0.048 U < 0.057 U 1.2 0.12 John Diethylphthalate mg/kg 49000 < 0.05 U < 0.048 U < 0.057 U < 0.048 U < 0.057 U < 0.048 U < 0.051 U < 0.053 U < 0.053 U < 0.053 U < 0.055 U < 0.			210		U		U		U		1		부
Dibenzofuran mg/kg 100 < 0.049 U < 0.048 U < 0.057 U 1.2 0.12 U					Н				_		J		井
Diethylphthalate					 		+		11		${oldsymbol{arphi}}$		+
Dimethylphthalate mg/kg < 0.049 U < 0.048 U < 0.057 U < 0.048 U < 0.051 U Di-n-Butylphthalate mg/kg 6200 0.14 J < 0.05											Н		+;
Di-n-Butylphthalate mg/kg 6200 0.14 J < 0.05 U < 0.06 U < 0.05 U < 0.053 U Di-n-Octyl phthalate mg/kg 620 < 0.027			47000				_						+:
Di-n-Octyl phthalate mg/kg 620 < 0.027 U < 0.026 U < 0.026 U < 0.026 U < 0.026 U < 0.027 U Fluoranthene mg/kg 2200 0.32 J 0.17 J 1 1.6 0.069 J Fluorene mg/kg 2200 < 0.053			4200		-				_		_		Ť
Fluoranthene mg/kg 2200 0.32 J 0.17 J 1 1.6 0.069 J Fluorene mg/kg 2200 < 0.053							_						Ť
Fluorene mg/kg 2200 < 0.053 U 0.053 J < 0.062 U 0.8 < 0.055 L					_		_	< U.U31	U		U		부
					_		_	1 0.070	귀		${\mathbb H}$		1.
	Hexachlorobenzene	mg/kg mg/kg	2200 1.1	< 0.053 < 0.0057	U	< 0.0055	IJ	< 0.062 0.029	U	0.8 < 0.0055	U	< 0.055 0.015	 U

	sys_loc_code	EPA Regional	VC-2		VC-2 DUP		VC-3		VC-4		VC-5	
	sample depth	Screening Levels	0 - 6 in									
	stratum	Industrial Soil	Fill									
	sample_date	TR=1E-06, THQ=0.1	10/17/2013		10/17/2013		10/22/2013		10/29/2013		10/28/2013	
chemical_name	Units											
Hexachlorobutadiene	mg/kg	22	< 0.01	U	< 0.0099	U	< 0.012	U	< 0.0099	U	< 0.01	U
Hexachlorocyclopentadiene	mg/kg	370	< 0.049	U	< 0.048	U	< 0.057	U	< 0.048	U	< 0.05	U
Hexachloroethane	mg/kg	43	< 0.0046	U	< 0.0045	U	< 0.0054	U	< 0.0045	U	< 0.0048	U
Indeno(1,2,3-cd)pyrene	mg/kg	2.1	0.44		0.32		1.2		0.22		0.032	J
Isophorone	mg/kg	1800	< 0.051	U	< 0.049	U	< 0.058	U	< 0.049	U	< 0.052	U
Naphthalene	mg/kg	18	0.41	J	0.3	J	0.2	J	0.57		1.3	
Nitrobenzene	mg/kg	24	< 0.0059	U	< 0.0058	U	< 0.0069	U	< 0.0058	U	< 0.0061	U
N-Nitroso-Di-N-Propylamine	mg/kg	0.25	< 0.007	U	< 0.0068	U	< 0.0081	U	< 0.0068	U	< 0.0072	U
N-Nitrosodiphenylamine	mg/kg	350	< 0.041	U	< 0.04	U	< 0.048	U	< 0.04	U	< 0.042	U
Pentachlorophenol	mg/kg	2.7	< 0.12	U	< 0.12	U	< 0.14	U	< 0.12	U	< 0.13	U
Phenanthrene	mg/kg		0.36	J	0.38	J	0.25	J	6.8		0.058	J
Phenol	mg/kg	18000	< 0.056	U	< 0.054	U	< 0.065	U	< 0.054	U	< 0.058	U
Pyrene	mg/kg	1700	0.28	J	0.18	J	1.3		0.99		0.16	J

Notes:

U - not detected at reported concentration

J - estimated result

TABLE 5 SURFACE SOILS - METALS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	D-14	D-15	D-16	D-17	D-18	D-19	D-20	D-21	D-22	VC-1
	sample depth	Screening Levels	0 - 6 in	7 - 7.5 ft	0 - 6 in	0 - 6 in						
	stratum	Industrial Soil	Fill	Fill	Fill							
	sample_date	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013	10/15/2013	10/16/2013	10/21/2013	10/16/2013	10/28/2013	10/18/2013	10/17/2013	10/22/2013
chemical_name	Units											
Aluminum	mg/kg	99000	20600	13700	21600	17000	10400	25500	24800	6160	2030	16800
Antimony	mg/kg	41	8.3	< 3.2	J < 6.3	J 13.8	< 3.1 L	J < 8.4 U	< 34.3	J 4 J	202	3.5 J
Arsenic	mg/kg	2.4	17.6	4.1	< 4.8	J < 4.8	4.3	17.7	< 26 L	32.7	5.1	3.4
Barium	mg/kg	19000	71.8	55.8	60.8	J 52.8	27.5	J 4210	40.4 J	J 101 J	235	114
Beryllium	mg/kg	200	1.5	2.5	2.3	1.8	0.38	J < 0.98 U	< 4	J 0.44 J	< 0.42	0.93 J
Cadmium	mg/kg	9300	0.65	J < 0.15	J 1.5 .	J < 0.76	J < 0.15 L	J 5.1 J	< 4.1 L	J 0.71 J	< 0.43 L	2.1 J
Calcium	mg/kg		68200	19300	81800	75500	5490	23200	159000	7070	938 J	30500
Chromium	mg/kg	150000	3830	869	8320	4760	554	780	15600	152	90.3	1370
Chromium, hexavalent	mg/kg	5.6	3.8	128	3390	J 355 .	13.1	J 0.54 J	258 J	J 0.83 J	2.8 J	32.7 J
Cobalt	mg/kg	30	159	39	179	168	13.9	13.7 J	120 J	<mark>J</mark> 4.4 J	< 2.5 L	51.6
Copper	mg/kg	4100	39.5	278	19.7	J 82.6	118	230	< 53.6 L	J 165	84.9	181
Iron	mg/kg	72000	96400	49400	105000	101000	57600	198000	62500	23300	7060	48500
Lead	mg/kg	800	247	64.4	234	649	70.3	2930	84.6	224	57300	226
Magnesium	mg/kg		51900	14600	68200	62800	6010	3280 J	64700	1830 J	723 J	19400
Manganese	mg/kg	2300	928	537	959	954	313	769	625	771	21.7	568
Mercury	mg/kg	4.3	1.7	0.034	0.034	0.041	0.024	0.13	0.25	0.44	0.26	0.13
Nickel	mg/kg	2000	566	137	623	577	47.8	78.2	578	52.7	9 J	175
Potassium	mg/kg		< 326 l	J 423 .	J < 547 l	J < 547 l	J 265 .	J 1500 J	< 2960 L	J 726 J	< 313 L	464 J
Selenium	mg/kg	510	4.2	J < 1.4	J < 6.7 l	J < 6.7 l	J < 1.3 L	J < 8.9 U	< 36.5 L	J 5.1 J	< 3.9 L	< 3.6 U
Silver	mg/kg	510	< 0.61 l		J < 1 l	J < 1 l	J < 0.2 l	J < 1.4 U	< 5.5 L	J < 0.6 U	1.3 J	< 0.54 U
Sodium	mg/kg		< 482 l	J 1440	< 808 l	J < 808 l	J 629 .	J 1250 J	< 4370 L	J 538 J	< 462 L	772 J
Thallium	mg/kg	1	< 3.4 l	J < 1.2 l	J < 5.8 l	J < 5.8 l	J < 1.1 L	3 1.7	< 31.2 L	J < 3.4 U	< 3.3 L	< 3 U
Vanadium	mg/kg	510	1540	330	1670	1310	145	93.9	751	23.1 J	14.9 J	521
Zinc	mg/kg	31000	391	208	420	360	105	45300	216	128	112	1870

Notes:

U - not detected at reported concentration

J - estimated result

TABLE 5 SURFACE SOILS - METALS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	VC-2		VC-2 DUP		VC-3		VC-4		VC-5
	sample depth	Screening Levels	0 - 6 in		0 - 6 in						
	stratum	Industrial Soil	Fill		Fill		Fill		Fill		Fill
	sample_date	TR=1E-06, THQ=0.1	10/17/2013		10/17/2013		10/22/2013		10/29/2013		10/28/2013
chemical_name	Units										
Aluminum	mg/kg	99000	3350		2870		29500		24800		24900
Antimony	mg/kg	41	< 1.5	U	2.9		53.6	J	< 17	U	< 15.3
Arsenic	mg/kg	2.4	11.1		9.8		< 32.7	U	< 5.2	U	< 11.6
Barium	mg/kg	19000	44.9	J	69.4		53.8	J	24.9	J	19.3
Beryllium	mg/kg	200	0.81		0.63		< 5	U	< 0.79	U	2
Cadmium	mg/kg	9300	< 0.17	U	< 0.17	U	< 5.1	U	< 0.81	U	< 1.8
Calcium	mg/kg		2640		2170		146000		61700		80000
Chromium	mg/kg	150000	30.3	J	95.4	J	21400		3150		4130
Chromium, hexavalent	mg/kg	5.6	12.4	J	11.4	J	1760	J	85.5	J	439
Cobalt	mg/kg	30	2.7	J	2.2	J	129	J	198		221
Copper	mg/kg	4100	19.2		31.1		< 67.4	U	18.7	J	< 24
Iron	mg/kg	72000	11100		9120		67100		96700		111000
Lead	mg/kg	800	455	J	1650	J	120		41.6		18.5
Magnesium	mg/kg		251	J	208	J	50700		69700		89700
Manganese	mg/kg	2300	8.2		10.1		626		690		913
Mercury	mg/kg	4.3	0.22		0.36		0.063		0.24		0.27
Nickel	mg/kg	2000	8.5	J	7.6	J	712		803		881
Potassium	mg/kg		177	J	194	J	< 3720	U	< 587	U	< 1320
Selenium	mg/kg	510	< 1.6	U	1.8	J	< 45.9	U	< 7.2	U	< 16.3
Silver	mg/kg	510	< 0.24	U	< 0.23	U	< 7	U		U	< 2.5
Sodium	mg/kg		190	J	188	J	< 5490	U		J	< 1960
Thallium	mg/kg	1	< 1.3	U	< 1.3	U	< 39.3	U	< 6.2	U	< 14
Vanadium	mg/kg	510	12.9		13.8		580		1000		1380
Zinc	mg/kg	31000	22.5		36		251		317		369

Notes:

U - not detected at reported concentration

TABLE 6 SURFACE SOILS – PCBS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	D-14	D-15	D-16	D-17	D-18	D-19	D-20	D-21	D-22	VC-1	VC-2	VC-2 DUP	VC-3	VC-4	VC-5
	sample depth	Screening Levels	0 - 6 in	0 - 6 in	7 - 7.5 ft	0 - 6 in											
	stratum	Industrial Soil	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
	sample_date	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013	10/15/2013	10/16/2013	10/21/2013	10/16/2013	10/28/2013	10/18/2013	10/17/2013	10/22/2013	10/17/2013	10/17/2013	10/22/2013	10/29/2013	10/28/2013
chemical_nan	me Units																
PCB-1016	mg/kg	21	< 0.02 U	< 0.017 U	< 0.02 U	< 0.017 U	< 0.084 L	J < 0.021 U	< 0.02 U	< 0.046 U	< 0.019 U	< 0.017 U	< 0.019 U	< 0.018 U	< 0.022 U	< 0.018 U	< 0.019 U
PCB-1221	mg/kg	0.54	< 0.02 U	< 0.017 U	< 0.02 U	< 0.017 U	< 0.084 L	J < 0.021 U	< 0.02 U	< 0.046 U	< 0.019 U	< 0.017 U	< 0.019 U	< 0.018 U	< 0.022 U	< 0.018 U	< 0.019 U
PCB-1232	mg/kg	0.54	< 0.02 U	< 0.017 U	< 0.02 U	< 0.017 U	< 0.084 L	J < 0.021 U	< 0.02 U	< 0.046 U	< 0.019 U	< 0.017 U	< 0.019 U	< 0.018 U	< 0.022 U	< 0.018 U	< 0.019 U
PCB-1242	mg/kg	0.74	< 0.02 U	< 0.017 U	< 0.02 U	< 0.017 U	< 0.084 L	J < 0.021 U	< 0.02 U	< 0.046 U	< 0.019 U	< 0.017 U	< 0.019 U	< 0.018 U	< 0.022 U	< 0.018 U	< 0.019 U
PCB-1248	mg/kg	0.74	< 0.02 U	< 0.017 U	< 0.02 U	< 0.017 U	< 0.084 L	J < 0.021 U	< 0.02 U	< 0.046 U	< 0.019 U	< 0.017 U	< 0.019 U	< 0.018 U	< 0.022 U	< 0.018 U	< 0.019 U
PCB-1254	mg/kg	0.74	< 0.025 U	< 0.021 U	< 0.025 U	< 0.021 U	< 0.11 L	J < 0.027 U	< 0.025 U	< 0.058 U	< 0.024 U	< 0.022 U	< 0.024 U	< 0.023 U	< 0.028 U	< 0.023 U	< 0.025 U
PCB-1260	mg/kg	0.74	< 0.025 U	0.084	< 0.025 U	< 0.021 U	4.2	< 0.027 U	< 0.025 U	< 0.058 U	< 0.024 U	< 0.022 U	< 0.024 U	< 0.023 U	< 0.028 U	< 0.023 U	< 0.025 U
PCB-1262	mg/kg		< 0.025 U	< 0.021 U	< 0.025 U	< 0.021 U	< 0.11 L	J < 0.027 U	< 0.025 U	< 0.058 U	< 0.024 U	< 0.022 U	< 0.024 U	< 0.023 U	< 0.028 U	< 0.023 U	< 0.025 U
PCB-1268	mg/kg		< 0.025 U	< 0.021 U	< 0.025 U	< 0.021 U	< 0.11 L	J < 0.027 U	< 0.025 U	< 0.058 U	< 0.024 U	< 0.022 U	< 0.024 U	< 0.023 U	< 0.028 U	< 0.023 U	< 0.025 U

U - not detected at reported concentration

TABLE 7 SURFACE SOILS - PCDD/PCDF STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code		EPA Regional	D-14	D-15	D-16	D-17	D-18	D-19	D-20	D-21	D-22	VC-1
	sample depth		Screening Levels	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	0 - 6 in	7 - 7.5 ft	0 - 6 in	0 - 6 in
	stratum		Industrial Soil	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
	sample_date	TEFs	TR=1E-06, THQ=0.1	10/14/2013	10/21/2013	10/15/2013	10/16/2013	10/21/2013	10/16/2013	10/28/2013	10/18/2013	10/17/2013	10/22/2013
chemical_name	Units												
1,2,3,4,6,7,8-HpCDD	pg/g	0.01		215	30.5	J 55.9	242	172	19300	40.9	21.6 J	244	80.3
1,2,3,4,6,7,8-HpCDF	pg/g	0.01		10900 E	3100	2840 E	5070	E 6230	17600	776	264	13300	5170 E
1,2,3,4,7,8,9-HPCDF	pg/g	0.01		383	66.3	72.4	142	156	546	19.4	7.41 J	352	83.8
1,2,3,4,7,8-HXCDD	pg/g	0.1		15.7	1.75	JQ 3.7 J	16	5.39 J	46.9	1.85 J	2.17 J	16.5	J 3.74 J
1,2,3,4,7,8-HxCDF	pg/g	0.1		3180 E	671	766	1410	1420	3460 E	179	54.1 J	3070	775
1,2,3,6,7,8-HxCDD	pg/g	0.1		26.8	5.67	J 9.21	15.5	Q 18.9 J	440	4.23 J	1.98 JQ	33.9	J 7.64
1,2,3,6,7,8-HXCDF	pg/g	0.1		42	138	135	203	378	539	41.2	13.5 J	544	195
1,2,3,7,8,9-HXCDD	pg/g	0.1		11.4	4.31	J 3.81 J	15.4	12.8 J	91.3	3.92 J	4.72 J	16	JQ 2.91 J
1,2,3,7,8,9-HXCDF	pg/g	0.1		< 2.88 U	< 1.83	U < 0.94 UQ	< 23	J < 3.18 U	V < 41.6 U	< 0.55 U	< 1.29 U	< 4.35	U < 1.35 U
1,2,3,7,8-PeCDD	pg/g	1		10.4	2.36	J 4.44 J	6.67	6.87 JC	52.4	2.29 JC	2 < 1.19 U	17.6	J 3.69 J
1,2,3,7,8-PeCDF	pg/g	0.03		99	25.3	J 27	43.4	91.4	200	7.83	4.86 JQ	78.2	40.4
2,3,4,6,7,8-HXCDF	pg/g	0.1		203	44.6	45.1	76.2	107	256	13.8	7.81 J	160	50
2,3,4,7,8-PECDF	pg/g	0.3		331	68.2	65.1	126	173	414	21.9	11.8 J	307	80.6
2,3,7,8-TCDD	pg/g	1		8.55	2.37	J 3.01	3.84	9.27 J	26.5	2.02	< 1.04 U	6.56	JQ 4.09
2,3,7,8-TCDF	pg/g	0.1		47	< 4.98	U 6.81	11.5	26.5	166	5.83	< 10.5 U	30.1	12
OCDD	pg/g	0.0003		1970	306	314	2170	3240	162000 E	248	744	2560	641
OCDF	pg/g	0.0003		14600 E	3390	3200	6720	E 7030	43900	1080	263	18300	4460 E
Total HPCDD	pg/g	-		472	66.8	114	478	354	30400	80	51.1 J	551	164
Total HPCDF	pg/g	-		12900	3620	Q 3240	5730	7320	48100	972 Q	305 Q	15300	5790
Total HXCDD	pg/g	-		283	48.3	Q 93.3	207	Q 162 C	2180	46.3	45.2 JQ	298	Q 81.4 Q
Total HXCDF	pg/g	-		6270 Q	1690	Q 1640 Q	2860	3910 C	11000 QE	E 454 Q	131 Q	6750	Q 2090
Total PECDD	pg/g	-		100 Q	32.9	JQ 61.6 Q		Q 66.6 C	853 Q	. 42.8 Q	20.2 JQ	171	Q 44.6 Q
Total PECDF	pg/g	-		2000	668	620 Q	1200	Q 2000 C	3870	222	108 JQ	2570	691
Total TCDD	pg/g	-		170	20.3	Q 58.3	66.3	Q 125 C	751	53.7 Q	38.6 Q	125	Q 48.7 Q
Total TCDF	pg/g	-		766	247	Q 261	503	839	3450 Q	125	143 Q	913	Q 300 Q
2,3,7,8-TCDD - ND = 0	pg/g	-	18	5.94E+02	1.46E+02	1.55E+02	2.82E+02	3.36E+02	1.15E+03	4.49E+01	1.53E+01	6.51E+02	1.93E+02

Notes:

E - result exceeded calibration range

Q - isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio

U - not detected at reported concentration

TABLE 7 SURFACE SOILS - PCDD/PCDF STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code		EPA Regional	VC-2		VC-2 DUP		VC-3		VC-4		VC-5
	sample depth		Screening Levels	0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in		0 - 6 in
	stratum		Industrial Soil	Fill		Fill		Fill		Fill		Fill
	sample_date	TEFs	TR=1E-06, THQ=0.1	10/17/2013		10/17/2013		10/22/2013		10/29/2013		10/28/2013
chemical_name	Units											
1,2,3,4,6,7,8-HpCDD	pg/g	0.01		192		238		63.8		< 1130	U	26.6
1,2,3,4,6,7,8-HpCDF	pg/g	0.01		873		682		3290	Ε	8410	J	132
1,2,3,4,7,8,9-HPCDF	pg/g	0.01		20.2	J	16.7	J	99.3		< 1550	U	3.65 J
1,2,3,4,7,8-HXCDD	pg/g	0.1		1.59	J	1.88	JQ	2.08	JQ	< 1620	U	0.44 J
1,2,3,4,7,8-HxCDF	pg/g	0.1		183		144		900		2410	J	43.3
1,2,3,6,7,8-HxCDD	pg/g	0.1		8.98	J	10	J	9		< 1600	U	2.05 J
1,2,3,6,7,8-HXCDF	pg/g	0.1		42.6	J	34	J	149		< 600	U	7.53
1,2,3,7,8,9-HXCDD	pg/g	0.1		7.56	J	6.91	JQ	4.24	J	< 1430	U	1.01 JC
1,2,3,7,8,9-HXCDF	pg/g	0.1		< 1.2	U	< 0.8	U	< 1	U	< 640	U	< 0.12 U
1,2,3,7,8-PeCDD	pg/g	1		< 0.82	U	1.83	J	2.22	J	< 1910	U	0.5 J
1,2,3,7,8-PeCDF	pg/g	0.03		8.14	J	12.8	J	18.1		< 1220	U	1.15 J
2,3,4,6,7,8-HXCDF	pg/g	0.1		11.5	J	13.3	J	46.8		< 620	U	2.01 J
2,3,4,7,8-PECDF	pg/g	0.3		20.7	J	22.5	J	81.8		< 1210	U	3.88 J
2,3,7,8-TCDD	pg/g	1		< 1.8	U	< 1.83	U	1.29	J	< 1090	U	0.6 J
2,3,7,8-TCDF	pg/g	0.1		< 4.89	U	4.19	J	5.79		< 630	U	< 1.02 U
OCDD	pg/g	0.0003		902		1160		582		9960	J	1010
OCDF	pg/g	0.0003		742		680		5030		11500	J	198
Total HPCDD	pg/g	-		432		548		121		< 1130	U	50.1
Total HPCDF	pg/g	-		994		795		3870		8410	J	168
Total HXCDD	pg/g	-		93.3	Q	107	Q	68.8	Q	< 1620	U	12.6 Q
Total HXCDF	pg/g	-		476	Q	400	Q	1870	Q	2410	J	12.6 Q 111 Q 5.11 JC
Total PECDD	pg/g	-		37	JQ	26.2	JQ	31	Q	< 1910	U	5.11 JC
Total PECDF	pg/g	-		205	Q	224	Q	648	Ш	< 1220	U	63.9
Total TCDD	pg/g	-		64	Q	42.8	Q	22.8	Q	< 186000	U	7.41 Q
Total TCDF	pg/g	-		86.1		133	Q	150		< 8130	U	18.6 Q
2,3,7,8-TCDD - ND = 0	pg/g	-	18	4.33E+01		4.03E+01		1.76E+02	1	3.32E+02		9.92E+00

- E result exceeded calibration range
- Q isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio
- U not detected at reported concentration
- J estimated result

TABLE 8 FILL/MEADOW MAT/SAND UNIT - VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

	our los sasti	FDA Do-!!	EDA Dominio	D 14	D 15	D 1/	D 1/	D 17	D 10	D 10	D 20	D 21	D 22
	sys_loc_code sample depth	EPA Regional	EPA Regional	D-14	D-15 16 - 16.5 ft	D-16 9 - 9.5 ft	D-16 15.75 - 16.25 ft	D-17 15.5 - 16 ft	D-18	D-19 17 - 17.5 ft	D-20	D-21 17.6 - 18.1 ft	D-22 16.3 - 16.8 ft
		Screening Levels	Screening Levels	18.25 - 18.75 ft					16.5 - 17 ft		18 - 18.5 ft		
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Mat	Sand	Sand	Sand	Sand	Sand	Sand	Sand
chemical name	sample_date Units	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/15/2013	10/15/2013	10/16/2013	10/21/2013	10/17/2013	10/28/2013	10/18/2013	10/17/2013
1.1.1-Trichloroethane	mg/kg	3800	0.07	< 0.063 U	< 27 U	< 63 U	< 0.062 U	J < 0.1	U < 18 U	< 20 U	< 5 U	< 67 U	< 89 U
1.1.2.2-Tetrachloroethane	mg/kg	2.8	0.000026	< 0.063 U	< 24 U	< 57 U	< 0.056 U		U < 17 U	< 18 U	< 4.6 U	< 60 U	< 80 U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	18000	13	< 0.037 U	< 8.6 U	< 20 U	< 0.030 U		U < 5.9 U	< 6.3 U	< 1.6 U	< 21 U	< 28 U
1.1.2-Trichloroethane	mg/kg	0.68	0.0016	< 0.02 U	< 30 U		< 0.02 U		U < 21 U	< 22 U	< 5.7 U	< 75 U	< 100 U
1,1-Dichloroethane	mg/kg	17	0.00068	< 0.062 U	< 26 U	< 62 U	< 0.061 U	, ,,,,,	U < 18 U	< 19 U	< 5 U	< 66 U	< 87 U
1,1-Dichloroethene	mg/kg	110	0.0025	< 0.065 U	< 28 U	< 65 U	< 0.064 U	, 0.077	U < 19 U	< 20 U	< 5.2 U	< 69 U	< 92 U
1,2,3-Trichlorobenzene	mg/kg	49	0.0025	< 0.003 U	< 16 U	< 38 U	< 0.038 U		U < 11 U	< 12 U	18 J	< 41 U	< 54 U
1,2,4-Trichlorobenzene	mg/kg	27	0.2	< 0.037 U	< 9.8 U	< 23 U	< 0.023 U	J 0.86	< 6.8 U	< 7.2 U	25	< 24 U	< 33 U
1,2-Dibromo-3-chloropropane	mg/kg	0.069	0.000086	< 0.022 U	< 9.1 U		< 0.021 U		U < 6.3 U	< 6.8 U	< 1.7 U	< 23 U	< 30 U
1.2-Dibromoethane	mg/kg	0.17	0.000014	< 0.037 U	< 16 U	< 37 U	< 0.037 U		U < 11 U	< 12 U	< 3 U	< 40 U	< 53 U
1.2-Dichlorobenzene	ma/ka	980	0.58	2.8	2600	3300	2.3	18	920	2400	450	9400	6400
1,2-Dichloroethane	mg/kg	2.2	0.0014	< 0.059 U	< 25 U		< 0.058 U		U < 17 U	< 18 U	< 4.7 U	< 62 U	< 83 U
1,2-Dichloropropane	mg/kg	4.7	0.0017	< 0.078 U	< 33 U	< 78 U	< 0.077 U		U < 23 U	< 24 U	< 6.2 U	< 83 U	< 110 U
1,3,5-Trichlorobenzene	mg/kg			< 0.028 U	< 12 U	< 28 U	< 0.028 U		U < 8.3 U	< 8.9 U	< 2.3 U	< 30 U	< 40 U
1,3-Dichlorobenzene	mg/kg			1.9	2500	3300	2	15	900	2300	340	8500	5700
1,4-Dichlorobenzene	mg/kg	12	0.072	3.3	3300	5200	3.7	17	1200	3000	500	11000	17000
1,4-Dioxane	mg/kg	17	0.00014	< 6 U	< 2500 U	< 6000 U	< 5.9 U	J < 9.5	U < 1800 U	< 1900 U	< 480 U	< 6300 U	< 8500 U
2-Butanone	mg/kg	20000	0.1	< 0.066 U	< 28 U	< 66 U	< 0.065 U	J < 0.11	U < 19 U	< 21 U	< 5.3 U	< 70 U	< 94 U
2-Hexanone	mg/kg	140	0.00079	< 0.035 U	< 15 U	< 35 U	< 0.034 U	J < 0.055	U < 10 U	< 11 U	< 2.8 U	< 37 U	< 49 U
4-Methyl-2-Pentanone (MIBK)	mg/kg	5300	0.023	< 0.036 U	< 15 U	< 36 U	< 0.035 U	J < 0.058	U < 11 U	< 11 U	< 2.9 U	< 38 U	< 51 U
Acetone	mg/kg	63000	0.24	< 0.31 U	< 130 U	< 300 U	< 0.3	< 0.49	U < 90 U	< 96 U	< 25 U	< 320 U	< 430 U
Benzene	mg/kg	5.4	0.0026	< 0.061 U	< 26 U	110 J	< 0.059 U	< 0.096	U < 18 U	< 19 U	< 4.8	< 64 U	< 85 U
Bromochloromethane	mg/kg	68	0.0021	< 0.062 U	< 26 U	< 61 U	< 0.06	< 0.098	U < 18 U	< 19 U	< 4.9	< 65 U	< 87 U
Bromodichloromethane	mg/kg	1.4	0.022	< 0.057 U	< 24 U	< 57 U	< 0.056 U		U < 17 U	< 18 U	< 4.6 U	< 60 U	< 80 U
Bromoform	mg/kg	220	0.021	< 0.065 U	< 28 U	< 65 U	< 0.064 U		U < 19 U	< 21 U	< 5.2 U	< 69 U	< 92 U
Bromomethane	mg/kg	3.2	0.00018	< 0.097 U	< 41 U	< 96 U	< 0.095 U		U < 28 U	< 30 U	< 7.7 U	< 100 U	< 140 U
Carbon Disulfide	mg/kg	370	0.021	< 0.066 U	< 28 U	< 65 U	< 0.065 U		U < 19 U	< 21 U	< 5.3 U	< 70 U	< 93 U
Carbon Tetrachloride	mg/kg	3	0.0019	< 0.066 U	< 28 U	< 66 U	< 0.065 U		U < 19 U	< 21 U	< 5.3 U	< 70 U	< 93 U
Chlorobenzene	mg/kg	140	0.068	< 0.032 U	44 J	170 J	0.11 J	0.51	12 J	27 J	4.9 J	< 34 U	69 J
Chloroethane	mg/kg	6100	0.59	< 0.046 U	< 19 U	< 45 U	< 0.045 U		U < 13 U	< 14 U	< 3.7 U	< 48 U	< 64 U
Chloroform	mg/kg	1.5	0.022	< 0.062 U	< 26 U	< 61 U	< 0.061 U		U < 18 U	< 19 U	< 4.9 U	< 65 U	< 87 U
Chloromethane	mg/kg	50	0.0049	< 0.085 U	< 36 U	< 85 U	< 0.084 U		U < 25 U	< 27 U	< 6.8 U	< 90 U	< 120 U
cis-1,2-Dichloroethene	mg/kg	200	0.021	< 0.041 U	< 17 U	< 40 U	< 0.04 U		U < 12 U	< 13 U	< 3.3 U	< 43 U	< 57 U
cis-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 0.044 U	< 19 U	< 44 U	< 0.044 U		U < 13 U	< 14 U	< 3.6 U	< 47 U	< 63 U
Cyclohexane	mg/kg	2900	1.3	< 0.037 U	< 16 U	< 36 U	₹ 0.030		U < 11 U U < 12 U	< 11 U	< 2.9 U	< 39 U	
Dibromochloromethane	mg/kg	3.3	0.021	< 0.04 U	< 17 U	< 39 U	< 0.039 U			< 12 U	< 3.2 U	< 42 U	
Dichlorodifluoromethane Ethylhogogo	mg/kg	40 27	0.03 0.78	< 0.039 U	1.0	< 39 U	< 0.038 U < 0.037 U			< 12 U	< 3.1 U	< 41 U	< 55 U < 53 U
Ethylbenzene Isopropylbenzene	mg/kg mg/kg	1100	0.78	< 0.038 U < 0.033 U	< 16 U < 14 U	450 < 32 U	< 0.037 U		U < 11	< 12 U	< 3 U	< 40 U	< 46 U
Isopropylbenzene m,p-Xylenes	mg/kg	255**	0.064	< 0.033 U	< 14 U		< 0.032 U	₹ 0.032	U < 23 U	< 25 U	< 2.6 U	< 34 U	< 46 U
Methyl Acetate	mg/kg	100000	0.32	< 0.075 U	< 32 U	1122	< 0.077 U		U < 22 U	< 24 U	< 6 U	< 79 U	< 110 U
Methyl tert_butyl ether	mg/kg	220	0.0028	< 0.063 U	< 27 U	< 62 U	< 0.062 U		U < 18 U	< 20 U		< 66 U	< 88 U
Methylcyclohexane	mg/kg	220	0.0020	< 0.003 U	< 14 U	48 J	< 0.002 U		U < 10 U	< 11 U	< 2.7 U	< 36 U	< 48 U
Methylene Chloride	mg/kg	310	0.0013	< 0.067 U	< 28 U		< 0.065 U		J < 20 U	< 21 U	6 J	< 71 U	< 94 U
o-Xylene	mg/kg	300	0.019	< 0.045 U	< 19 U	600	< 0.044 U		U < 13 U	< 14 U		< 48 U	< 63 U
Styrene	mg/kg	3600	0.11	< 0.043 U	< 17 U	< 39 U	< 0.038 U		U < 11 U	< 12 U	< 3.1 U	< 41 U	< 55 U
Tetrachloroethene	mg/kg	41	0.0023	< 0.057 U	< 21 U	< 50 U	< 0.05 U		U < 15 U	< 16 U	< 4 U	< 53 U	< 71 U
Toluene	mg/kg	4500	0.69	< 0.051 U	< 22 U		< 0.051 U		U < 15 U	< 16 U		< 55 U	
trans-1,2-Dichloroethene	mg/kg	69	0.029	< 0.032 U	< 20 U	< 46 U	< 0.045 U		U < 13 U	< 14 U	< 3.7 U	< 49 U	< 65 U
trans-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 0.036 U	< 15 U	< 35 U	< 0.035 U		U < 10 U	< 11 U		< 38 U	< 50 U
Trichloroethene	mg/kg	2	0.0018	< 0.049 U	< 21 U	< 49 U	< 0.048 U		U < 14 U	< 15 U	< 3.9 U	< 52 U	< 69 U
Trichlorofluoromethane	mg/kg	340	0.069	< 0.047 U	< 29 U	< 68 U	< 0.047 U		U < 20 U	< 21 U	< 5.5 U	< 72 U	< 97 U
Vinyl Chloride	mg/kg	1.7	0.00069	< 0.007 U	< 34 U	< 79 U	< 0.007 U		U < 23 U	< 25 U		< 84 U	< 110 U
Notos:	mg/kg	1.7	0.00007	\ 0.077	\ 34 0	` ' ' 0	\ \ 0.077	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20 0	` 20 0	` 0.5	, , , , , , ,	· 110 [0]

- U not detected at reported concentration J estimated result
- (1) criteria comparison for samples D-23, D-24, and D-25
 * value is for total 1,3-dichloropropene
- ** value is average of m-xylene and p-xylene

TABLE 8 FILL/MEADOW MAT/SAND UNIT - VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

	sys_loc_code	EPA Regional	EPA Regional	D-23	D-23	D-24	D-25	D-26	D-26 DUP	D-27	D-27	VC-1	VC-2
	sample depth	3	Screening Levels	16.6 - 17.1 ft	22.5 - 23 ft	16.5 - 17 ft	18 - 18.5 ft	17.25 - 17.75 ft	17.25 - 17.75 ft	10 - 10.5 ft	20 - 20.25 ft	14 - 14.5 ft	16.5 - 17 ft
	stratum	9	Soil to Groundwater ⁽¹⁾	Sand	Sand	Sand	Sand	Sand	Sand	Fill	Sand	Sand	Sand
	sample date		TR=1E-06, THQ=0.1	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/31/2013	10/31/2013	10/22/2013	10/18/2013
chemical name	Units		,										
1,1,1-Trichloroethane	mg/kg	3800	0.07	< 2.2	J < 0.0005 L	J < 85	U < 100 L	J < 32 L	J < 36 U	< 0.22	J < 0.00043 L	J < 9.8 L	J < 0.21 U
1,1,2,2-Tetrachloroethane	mg/kg	2.8	0.000026	< 1.9 U	J < 0.00075 L	< 77	U < 94 L	J < 29 l	J < 32 U	< 0.2	J < 0.00064 L	J < 8.9 L	J < 0.19 U
1,1,2-Trichloro-1,2,2-trifluoroethane		18000	13	< 0.69 U	J < 0.0011 L	< 27	U < 33 L	J < 10 L	J < 11 U	l < 0.071 l	J < 0.00095 L	J < 3.2 L	J < 0.066 U
1,1,2-Trichloroethane	mg/kg	0.68	0.0016	< 2.4 U	J < 0.00086 L		U < 120 L	J < 36 l	J < 40 U	< 0.25 l	J < 0.00074 L	J < 11 L	
1.1-Dichloroethane	mg/kg	17	0.00068	< 2.1 U	J < 0.0006 L		U < 100 L	J < 32 l	J < 35 U	< 0.22 l	J < 0.00051 L	J < 9.7	
1,1-Dichloroethene	mg/kg	110	0.0025	< 2.2 U	J < 0.00088 L	< 88	U < 110 L	J < 33 L	J < 37 U	< 0.23 l	J < 0.00076 L	J < 10 L	+
1,2,3-Trichlorobenzene	mg/kg	49	0.0015	< 1.3 U	J < 0.00088 L	< 52	U < 64 L	J < 20 l	J < 22 U	< 0.14 l	J < 0.00075 L	J < 6 L	J 0.57 J
1,2,4-Trichlorobenzene	mg/kg	27	0.2	< 0.79 U	J < 0.00092 L	< 31	U < 38 L	J < 12 l	J < 13 U	< 0.081 l	J < 0.00079 L	J < 3.6	J 0.86 J
1,2-Dibromo-3-chloropropane	mg/kg	0.069	0.000086	< 0.74 U	J < 0.00078 L	< 29	U < 36 L	J < 11 L	J < 12 U	< 0.076 l	J < 0.00067 L	J < 3.4	J < 0.071 U
1,2-Dibromoethane	mg/kg	0.17	0.000014	< 1.3 U	J < 0.0009 L		U < 62 L	J < 19 L	J < 21 U	l < 0.13 l	J < 0.00077 L	J < 5.8 L	
1,2-Dichlorobenzene	mg/kg	980	0.58	160	< 0.00083 L	4900	11000	590	J 3200 J	< 0.15 l	J 0.00098 J	120	14
1,2-Dichloroethane	mg/kg	2.2	0.0014	< 2 U	J < 0.00064 L	< 79	U < 97 L	J < 30 L	J < 33 U	< 0.21 l	J < 0.00055 L	J < 9.2 L	J < 0.19 U
1,2-Dichloropropane	mg/kg	4.7	0.0017	< 2.7 U			U < 130 L	J < 40 L	J < 44 U	< 0.28 U	J < 0.00049 L	J < 12 L	
1,3,5-Trichlorobenzene	mg/kg			< 0.97 U	J < 0.001 L		U < 47 L	J < 14 L	J < 16 U	1 < 0.1 l	J < 0.00086 L	J < 4.4 L	
1,3-Dichlorobenzene	mg/kg			160	< 0.00068 L	5100	11000	470	J 2900 J	< 0.11 U	J < 0.00059 L	J 89	12
1,4-Dichlorobenzene	mg/kg	12	0.072	210	< 0.00066 L	6400	14000	750	J 3700 J	< 0.11 l	J 0.00063 J	130	15
1,4-Dioxane	mg/kg	17	0.00014	< 200 U			U < 9900 L	J < 3100 L	J < 3400 U	< 21 l	J < 0.25 L		
2-Butanone	mg/kg	20000	0.1	< 2.3 U			U < 110 L	J < 34 L	J < 38 U	< 0.23	J < 0.00079 L	J < 10 L	
2-Hexanone	mg/kg	140	0.00079	< 1.2 U			U < 58 L	J < 18 L	J < 20 U	< 0.12 l	J < 0.00062 L	J < 5.4 L	
4-Methyl-2-Pentanone (MIBK)	mg/kg	5300	0.023	< 1.2 U			U < 60 L	J < 18 L	J < 20 U	< 0.13 U	J < 0.00058 L	J < 5.6 L	
Acetone	mg/kg	63000	0.24	< 10 U	J < 0.0052 L		U < 510 L	J < 160 U	J < 170 U	< 1.1 U	J < 0.0045 L	J < 48 L	
Benzene	mg/kg	5.4	0.0026	< 2.1 U			U < 100 L	J < 31	J < 34 U	2.4	0.0011 J	< 9.5 L	
Bromochloromethane	mg/kg	68	0.0021	< 2.1 U			U < 100 L	J < 31		< 0.22 U	J < 0.00061 L	J < 9.6	
Bromodichloromethane	mg/kg	1.4	0.022	< 1.9 U			U < 94 L	J < 29 l	J < 32 U	< 0.2	J < 0.0005 L	J < 8.9 L	
Bromoform	mg/kg	220	0.021	< 2.2 U			U < 110 L	J < 33	J < 37 U	< 0.23	J < 0.0004 L	J < 10 L	
Bromomethane	mg/kg	3.2	0.00018	< 3.3 U			U < 160 L	J < 49 L	J < 55 U	< 0.34 U	J < 0.00066 L	J < 15 L	
Carbon Disulfide	mg/kg	370	0.021	< 2.2 U	J < 0.00053 L	< 89	U < 110 L	J < 33	J < 37 U	1.2	< 0.00046 L	J < 10 L	J < 0.22 U
Carbon Tetrachloride	mg/kg	3	0.0019	< 2.3	J < 0.00046 L		U < 110 L	J < 34 L	J < 38 U	< 0.23	J < 0.0004 L	J < 10 L	
Chlorobenzene	mg/kg	140	0.068	1.8 J	< 0.00079 L	52	J 130 J	J < 16 L	J 41 J	< 0.11 l	J < 0.00068 L	J < 5 L	J 0.57 J
Chloroethane	mg/kg	6100	0.59	< 1.6 U	J < 0.0016 L	< 62	U < 76 L	J < 23	J < 26 U	< 0.16 l	J < 0.0014 L	J < 7.1 L	J < 0.15 U
Chloroform	mg/kg	1.5	0.022	< 2.1 U	J < 0.00061 L		U < 100 L	J < 31 L	J < 35 U	< 0.22 l	J < 0.00052 L	J < 9.6	
Chloromethane	mg/kg	50	0.0049	< 2.9 U			U < 140 L	J < 43	J < 48 U	< 0.3 l	J < 0.00076 L	J < 13 L	
cis-1,2-Dichloroethene	mg/kg	200	0.021	< 1.4 U	J < 0.00073 L	< 55	U < 67 L	J < 21 L	J < 23 U	< 0.14 l	J < 0.00063 L	J < 6.4 L	J < 0.13 U
cis-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 1.5 U	J < 0.0007 L	< 60	U < 74 L	J < 23 l	J < 25 U	< 0.16 l	J < 0.00061 L	J < 6.9 L	J < 0.15 U
Cyclohexane	mg/kg	2900	1.3	< 1.2 U	J < 0.00039 L	< 49	U < 60 L	J < 19 L	J < 21 U	< 0.13 l	J < 0.00033 L	J < 5.7	J < 0.12 U
Dibromochloromethane	mg/kg	3.3	0.021	< 1.4 U	J < 0.00074 L	< 53	U < 66 L	J < 20 l	J < 22 U	< 0.14 l	J < 0.00063 L	J < 6.2 L	J < 0.13 U
Dichlorodifluoromethane	mg/kg	40	0.03	< 1.3 U	J < 0.00069 L	< 52	U < 64 L	J < 20 l	J < 22 U	< 0.14 l	J < 0.00059 L	J < 6.1 L	J < 0.13 U
Ethylbenzene	mg/kg	27	0.78	< 1.3 U	J < 0.00067 L		U < 63 L	J < 19 L	J < 21 U	2.3	< 0.00057 L	J < 5.9 L	J < 0.12 U
Isopropylbenzene	mg/kg	1100	0.064	< 1.1 U			U < 54 L	J < 17 L	J < 18 U	0.66	J < 0.00061 L	J < 5.1 L	
m,p-Xylenes	mg/kg	255**	0.018	< 2.7 U			U < 130 L	+	J < 44 U	0.67	J < 0.0013 L		
Methyl Acetate	mg/kg	100000	0.32	< 2.6 U			U < 120 L	J < 38 L	J < 43 U	< 0.27	J < 0.00081 L	J < 12 L	<u> </u>
Methyl tert_butyl ether	mg/kg	220	0.0028	< 2.1 U	J < 0.00078 L	< 85	U < 100 L	J < 32 l	J < 36 U	< 0.22 l	J < 0.00067 L	J < 9.8 L	J < 0.21 U
Methylcyclohexane	mg/kg			< 1.2 U			U < 56 L	J < 17 L	J < 19 U	0.19	J < 0.00065 L	J < 5.3 L	
Methylene Chloride	mg/kg	310	0.0013	< 2.3 U			U < 110 L	J < 34 L	J < 38 U	< 0.24 l	J 0.0007 J	< 10 L	
o-Xylene	mg/kg	300	0.019	< 1.5 U			U < 74 L	J < 23	J < 25 U	2.6	< 0.0007 L	J < 7	
Styrene	mg/kg	3600	0.11	< 1.3 U	J < 0.00073 L		U < 65 L	J < 20 L	J < 22 U	< 0.14 U	J < 0.00063 L	J < 6.1 L	J < 0.13 U
Tetrachloroethene	mg/kg	41	0.0023	< 1.7 U	J < 0.00071 L		U < 84 L	J < 26	J < 29 U	< 0.18 U	J < 0.00061 L	J < 7.9 L	
Toluene	mg/kg	4500	0.69	< 1.8 U			U < 86 L	J < 26		< 0.18 U		< 8.1 L	
trans-1,2-Dichloroethene	mg/kg	69	0.029	< 1.6 U	J < 0.00062 L		U < 76 L	J < 23	J < 26 U	< 0.16 l	J < 0.00053 L	J < 7.2 L	
trans-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 1.2 U			U < 59 L	J < 18 L	J < 20 U	< 0.13	J < 0.00053 L	J < 5.6 L	
Trichloroethene	mg/kg	2	0.0018	< 1.7 U			U < 81 L	J < 25 L	J < 28 U	< 0.17	J < 0.00059 L	J < 7.7 L	
Trichlorofluoromethane	mg/kg	340	0.069	< 2.3 U	J < 0.00095 L	< 92	U < 110 L	J < 35	J < 39 U	< 0.24	J < 0.00082 L	J < 11 L	J < 0.22 U
Vinyl Chloride	mg/kg	1.7	0.00069	< 2.7 U	J < 0.00049 L		U < 130 L	J < 40 L	J < 45 U	< 0.28	J < 0.00042 L	J < 12 L	
Notes:	mg/ kg	1,	0.00007	` 2.1	, , , , , , , , , , , ,	, 110	<u> </u>	, 10	1 10		₹ 0.00072	1 12	

- U not detected at reported concentration J estimated result
- (1) criteria comparison for samples D-23, D-24, and D-25
 * value is for total 1,3-dichloropropene
- ** value is average of m-xylene and p-xylene

TABLE 8 FILL/MEADOW MAT/SAND UNIT - VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

	sys_loc_code	EPA Regional	EPA Regional	VC-3		VC-4		VC-4 DUP		VC-5	
	sample depth	Screening Levels	Screening Levels	18.2 - 18.7 f	+	18.5 - 19 ft		18.5 - 19 ft		16.5 - 17 ft	
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand		Sand		Sand		Sand	
	sample_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/22/2013		10/29/2013		10/29/2013		10/28/2013	Į.
chemical name	Units	110-12-00, 1110-0.1	TK-12 00, THQ-0.1	10/22/2013		10/2//2013		10/2//2013		10/20/2013	
1,1,1-Trichloroethane	mg/kg	3800	0.07	< 98	U	< 110	U	< 120	ΙU	< 53	U
1,1,2,2-Tetrachloroethane	mg/kg	2.8	0.000026	< 89	U	< 100	U	< 110	II	< 48	U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	18000	13	< 31	U	< 35	IJ	< 39	U	< 17	U
1,1,2-Trichloroethane	mg/kg	0.68	0.0016	< 110	Ü	< 120	Ü	< 140	U	< 60	U
1,1-Dichloroethane	mg/kg	17	0.00068	< 96	U	< 110	U	< 120	U	< 52	U
1,1-Dichloroethene	mg/kg	110	0.0025	< 100	Ü	< 110	Ü	< 130	U	< 55	U
1,2,3-Trichlorobenzene	mg/kg	49	0.0015	1000	Ť	4900	J	2100	ī	990	Ť
1,2,4-Trichlorobenzene	mg/kg	27	0.2	1600	\blacksquare	7900	J	4400	J	2700	
1,2-Dibromo-3-chloropropane	mg/kg	0.069	0.000086	< 33	U	< 38	U	< 42	U	< 18	U
1,2-Dibromoethane	mg/kg	0.17	0.000014	< 58	Ü	< 65	U	< 73	U	< 32	U
1,2-Dichlorobenzene	mg/kg	980	0.58	11000		11000		9600		3600	
1,2-Dichloroethane	mg/kg	2.2	0.0014	< 91	U	< 100	U	< 110	U	< 50	U
1,2-Dichloropropane	mg/kg	4.7	0.0017	< 120	U	< 140	U	< 150	U	< 66	U
1,3,5-Trichlorobenzene	mg/kg			< 44	U	< 49	U	< 55	U	< 24	U
1,3-Dichlorobenzene	mg/kg			8100		3700	П	2800		1400	
1,4-Dichlorobenzene	mg/kg	12	0.072	11000		6900		5500		2100	
1,4-Dioxane	mg/kg	17	0.00014	< 9300	U	< 10000	U	< 12000	U	< 5100	U
2-Butanone	mg/kg	20000	0.1	< 100	U	< 120	U	< 130	U	< 56	U
2-Hexanone	mg/kg	140	0.00079	< 54	U	< 61	U	< 68	U	< 29	U
4-Methyl-2-Pentanone (MIBK)	mg/kg	5300	0.023	< 56	U	< 63	U	< 70	U	< 31	U
Acetone	mg/kg	63000	0.24	< 480	U	< 530	U	< 600	U	< 260	U
Benzene	mg/kg	5.4	0.0026	< 94	U	< 110	U	< 120	U	< 51	U
Bromochloromethane	mg/kg	68	0.0021	< 96	U	< 110	U	< 120	U	< 52	U
Bromodichloromethane	mg/kg	1.4	0.022	< 89	U	< 100	U	< 110	U	< 48	U
Bromoform	mg/kg	220	0.021	< 100	U	< 110	U	< 130	U	< 55	U
Bromomethane	mg/kg	3.2	0.00018	< 150	U	< 170	U	< 190	U	< 81	U
Carbon Disulfide	mg/kg	370	0.021	< 100	U	< 110	U	< 130	U	< 56	U
Carbon Tetrachloride	mg/kg	3	0.0019	< 100	U	< 120	U	< 130	U	< 56	U
Chlorobenzene	mg/kg	140	0.068	250	J	280	J	210	J	85	J
Chloroethane	mg/kg	6100	0.59	< 71	U	< 80	U	< 89	U	< 39	U
Chloroform	mg/kg	1.5	0.022	< 96	U	< 110	U	< 120	U	< 52	U
Chloromethane	mg/kg	50	0.0049	< 130	U	< 150	U	< 170	U	< 72	U
cis-1,2-Dichloroethene	mg/kg	200	0.021	< 63	U	< 71	U	< 79	U	< 34	U
cis-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 69	U	< 78	U	< 87	U	< 38	U
Cyclohexane	mg/kg	2900	1.3	< 57	U	< 64	U	< 71	U	< 31	U
Dibromochloromethane	mg/kg	3.3	0.021	< 62	U	< 69	U	< 77	U	< 33	U
Dichlorodifluoromethane	mg/kg	40	0.03	< 60	U	< 68	U	< 76	U	< 33	U
Ethylbenzene	mg/kg	27	0.78	< 59	U	< 66	U	< 74	U	< 32	U
Isopropylbenzene	mg/kg	1100	0.064	< 50	U	< 57	U	< 63	U	< 27	U
m,p-Xylenes	mg/kg	255**	0.018	< 120	U	< 140	U	< 150	U	< 66	U
Methyl Acetate	mg/kg	100000	0.32	< 120	U	< 130	U	< 150	U	< 63	U
Methyl tert_butyl ether	mg/kg	220	0.0028	< 98	U	< 110	U	< 120	U	< 53	U
Methylcyclohexane	mg/kg	242	0.0016	< 53	U	< 60	U	< 66	U	< 29	U
Methylene Chloride	mg/kg	310	0.0013	< 100	U	< 120	U	< 130	U	63	J
o-Xylene	mg/kg	300	0.019	< 70	U	< 78	U	< 87	U	38	J
Styrene	mg/kg	3600	0.11	< 61	U	< 68	U	< 76	U	< 33	U
Tetrachloroethene	mg/kg	41	0.0023	< 78	U	< 88	U	< 98	U	< 43	U
Toluene	mg/kg	4500	0.69	< 80	U	< 90	U	< 100	U	< 44	U
trans-1,2-Dichloroethene	mg/kg	69	0.029	< 71	U	< 80	U	< 90	U	< 39	U
trans-1,3-Dichloropropene	mg/kg	8.3*	0.00015*	< 55	U	< 62	U	< 69	U	< 30	U
Trichloroethene	mg/kg	2	0.0018	< 76	U	< 86	U	< 95	U	< 41	U
Trichlorofluoromethane	mg/kg	340	0.069	< 110	U	< 120	U	< 130	U	< 58	U
Vinyl Chloride	mg/kg	1.7	0.00069	< 120	U	< 140	U	< 150	U	< 67	U

- U not detected at reported concentration J estimated result
- (1) criteria comparison for samples D-23, D-24, and D-25
 * value is for total 1,3-dichloropropene
- ** value is average of m-xylene and p-xylene

TABLE 9

FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE

	EARNY	, NEW	JERSEY
--	-------	-------	--------

	sys_loc_code	EPA Regional	EPA Regional	D-14	D-15	D-16	D-16	D-17	D-18	D-19	D-20	D-21
	sample depth	Screening Levels	Screening Levels	18.25 - 18.75 ft	16 - 16.5 ft	9 - 9.5 ft	15.75 - 16.25 ft	15.5 - 16 ft	16.5 - 17 ft	17 - 17.5 ft	18 - 18.5 ft	17.6 - 18.1 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Mat	Sand	Sand	Sand	Sand	Sand	Sand
	sample date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/15/2013	10/15/2013	10/16/2013	10/21/2013	10/17/2013	10/28/2013	10/18/2013
chemical_name	Units	TR-12 00, THQ-0.1	TR-12 00, 111Q-0.1	10/10/2010	10/21/2010	10/10/2010	10/13/2013	10/10/2013	10/21/2010	10/11/2010	10/20/2010	10/10/2013
1,1'-Biphenyl	mg/kg	21	0.00087	< 0.054	U < 0.051 U	22	< 0.053	J < 0.034 U	< 0.049 L	J 0.36 J	< 0.052 U	< 0.033 U
1,2,4,5-Tetrachlorobenzene	mg/kg	18	0.00058	< 0.054	U < 0.051 U	30	< 0.053 L	J 0.059 J		0.55	< 0.052 U	0.76
2,2'-Oxybis(1-Chloropropane)	mg/kg	22	0.00030	< 0.045	U < 0.042 U	< 2.3 L	< 0.033 C	U < 0.0082 U	(0.017	U < 0.0083 U	< 0.043 U	< 0.0081 U
2.3.4.6-Tetrachlorophenol	mg/kg	1800	0.11	< 0.053	U < 0.05 U	< 2.7 L	J < 0.052 L	U < 0.024 U		V < 0.0003 U	< 0.051 U	< 0.024 U
2.4.5-Trichlorophenol	mg/kg	6200	0.33	< 0.052		< 2.7 C	J < 0.052 U	J < 0.04 U		J < 0.041 U	< 0.051 U	< 0.024 U
2,4,6-Trichlorophenol	mg/kg	62	0.0034	< 0.047	0 (0.047 0	< 2.5 L	J < 0.047 L	U < 0.057 U		U < 0.058 U	< 0.046 U	< 0.056 U
2,4-Dichlorophenol	mg/kg	180	0.0034	< 0.059	U < 0.056 U	< 3.1 L	J < 0.058 L	J 0.099	0.071 J	0.31	< 0.040 U	
2,4-Dimethylphenol	mg/kg	1200	0.032	< 0.1	U < 0.094 U	< 5.2 L	J < 0.098 L	U < 0.059 U	-	J < 0.06 U	0.12 J	< 0.058 U
2,4-Dinitrophenol	mg/kg	120	0.0034	< 0.23	U < 0.22 U	< 12 L	J < 0.23	U < 0.45 U		J < 0.46 U	< 0.22 U	< 0.44 U
2.4-Dinitrophenor	mg/kg	5.5	0.00034	< 0.013	U < 0.013 U	< 0.7	J < 0.013 L	U < 0.031 U		J < 0.031 U	< 0.22 U	< 0.03 U
2,6-Dinitrotoluene	mg/kg	1.2	0.00028	< 0.013	U < 0.012 U	< 0.64 L	J < 0.013 L	U < 0.039 U		J < 0.04 U	< 0.013 U	< 0.038 U
2-Chloronaphthalene	mg/kg	8200	0.00038	< 0.012	U < 0.043 U	< 2.4 L	J < 0.044 L	U < 0.0079 U		J < 0.008 U	< 0.012 U	< 0.0078 U
2-Chlorophenol	mg/kg	510	0.0057	< 0.053		< 2.8 L	J < 0.052 L	U < 0.031 U		+	< 0.051 U	0.033 J
2-Methylnaphthalene	mg/kg	220	0.0057	< 0.053	U < 0.049 U	140	< 0.052 C	J < 0.0068 U		J 0.01 J	0.051 U	0.035 J
2-Methylphenol	mg/kg	3100	0.014	< 0.052	U < 0.065 U	< 3.6 L	0.068 L	J < 0.0068 U		J < 0.027 U	< 0.067 U	< 0.025 J
2-Nitroaniline	mg/kg	600	0.0062	< 0.069	U < 0.16 U	< 3.6 C	J < 0.068 L	J < 0.026 U < 0.17 U		J < 0.027 U	< 0.067 U	< 0.026 U
2-Nitrophenol		000	0.0002	< 0.045	U < 0.043 U	< 2.4 U	J < 0.044 L	J < 0.042 U		J < 0.042 U	< 0.16 U	< 0.17 U
3.3'-Dichlorobenzidine	mg/kg mg/kg	3.8	0.00071	< 0.045	U < 0.13 U	< 2.4 C	J < 0.044 L	J < 0.042 U		J < 0.042 U	< 0.044 U	< 0.041 U
3-Nitroaniline	, ,	3.0	0.00071	< 0.14	U < 0.13 U	< 7.4 C	J < 0.14 L	J < 0.16 U		J < 0.16 U	< 0.14 U	< 0.039 U
4,6-Dinitro-2-Methylphenol	mg/kg mg/kg	4.9	0.0002	< 0.14		< 7.5 C	J < 0.14 L	J < 0.16 U		J < 0.15 U	< 0.14 U	< 0.15 U
4-Bromophenyl-phenylether	mg/kg	4.7	0.0002	< 0.11		< 2.1 U	J < 0.039 L	J < 0.033 U			< 0.039 U	
4-Chloro-3-methylphenol	mg/kg	6200	0.13	< 0.04	U < 0.058 U	< 3.2 L	J < 0.06	U < 0.035 U		J < 0.034 U	< 0.059 U	
4-Chloroaniline	mg/kg	8.6	0.00013	< 0.001	U < 0.036 U	< 5.6 L	J < 0.00 L	J < 0.033 U		J < 0.035 U	< 0.039 U	< 0.034 U
4-Chlorophenyl-phenylether	mg/kg	0.0	0.00013	< 0.11	U < 0.045 U	< 5.6 C	J < 0.11 L	J < 0.03 U	. 0.077	J < 0.031 U	< 0.1 U	< 0.03 U
4-Methylphenol		6200	0.11	< 0.047	U < 0.075 U	< 4.2 L	J < 0.047 L	J < 0.042 U		J < 0.043 U	< 0.046 U	< 0.041 U
4-Nitroaniline	mg/kg	86	0.014	< 0.06		< 4.2 C	J < 0.12 L	J < 0.037 U	-	J < 0.036 U	< 0.077 U	< 0.037 U
	mg/kg	00	0.0014	< 0.13	0 0.12 0	< 0.6 C	0 < 0.12 C	J < 0.15 U		J < 0.16 U	< 0.12 U	< 0.15 U
4-Nitrophenol	mg/kg	3300	0.41	< 0.26		7.4 J	< 0.26 C	J < 0.14 U < 0.0073 U		J 0.0088 J	< 0.25 U	
Acenaphthylene	mg/kg	3300	0.41	< 0.059	U < 0.056 U	12 J	< 0.058 C	J < 0.0073 U J < 0.0087 U		J < 0.0088 U	< 0.057 U	\ 0.0072
Acetaphanana	mg/kg	10000	0.045		U < 0.059 U	< 3.2 L		J < 0.0087 U		J < 0.008 U	1 010 10	
Acetophenone	mg/kg	17000		< 0.062	U 0.16 J		0.001	J < 0.0074 U		J 0.032 U	< 0.06 U < 0.048 U	< 0.031 U 0.014 J
Attacina	mg/kg		4.2 0.0019	< 0.049	U < 0.059 U	90 < 3.3	< 0.048 U	J < 0.0074 U	. 0.0	J < 0.038 U		
Atrazine	mg/kg	7.5 10000		< 0.062		< 3.3 C	J < 0.061 L				< 0.06 U	< 0.036 U
Benzaldehyde Benzo(a)anthracene	mg/kg		0.033 0.01	< 0.048 < 0.0028	U < 0.045 U	< 2.5 C	J < 0.047 L	J < 0.057 U J < 0.0095 U	< 0.043 L < 0.0025 L	J < 0.058 U J 0.025 J	< 0.046 U	< 0.056 U
	mg/kg	2.1		\ 0.0020	0.1		< 0.0028 L	1 010070	\ 0.0020	0.020	< 0.0027 U < 0.0028 U	< 0.0094 U < 0.0075 U
Benzo(a)pyrene	mg/kg	0.21	0.24	0.014	0.073	25	< 0.0026	3 < 0.0076 0	0.0067			
Benzo(b)fluoranthene	mg/kg	2.1	0.035	0.012	0.077	29	< 0.0025 L	J < 0.012 U		(0.012 0	. 0.0020	. 0.0.2
Benzo(g,h,i)perylene	mg/kg	21	0.25	< 0.03	U 0.037 J	13 J	< 0.029 L	J < 0.0075 U J < 0.015 U	< 0.027 L	U < 0.0077 U	< 0.029 U	< 0.0074 U
Benzo(k)fluoranthene	mg/kg	21 180	0.35	< 0.0031	U < 0.0029 U	11 < 2.7 L	< 0.003 L			J < 0.016 U	< 0.003 U < 0.051 U	< 0.015 U
bis(2-Chloroethoxy) Methane	mg/kg	180	0.0011	< 0.052	U < 0.049 U		J < 0.051 L			J < 0.025 U	1 0.001	1 0.020
Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate	mg/kg	120	0.000031 1.4	< 0.0055 < 0.13	U < 0.0052 U	< 0.29 L	J < 0.0054 L J < 0.13 L	U < 0.01 U < 0.061 U		U < 0.01 U < 0.062 U	< 0.0053 U < 0.13 U	< 0.01 U < 0.06 U
3 3 1	mg/kg	910	0.2			< 1.9 L	J < 0.13 L J < 0.036 L	J < 0.061 U < 0.052 U		J < 0.062 U	< 0.13 U	
Butylbenzylphthalate	mg/kg	30000	0.19	< 0.037 < 0.093	U < 0.088 U	< 1.9 C	J < 0.036 L J < 0.092 L	J < 0.052 U < 0.29 U		J < 0.053 U J < 0.29 U	< 0.036 U	< 0.051 U
Carbazala	mg/kg	30000	0.19									1 0.20
Chrysons	mg/kg	210	1.1	< 0.048	U < 0.045 U	< 2.5 U	J < 0.047 L				< 0.046 U	< 0.0069 U
Chrysene	mg/kg	210	1.1 0.011	< 0.047	U 0.092 J	46	< 0.046 L	J < 0.009 U	< 0.043 L	J 0.029 J	< 0.046 U	< 0.0089 U
Dibenz(a,h)anthracene	mg/kg	0.21		< 0.0051	U 0.011 J	4.9	< 0.005 L	J < 0.0084 U	-	U < 0.0086 U	< 0.0049 U	< 0.0083 U
Dibenzofuran	mg/kg	100	0.011	< 0.047	U < 0.045 U	11 J	< 0.047 L	J < 0.037 U	-	J < 0.038 U	< 0.046 U	< 0.037 U
Diethylphthalate	mg/kg	49000	0.47	< 0.048	U < 0.045 U	< 2.5 U	J < 0.047 L	J < 0.041 U		J < 0.042 U	< 0.047 U	< 0.041 U
Dimethylphthalate	mg/kg	/ 200	0.17	< 0.048	1 010 10	< 2.5 L	J < 0.047 L	J < 0.041 U		J < 0.042 U	< 0.046 U	< 0.041 U
Di-n-Butylphthalate	mg/kg	6200	0.17	< 0.05	U < 0.047 U	< 2.6 U	V < 0.049 L	J < 0.047 U		J < 0.048 U	< 0.048 U	
Di-n-Octyl phthalate	mg/kg	620	4.4	< 0.026	U < 0.024 U	< 1.3 U	J < 0.025 L	J < 0.04 U		J < 0.041 U	< 0.025 U	< 0.039 U
Fluoranthene	mg/kg	2200	7	< 0.054	U 0.15 J	85	< 0.053 L	J 0.0087 J	(0.017	J 0.041 J	< 0.052 U	0.027 J
Fluorene	mg/kg	2200	0.4	< 0.052	U 0.064 J	65	< 0.051 L	J < 0.01 U		J < 0.01 U	< 0.05 U	< 0.0098 U
Hexachlorobenzene	mg/kg	1.1	0.013	< 0.0055	U < 0.0052 U	< 0.29 U	J < 0.0054 L	J < 0.0081 U	< 0.005 L	J < 0.0082 U	< 0.0053 U	< 0.0079 U

TABLE 9 FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	EPA Regional	D-14	D-15	D-16	D-16	D-17	D-18	D-19	D-20	D-21
	sample depth	Screening Levels	Screening Levels	18.25 - 18.75 ft	16 - 16.5 ft	9 - 9.5 ft	15.75 - 16.25 ft	15.5 - 16 ft	16.5 - 17 ft	17 - 17.5 ft	18 - 18.5 ft	17.6 - 18.1 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Mat	Sand	Sand	Sand	Sand	Sand	Sand
	sample_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/15/2013	10/15/2013	10/16/2013	10/21/2013	10/17/2013	10/28/2013	10/18/2013
chemical_name	Units											
Hexachlorobutadiene	mg/kg	22	0.0005	< 0.0099 U	< 0.0093 U	< 0.52 U	< 0.0097 U	< 0.0085 U	< 0.0089 U	< 0.0086 U	< 0.0095 U	< 0.0084
Hexachlorocyclopentadiene	mg/kg	370	0.16	< 0.048 U	< 0.045 U	< 2.5 U	< 0.047 U	< 0.041 U	< 0.043 U	< 0.042 U	< 0.046 U	< 0.04
Hexachloroethane	mg/kg	43	0.00031	< 0.0045 U	< 0.0042 U	< 0.24 U	< 0.0044 U	< 0.027 U	< 0.0041 U	< 0.028 U	< 0.0044 U	< 0.027
Indeno(1,2,3-cd)pyrene	mg/kg	2.1	0.2	0.017 J	0.044	14	< 0.0074 U	< 0.0078 U	< 0.0068 U	< 0.0079 U	< 0.0073 U	< 0.0077
Isophorone	mg/kg	1800	0.022	< 0.049 U	< 0.046 U	< 2.6 U	< 0.048 U	< 0.029 U	< 0.044 U	< 0.029 U	< 0.047 U	< 0.028
Naphthalene	mg/kg	18	0.00047	< 0.047 U	0.044 J	110	< 0.046 U	0.016 J	< 0.042 U	0.25	0.11 J	0.15
Nitrobenzene	mg/kg	24	0.000079	< 0.0057 U	< 0.0054 U	< 0.3 U	< 0.0056 U	< 0.032 U	< 0.0052 U	< 0.032 U	< 0.0056 U	< 0.031
N-Nitroso-Di-N-Propylamine	mg/kg	0.25	0.000007	< 0.0067 U	< 0.0064 U	< 0.35 U	< 0.0066 U	< 0.0089 U	< 0.0061 U	< 0.009 U	< 0.0065 U	< 0.0088
N-Nitrosodiphenylamine	mg/kg	350	0.057	< 0.04 U	< 0.038 U	< 2.1 U	< 0.039 U	< 0.035 U	< 0.036 U	< 0.036 U	< 0.039 U	< 0.035
Pentachlorophenol	mg/kg	2.7	0.01	< 0.12 U	< 0.11 U	< 6.3 U	< 0.12 U	< 0.034 U	< 0.11 U	< 0.034 U	< 0.12 U	< 0.033
Phenanthrene	mg/kg			< 0.051 U	0.37 J	250	< 0.051 U	< 0.012 U	< 0.046 U	0.042 J	< 0.05 U	0.046
Phenol	mg/kg	18000	0.26	< 0.054 U	< 0.051 U	< 2.8 U	< 0.053 U	< 0.0089 U	< 0.049 U	< 0.0091 U	< 0.053 U	< 0.0088
Pyrene	mg/kg	1700	0.95	< 0.034 U	0.24 J	110	< 0.033 U	0.0092 J	< 0.031 U	0.041 J	< 0.033 U	0.035

Notes:

U - not detected at reported concentration

J - estimated result

(1) - criteria comparison for samples D-23, D-24, and D-25

TABLE 9

FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE

KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	EPA Regional	D-22	D-23	D-23	D-24	D-25	D-26	D-26 DUP	D-27	D-27
	sample depth	Screening Levels	Screening Levels	16.3 - 16.8 ft	16.6 - 17.1 ft	22.5 - 23 ft	16.5 - 17 ft	18 - 18.5 ft	17.25 - 17.75 ft	17.25 - 17.75 ft	10 - 10.5 ft	20 - 20.25 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Fill	Sand
	sample date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/17/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/31/2013	10/31/2013
chemical_name	Units	,	·									
1,1'-Biphenyl	mg/kg	21	0.00087	< 0.056	U < 0.052 U	< 0.058 U	< 0.52	J < 0.054 l	J 0.18 .	J 0.25 J	13 J	< 0.053 U
1,2,4,5-Tetrachlorobenzene	mg/kg	18	0.00058	1.2	< 0.052 U	< 0.059 U	1.1	J 0.086	J 0.13	J 0.17 J	< 3.2 U	< 0.053 U
2,2'-Oxybis(1-Chloropropane)	mg/kg	22	0.00011	< 0.046	U < 0.043 U	< 0.048 U	< 0.43	J < 0.044 l	J < 0.042 l	J < 0.043 U	< 2.6 U	< 0.043 U
2,3,4,6-Tetrachlorophenol	mg/kg	1800	0.11	< 0.054	U < 0.05 U	< 0.057 U	< 0.5	J < 0.052 l	J < 0.049 L	J < 0.05 U	< 3.1 U	< 0.051 U
2,4,5-Trichlorophenol	mg/kg	6200	0.33	< 0.054	U < 0.05 U	< 0.056 U	< 0.5	J < 0.052 l	J < 0.048 L	J < 0.05 U	< 3.1 U	< 0.051 U
2,4,6-Trichlorophenol	mg/kg	62	0.0034	< 0.049	U < 0.045 U	< 0.051 U	< 0.45	J < 0.047 l	J < 0.044 L	J < 0.045 U	< 2.8 U	< 0.046 U
2,4-Dichlorophenol	mg/kg	180	0.0041	1.1	< 0.056 U	< 0.064 U	< 0.56	J < 0.059 l	J < 0.055 L	J < 0.056 U	< 3.5 U	< 0.058 U
2,4-Dimethylphenol	mg/kg	1200	0.032	< 0.1	U < 0.095 U	< 0.11 U	< 0.95	J < 0.099 l	J 0.32 .	J 0.61 J	< 5.9 U	< 0.097 U
2,4-Dinitrophenol	mg/kg	120	0.0034	< 0.24	U < 0.22 U	< 0.25 U	< 2.2	J < 0.23	J < 0.21 l	J < 0.22 U	< 14 U	< 0.22 U
2,4-Dinitrotoluene	mg/kg	5.5	0.00028	< 0.014	U < 0.013 U	< 0.014 U	< 0.13	J < 0.013 l	J < 0.012 L	J < 0.013 U	< 0.79 U	< 0.013 U
2,6-Dinitrotoluene	mg/kg	1.2	0.000058	< 0.012	U < 0.012 U	< 0.013 U	< 0.12	J < 0.012 l	J < 0.011 L	J < 0.012 U	< 0.72 U	< 0.012 U
2-Chloronaphthalene	mg/kg	8200	0.29	< 0.046	U < 0.043 U		< 0.43	J < 0.045 l	J < 0.042 l	J < 0.043 U	< 2.7 U	< 0.044 U
2-Chlorophenol	mg/kg	510	0.0057	< 0.055	0.001			J < 0.053 l		J < 0.051 U	< 3.1 U	< 0.052 U
2-Methylnaphthalene	mg/kg	220	0.014	< 0.053	U < 0.049 U			(0.001	J 0.16 .	J 0.22 J	16 J	< 0.051 U
2-Methylphenol	mg/kg	3100	0.058	< 0.071	U < 0.066 U		1 0.00	J < 0.068 l	J 0.14 .	J 0.38 J	< 4.1 U	< 0.067 U
2-Nitroaniline	mg/kg	600	0.0062	< 0.17	U < 0.16 U	<u> </u>	< 1.6 l	J < 0.17 l	J < 0.16 L	J < 0.16 U	< 10 U	< 0.16 U
2-Nitrophenol	mg/kg			< 0.046	U < 0.043 U	< 0.049 U	< 0.43 l	J < 0.045 l	J < 0.042 l	J < 0.043 U	< 2.7 U	< 0.044 U
3,3'-Dichlorobenzidine	mg/kg	3.8	0.00071	< 0.15	U < 0.13 U			J < 0.14 l	J < 0.13 L	J < 0.14 U	< 8.4 U	< 0.14 U
3-Nitroaniline	mg/kg			< 0.15	U < 0.14 U			U < 0.14 l		J < 0.14 U	< 8.4 U	< 0.14 U
4,6-Dinitro-2-Methylphenol	mg/kg	4.9	0.0002	< 0.11				J < 0.11 l		J < 0.11 U	< 6.5 U	< 0.11 U
4-Bromophenyl-phenylether	mg/kg			< 0.041	0.000	<u> </u>			J < 0.037 L	J < 0.038 U	< 2.4 U	< 0.039 U
4-Chloro-3-methylphenol	mg/kg	6200	0.13	< 0.063	U < 0.058 U		< 0.58 l	U < 0.06 U	J < 0.057 L	J < 0.058 U	< 3.6 U	< 0.059 U
4-Chloroaniline	mg/kg	8.6	0.00013	< 0.11	U < 0.1 U		< 1 l	U < 0.11 l	J < 0.099 L	J < 0.1 U	< 6.3 U	< 0.1 U
4-Chlorophenyl-phenylether	mg/kg	/000	0.44	< 0.049	U < 0.045 U	< 0.051 U	< 0.45 l	U < 0.047 L	J < 0.044 L	J < 0.045 U	< 2.8 U	< 0.046 U
4-Methylphenol	mg/kg	6200	0.11	< 0.082	U < 0.076 U	< 0.086 U	< 0.76 l	U < 0.079 U	J 1.1 ,	J 2.5 J	< 4.7 U	0.19 J
4-Nitroaniline	mg/kg	86	0.0014	< 0.13	U < 0.12 U U < 0.25 U		< 1.2 L < 2.5 L	U < 0.12 U	J < 0.12 L	J < 0.12 U	< 7.4 U	< 0.12 U
4-Nitrophenol	mg/kg	3300	0.41	< 0.27 < 0.06				U < 0.26 U < 0.058	U < 0.24 L U 0.13	J < 0.25 U J 0.17 J	< 15 U	< 0.25 U < 0.057 U
Acenaphthylana	mg/kg	3300	0.41	< 0.06 C	U < 0.056 U			U < 0.058 U U < 0.047 U	J < 0.044 L	J 0.17 J	12 J	< 0.057 U
Acenaphthylene Acetophenone	mg/kg mg/ka	10000	0.045	< 0.049	U < 0.059 U		< 0.46 C	U < 0.047 U	J < 0.058 L	J < 0.059 U	< 3.7 U	< 0.046 U
Anthracene	mg/kg	17000	4.2	0.056	J < 0.059 U	< 0.067 U	0.47	J < 0.049	J 0.056 U	J 0.15 J	130	< 0.06 U
Atrazine	mg/kg	7.5	0.0019	< 0.064	U < 0.059 U	< 0.067 U	< 0.6	U < 0.062	J < 0.058 L	J < 0.06 U	< 3.7 U	< 0.048 U
Benzaldehyde	mg/kg	10000	0.033	< 0.049	U < 0.045 U	< 0.051 U	< 0.45	U < 0.047	J < 0.044 L	J < 0.045 U	< 2.8 U	< 0.046 U
Benzo(a)anthracene	mg/kg	2.1	0.01	0.17	0.04	< 0.003 U		< 0.0028 U	J 0.13	0.11	110	< 0.0027 U
Benzo(a)pyrene	mg/kg	0.21	0.24	0.17	0.026 J				0.004	0.1	97	0.07
Benzo(b)fluoranthene	mg/kg	2.1	0.035	0.17	0.039	< 0.0031 U		J 0.021	J 0.11	0.13	120	0.11
Benzo(g,h,i)perylene	mg/kg	2.1	0.000	0.17	J 0.03 J	< 0.032 U	< 0.29	U < 0.03	J 0.045	J 0.059 J	71	0.055 J
Benzo(k)fluoranthene	mg/kg	21	0.35	0.075	0.022 J		0.12	J < 0.003	J 0.058	0.067	37	< 0.003 U
bis(2-Chloroethoxy) Methane	mg/kg	180	0.0011	< 0.054	U < 0.05 U	< 0.056 U		J < 0.052 l	J < 0.048 L	J < 0.05 U	< 3.1 U	< 0.051 U
Bis-(2-Chloroethyl) Ether	mg/kg	1	0.0000031	< 0.0057	U < 0.0052 U	< 0.006 U	< 0.053 l	J < 0.0055 l	J < 0.0051 L	J < 0.0053 U	< 0.33 U	< 0.0054 U
bis(2-Ethylhexyl)phthalate	mg/kg	120	1.4	< 0.14	U 0.6	< 0.15 U		< 0.13	J < 0.12 L	J < 0.13 U	< 7.9 U	< 0.13 U
Butylbenzylphthalate	mg/kg	910	0.2	< 0.038	U < 0.035 U	< 0.04 U	< 0.35	J < 0.037 l	J < 0.034 L	J < 0.035 U	< 2.2 U	< 0.036 U
Caprolactum	mg/kg	30000	0.19	< 0.096	U < 0.089 U		< 0.89 l	J < 0.092 l	J < 0.086 l	J < 0.089 U	< 5.5 U	< 0.091 U
Carbazole	mg/kg			< 0.049	U < 0.045 U	< 0.052 U	< 0.46	J < 0.047 l	J < 0.044 L	J < 0.046 U	57	< 0.046 U
Chrysene	mg/kg	210	1.1	0.17	J < 0.045 U	< 0.051 U	< 0.45	J < 0.047 l	J 0.13 .	J 0.11 J	100	< 0.046 U
Dibenz(a,h)anthracene	mg/kg	0.21	0.011	0.019	J < 0.0048 U	< 0.0055 U	< 0.049 l	J < 0.005 l	J 0.011 .	J < 0.0049 U	12	0.047
Dibenzofuran	mg/kg	100	0.011	< 0.049	U < 0.045 U	< 0.051 U	< 0.45	J < 0.047 l	J 0.16 .	J 0.2 J	65	< 0.046 U
Diethylphthalate	mg/kg	49000	0.47	< 0.049	U < 0.046 U			J < 0.048 l	J < 0.045 L	J < 0.046 U	< 2.8 U	< 0.047 U
Dimethylphthalate	mg/kg			< 0.049	U < 0.046 U		< 0.46	J < 0.047 l	J < 0.044 L	J < 0.046 U	< 2.8 U	< 0.047 U
Di-n-Butylphthalate	mg/kg	6200	0.17	< 0.051	U < 0.047 U			J < 0.049 l	J 0.14 .	J < 0.048 U	< 2.9 U	< 0.048 U
Di-n-Octyl phthalate	mg/kg	620	4.4	< 0.026	U < 0.025 U		< 0.25	J < 0.026 l	J < 0.024 L	J < 0.025 U	< 1.5 U	< 0.025 U
Fluoranthene	mg/kg	2200	7	0.28	J 0.065 J	< 0.058 U	0.7	J < 0.053 l	J 0.28 .	J 0.24 J	380	< 0.052 U
Fluorene	mg/kg	2200	0.4	0.054	J < 0.049 U	< 0.056 U	< 0.49	J < 0.051 l	J 0.14 .	J 0.18 J	90	< 0.05 U
Hexachlorobenzene	mg/kg	1.1	0.013	< 0.0057	U < 0.0053 U	< 0.006 U	< 0.053	J < 0.0055 l	J 0.25	0.26	< 0.33 U	< 0.0054 U

TABLE 9 FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	EPA Regional	D-22	D-23	D-23	D-24	D-25	D-26	D-26 DUP	D-27	D-27
	sample depth	Screening Levels	Screening Levels	16.3 - 16.8 ft	16.6 - 17.1 ft	22.5 - 23 ft	16.5 - 17 ft	18 - 18.5 ft	17.25 - 17.75 ft	17.25 - 17.75 ft	10 - 10.5 ft	20 - 20.25 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Fill	Sand
	sample_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/17/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/31/2013	10/31/2013
chemical_name	Units											
Hexachlorobutadiene	mg/kg	22	0.0005	< 0.01	U < 0.0094 U	< 0.011 L	< 0.094 L	J < 0.0098 L	J < 0.0092 U	< 0.0094 U	< 0.58 U	< 0.0096 l
Hexachlorocyclopentadiene	mg/kg	370	0.16	< 0.049	U < 0.045 U	< 0.051 L	< 0.45 L	J < 0.047 L	J < 0.044 U	< 0.045 U	< 2.8 U	< 0.046
Hexachloroethane	mg/kg	43	0.00031	< 0.0046	U < 0.0043 U	< 0.0049 L	< 0.043 L	J < 0.0045 L	J < 0.0042 U	< 0.0043 U	< 0.27 U	< 0.0044 l
Indeno(1,2,3-cd)pyrene	mg/kg	2.1	0.2	0.12	0.027 J	< 0.0081 U	0.19 J	< 0.0074 U	J 0.056	0.053	71	0.059
Isophorone	mg/kg	1800	0.022	< 0.05	U < 0.047 U	< 0.053	< 0.47 L	J < 0.049 L	J < 0.045 U	< 0.047 U	< 2.9 U	< 0.048 U
Naphthalene	mg/kg	18	0.00047	0.11 .	J 0.052 J	< 0.051 L	< 0.45 L	J < 0.046 L	J 0.35 J	0.57	89	0.078
Nitrobenzene	mg/kg	24	0.000079	< 0.0059	U < 0.0055 U	< 0.0062 L	< 0.055 L	J < 0.0057 L	J < 0.0053 U	< 0.0055 U	< 0.34 U	< 0.0056 l
N-Nitroso-Di-N-Propylamine	mg/kg	0.25	0.000007	< 0.0069 l	U < 0.0064 U	< 0.0073	< 0.064 L	J < 0.0067 L	J < 0.0063 U	< 0.0064 U	< 0.4 U	< 0.0066 l
N-Nitrosodiphenylamine	mg/kg	350	0.057	< 0.041 l	U < 0.038 U	< 0.043 L	< 0.38 L	J < 0.039 L	J < 0.037 U	< 0.038 U	< 2.4 U	< 0.039 l
Pentachlorophenol	mg/kg	2.7	0.01	< 0.12	U < 0.11 U	< 0.13 L	ا < 1.1 ل	J < 0.12 L	J < 0.11 U	< 0.12 U	< 7.1 U	< 0.12
Phenanthrene	mg/kg			0.29	J < 0.049 U	< 0.056 L	1.5 J	< 0.051 U	J 0.47	0.45	440	< 0.05
Phenol	mg/kg	18000	0.26	< 0.056	U < 0.052 U	< 0.059 L	< 0.52 L	J < 0.054 L	J 0.88 J	2.6 J	< 3.2 U	0.16 .
Pyrene	mg/kg	1700	0.95	0.25	J 0.054 J	< 0.037	0.77 J	0.041	0.23 J	0.19 J	270	< 0.033 L

Notes:

U - not detected at reported concentration

J - estimated result

(1) - criteria comparison for samples D-23, D-24, and D-25

TABLE 9

FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL CO. INC. SITE

KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	EPA Regional	VC-1		VC-2		VC-3	- 1	VC-4		VC-4 DUP	\top	VC-5
	sample depth	Screening Levels	Screening Levels	14 - 14.5 ft		16.5 - 17 ft		18.2 - 18.7 ft		18.5 - 19 ft		18.5 - 19 ft		16.5 - 17 ft
	•	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand		Sand		Sand		Sand		Sand		Sand
	stratum												4	
chemical_name	sample_date Units	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/22/2013	-	10/18/2013		10/22/2013		10/29/2013	+	10/29/2013	+	10/28/2013
_		21	0.00087	< 0.051		. 0.025	U	0.70		210		180	┿	7.0
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	mg/kg	21			U	< 0.035	U	0.69 4.7	J	1800	J	1200		7.8 12
2,2'-Oxybis(1-Chloropropane)	mg/kg	18 22	0.00058 0.00011		U	< 0.03 < 0.0085	U	< 0.42	U		U		U	< 0.46 U
	mg/kg	1800	0.00011			< 0.0065	U	< 0.42	U		U		_	< 0.46 U
2,3,4,6-Tetrachlorophenol	mg/kg	6200			U		U	< 0.49	U		U		U U	< 0.54 U
2,4,5-Trichlorophenol	mg/kg	6200	0.33 0.0034		U	< 0.042	U	< 0.45	U		U	< 52 C		< 0.53 U
2,4,6-Trichlorophenol	mg/kg	180			U	< 0.059 0.049	J	< 0.45	IJ		U		U	
2,4-Dichlorophenol 2,4-Dimethylphenol	mg/kg mg/kg	1200	0.0041 0.032		U	< 0.049	U	< 0.56	U		U		U	< 0.61 U
2,4-Dinitrophenol	mg/kg	1200	0.0034		U	< 0.47	U	< 2.2	U		U		U	< 2.4 U
2,4-Dinitrophenoi		5.5	0.0034		U	< 0.47	U	< 0.13	U		U		U	< 0.14 U
2,6-Dinitrotoluene	mg/kg	1.2	0.00028			< 0.032	U	< 0.13	U		U		U	< 0.14 U
2-Chloronaphthalene	mg/kg mg/kg	8200	0.00056		U	< 0.041	U	< 0.11	U		U		U	< 0.12 U
		510	0.0057		U	< 0.0082	U	< 0.43	U		U	< 53 L	-11	< 0.46 U
2-Chlorophenol	mg/kg	220			-	< 0.032	U	2.2	ı	1400	U	1200	4	
2-Methylnaphthalene	mg/kg		0.014		U		U		U		11		_	24
2-Methylphenol 2-Nitroaniline	mg/kg mg/kg	3100 600	0.058 0.0062		U	< 0.028 < 0.18	U	< 0.65 < 1.6	U		U	< 68 l	U U	< 0.71 U < 1.7 U
2-Nitrophenol		000	0.0062		U	< 0.18	U	< 0.43	U		U		U	< 0.46 U
3,3'-Dichlorobenzidine	mg/kg	3.8	0.00071		_		U		U				-	
	mg/kg	3.8	0.00071		U	< 0.042		< 1.3			U		U	< 1.5 U
3-Nitroaniline	mg/kg	4.0	0.0000		U	< 0.16	U	< 1.3	U		U		U U	< 1.5 U
4,6-Dinitro-2-Methylphenol	mg/kg	4.9	0.0002		U	< 0.16 < 0.034	U	< 1	U		U		U	< 1.1 U < 0.41 U
4-Bromophenyl-phenylether	mg/kg	/200	0.12				U	< 0.38	U		U		U	
4-Chloro-3-methylphenol	mg/kg	6200	0.13		U	< 0.036	U	< 0.58	IJ		U		U	< 0.62 U
4-Chloroaniline	mg/kg	8.6	0.00013		_	< 0.032		< 1	Ť		U		-	< 1.1 U
4-Chlorophenyl-phenylether	mg/kg	6200	0.11		U	< 0.044	U	< 0.45	U				U	< 0.49 U
4-Methylphenol	mg/kg	86	0.11		U	< 0.039	U	< 0.75	U		U		U	< 0.81 U
4-Nitroaniline	mg/kg	80	0.0014	-	U	< 0.16	U	< 1.2 < 2.5	U		U	< 260 L	U	< 1.3 U
4-Nitrophenol	mg/kg	3300	0.41		U	< 0.14 < 0.0076	U	< 2.5 1.6	U	240	Ū	200	井	< 2.7 U
Acenaphthylone	mg/kg	3300	0.41		U	< 0.0076	U	< 0.45	U		U		U J	5.6
Acetaphanana	mg/kg	10000	0.045		U		U	< 0.45	IJ		U		U	< 0.64 U
Acetophenone	mg/kg	17000	0.045		-	< 0.032	U	< 0.59 6.2	U	< 62 170	Ū	< 61 l	井	< 0.64 U
Atrocine	mg/kg	7.5	4.2		U	< 0.0077	U		Н		U			
Atrazine	mg/kg		0.0019		U	< 0.038	U	< 0.59	U				U	< 0.64 U
Benzaldehyde	mg/kg	10000	0.033 0.01		U	< 0.059 < 0.0099	U	< 0.45	U		U		U U	< 0.49 U
Benzo(a)anthracene	mg/kg	2.1			U		U	1.4	Н		U		U	
Benzo(a)pyrene	mg/kg	0.21	0.24		U	< 0.0079	U	0.59	H	9.4	U		U U	1.2
Benzo(b)fluoranthene	mg/kg	2.1	0.035		_	< 0.012		0.87	Н		U		U	1.2
Benzo(g,h,i)perylene	mg/kg	21	0.25		U	< 0.0078	U	0.34	J		U		U	0.75 J
Benzo(k)fluoranthene	mg/kg	21	0.35		U	< 0.016	U	0.25	U				_	0.55
bis(2-Chloroethoxy) Methane	mg/kg	180	0.0011		U	< 0.026		< 0.49	+-+		U		U	< 0.53 U
Bis-(2-Chloroethyl) Ether bis(2-Ethylhexyl)phthalate	mg/kg	1 120	0.000031 1.4		U	< 0.011	U	< 0.052 < 1.3	U		U		U U	< 0.056 U < 1.4 U
· 3 3/1	mg/kg	910	0.2			< 0.064	U		U		U		+	
Butylbenzylphthalate	mg/kg	30000	0.2		U	< 0.054	U	< 0.35	U		U	< 37 l	#	< 0.38 U
Carbazala	mg/kg	30000	0.19		U	< 0.3	U	< 0.88	U		U		U U	< 0.95 U
Chrysona	mg/kg	210	1 1		U	< 0.0073		1.1	J		U		-	3.2 J
Chrysene	mg/kg	210	1.1		U	< 0.0094	U	1.2	l l				U	2.4 J
Dibenz(a,h)anthracene	mg/kg	0.21	0.011		U	< 0.0088	U	< 0.048	U		U		U	0.17 J
Dibenzofuran Diathylphtholata	mg/kg	100	0.011		U	< 0.039	U	5		580	11	510	╬	29
Diethylphthalate	mg/kg	49000	0.47		U	< 0.043	U	< 0.45	U		U	< 48 l	; -	< 0.49 U
Dimethylphthalate	mg/kg	/ 200	0.47		U	< 0.043	U	< 0.45	U		U	< 47 L	1	< 0.49 U
Di-n-Butylphthalate	mg/kg	6200	0.17		U	< 0.049	U	< 0.47	U		U		U	< 0.51 U
Di-n-Octyl phthalate	mg/kg	620	4.4		U	< 0.042	U	< 0.24	U		U	< 25 l	+	< 0.26 U
Fluoranthene	mg/kg	2200	7		U	< 0.0084	U	5.1	₩	64	J	57	+	12
Fluorene	mg/kg	2200	0.4		U	< 0.01	U	3.3	J	240	J	220	1	25
Hexachlorobenzene	mg/kg	1.1	0.013	< 0.0052	U	< 0.0084	U	61		1300		1200		53

TABLE 9 FILL/MEADOW MAT/SAND UNIT - SEMIVOLATILE ORGANIC COMPOUNDS

STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	EPA Regional	VC-1	VC-2	VC-3	VC-4	VC-4 DUP	VC-5
	sample depth	Screening Levels	Screening Levels	14 - 14.5 ft	16.5 - 17 ft	18.2 - 18.7 ft	18.5 - 19 ft	18.5 - 19 ft	16.5 - 17 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand	Sand	Sand	Sand	Sand
	sample_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/22/2013	10/18/2013	10/22/2013	10/29/2013	10/29/2013	10/28/2013
chemical_name	Units								
Hexachlorobutadiene	mg/kg	22	0.0005	< 0.0094 L	< 0.0088 U	< 0.093 U	< 9.8 U	< 9.7 U	< 0.1 U
Hexachlorocyclopentadiene	mg/kg	370	0.16	< 0.045	< 0.042 U	< 0.45 U	< 47 U	< 47 U	
Hexachloroethane	mg/kg	43	0.00031	< 0.0043 L	< 0.028 U	< 0.042 U	< 4.5 U	< 4.4 U	< 0.046 U
Indeno(1,2,3-cd)pyrene	mg/kg	2.1	0.2	< 0.0071 L	< 0.0081 U	0.37 J	< 7.5 U	< 7.4 U	0.76
Isophorone	mg/kg	1800	0.022	< 0.046	< 0.03 U	< 0.46 U	< 49 U	< 48 U	< 0.5 U
Naphthalene	mg/kg	18	0.00047	< 0.044 L	< 0.0068 U	12	8400	6100	30
Nitrobenzene	mg/kg	24	0.000079	< 0.0054 L	< 0.033 U	< 0.054 U	< 5.7 U	< 5.7 U	< 0.059 U
N-Nitroso-Di-N-Propylamine	mg/kg	0.25	0.000007	< 0.0064 L	< 0.0092 U	< 0.064 U	< 6.7 U	< 6.7 U	< 0.069 U
N-Nitrosodiphenylamine	mg/kg	350	0.057	< 0.038 L	< 0.036 U	< 0.38 U	< 40 U	< 39 U	< 0.41 U
Pentachlorophenol	mg/kg	2.7	0.01	< 0.11 L	< 0.035 U	< 1.1 U	< 120 U	< 120 U	< 1.2 U
Phenanthrene	mg/kg			< 0.049 L	< 0.013 U	16	390 J	360 J	48
Phenol	mg/kg	18000	0.26	< 0.051 L	< 0.0093 U	< 0.51 U	< 54 U	< 54 U	< 0.56 U
Pyrene	mg/kg	1700	0.95	< 0.032 L	< 0.008 U	2.9 J	37 J	< 33 U	5.9

- U not detected at reported concentration
- J estimated result
- (1) criteria comparison for samples D-23, D-24, and D-25

TABLE 10 FILL/MEADOW MAT/SAND UNIT - PCBS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

sy	s_loc_code	EPA Regional	EPA Regional	D-15		D-16		D-18		D-19		D-21		D-22		D-24		VC-1
sai	nple depth	Screening Levels	Screening Levels	16 - 16.5 ft		9 - 9.5 ft		16.5 - 17 ft		17 - 17.5 ft		17.6 - 18.1 ft		16.3 - 16.8 ft		16.5 - 17 ft		14 - 14.5 ft
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand		Mat		Sand		Sand		Sand		Sand		Sand		Sand
Sa	mple_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/21/2013		10/15/2013		10/21/2013		10/17/2013		10/18/2013		10/17/2013		10/30/2013		10/22/2013
chemical_name	Units																	
PCB-1016	mg/kg	21	0.01	< 0.017	U	< 0.091	U	< 0.017	U	< 0.017	U	< 0.017	J	< 0.019	U	< 0.017	J	< 0.017 U
PCB-1221	mg/kg	0.54	0.000069	< 0.017	U	< 0.091	U	< 0.017	U	< 0.017	U	< 0.017	J	< 0.019	U	< 0.017	J	< 0.017 U
PCB-1232	mg/kg	0.54	0.000069	< 0.017	U	< 0.091	U	< 0.017	U	< 0.017	U	< 0.017	J	< 0.019	U	< 0.017	J	< 0.017 U
PCB-1242	mg/kg	0.74	0.0053	< 0.017	U	< 0.091	U	< 0.017	U	< 0.017	U	< 0.017	J	< 0.019	U	< 0.017 L	J	< 0.017 U
PCB-1248	mg/kg	0.74	0.0052	< 0.017	U	< 0.091	U	< 0.017	U	< 0.017	U	< 0.017	J	< 0.019	U	< 0.017	J	< 0.017 U
PCB-1254	mg/kg	0.74	0.0082	< 0.022	U	< 0.12	U	< 0.021	U	< 0.022	U	< 0.021 L	J	< 0.024	U	< 0.022	J	< 0.022 U
PCB-1260	mg/kg	0.74	0.024	< 0.022	U	< 0.12	U	< 0.021	U	< 0.022	U	< 0.021 L	J	< 0.024	U	< 0.022	J	< 0.022 U
PCB-1262	mg/kg			< 0.022	U	< 0.12	U	< 0.021	U	< 0.022	U	< 0.021 L	J	< 0.024	U	< 0.022	J	< 0.022 U
PCB-1268	mg/kg			< 0.022	U	< 0.12	U	< 0.021	U	< 0.022	U	< 0.021 L	J	< 0.024	U	< 0.022 L	J	< 0.022 U

Notes:

U - not detected at reported concentration (1) - criteria comparison for samples D-24

TABLE 10 FILL/MEADOW MAT/SAND UNIT - PCBS STANDARD CHLORINE CHEMICAL CO. INC. SITE **KEARNY, NEW JERSEY**

sys	s_loc_code	EPA Regional	EPA Regional	VC-3		VC-4		VC-4 DUP		VC-5	
sar	nple depth	Screening Levels	Screening Levels	18.2 - 18.7 ft		18.5 - 19 ft		18.5 - 19 ft		16.5 - 17 ft	
	stratum	Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand		Sand		Sand		Sand	
sa	mple_date	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/22/2013		10/29/2013		10/29/2013		10/28/2013	
chemical_name	Units										
PCB-1016	mg/kg	21	0.01	< 0.86	U	< 18	U	< 1.8	U	< 1.9	U
PCB-1221	mg/kg	0.54	0.000069	< 0.86	U	< 18	U	< 1.8	U	< 1.9	U
PCB-1232	mg/kg	0.54	0.000069	< 0.86	U	< 18	U	< 1.8	U	< 1.9	U
PCB-1242	mg/kg	0.74	0.0053	< 0.86	U	< 18	U	< 1.8	U	< 1.9	U
PCB-1248	mg/kg	0.74	0.0052	< 0.86	U	< 18	U	< 1.8	U	< 1.9	U
PCB-1254	mg/kg	0.74	0.0082	< 1.1	U	< 23	U	< 2.3	U	< 2.4	U
PCB-1260	mg/kg	0.74	0.024	< 1.1	U	< 23	U	< 2.3	U	< 2.4	U
PCB-1262	mg/kg			< 1.1	U	< 23	U	< 2.3	U	< 2.4	U
PCB-1268	mg/kg	<u> </u>		< 1.1	U	< 23	U	< 2.3	U	< 2.4	U

- U not detected at reported concentration (1) criteria comparison for samples D-24

TABLE 11 FILL/MEADOW MAT/SAND UNIT - PCDD/PCDF STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	E	PA Regional	EPA Regional	D-15		D-16	D-18		D-19	D-21		D-22	D-24		VC-1		VC-3
	sample depth	Scr	reening Levels	Screening Levels	16 - 16.5 ft		9 - 9.5 ft	16.5 - 17 ft		17 - 17.5 ft	17.6 - 18.1	ft	16.3-16.8 ft	16.5 - 17 f	t	14 - 14.5 ft	18.2	2 - 18.7 ft
	stratum	Ir	ndustrial Soil	Soil to Groundwater ⁽¹⁾	Sand		Mat	Sand		Sand	Sand		Sand	Sand		Sand		Sand
	sample_date TE	EFs TR=1	1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/21/2013		10/15/2013	10/21/2013		10/17/2013	10/18/201	3	10/17/2013	10/30/201	3	10/22/2013	10/	/22/2013
chemical_name	Units																	
1,2,3,4,6,7,8-HpCDD	pg/g 0.	.01			27.2	J	577	4.53	J	2.35	J 3.6	JQ	26	J 54.7		< 0.18	J 40	0100
1,2,3,4,6,7,8-HpCDF	pg/g 0.	.01			3080		72700	E 433		173	394		1890	6270		18.4	132	00000 E
1,2,3,4,7,8,9-HPCDF	pg/g 0.	.01			82.3		1920	9.05	J	5.78	J 9.57	J	52.4	157		< 0.2	J 49	2000 E
1,2,3,4,7,8-HXCDD	pg/g 0).1			3.27	J	96.4	J < 0.58	U	< 0.4	U 1.22	J	1.74	JQ 6.85	J	< 0.083	J 2	.090 J
1,2,3,4,7,8-HxCDF	pg/g 0).1			795		20400	113		40.9	J 101		500	2010		3.99	J 57:	20000 E
1,2,3,6,7,8-HxCDD	pg/g 0).1			6.82	JQ	167	1.08	JQ	< 0.29	U 0.99	J	5.4	J 12.7	J	< 0.06	J 10	6800
1,2,3,6,7,8-HXCDF	pg/g 0).1			160		3370	23.5	J	8.51	J 19.2	JQ	94.6	310		0.8	J 72	23000 E
1,2,3,7,8,9-HXCDD	pg/g 0).1			6.38	JQ	54.9	J < 0.41	U	< 0.28	U 0.98	J	3.42	J 6.16	J	< 0.058	J 4	240 J
1,2,3,7,8,9-HXCDF	pg/g 0).1			< 1.49	U	< 20.3	U < 0.72	U	< 0.58	U < 0.76	U	< 1.37	U < 16.6	U	< 0.096	J 16	9000
1,2,3,7,8-PeCDD	pg/g	1			3.9	J	97.6	J < 0.52	U	< 0.52	U < 0.98	U	2.89	J 10	J	< 0.095	J	NA
1,2,3,7,8-PeCDF	pg/g 0.	.03			31.4	J	845	< 0.5	U	4.93	J 4.59	J	16.8	J 55.3		0.3	J 7:	3300
2,3,4,6,7,8-HXCDF	pg/g 0).1			50.2	J	982	6.42	JQ	2.41	J 5.48	JQ	26.3	J 85.2		< 0.086	J 19	9000
2,3,4,7,8-PECDF	pg/g 0).3			60.6		2220	< 0.52	U	4.45	J 12.5	J	49	J 165		0.67	J 44	9000 E
2,3,7,8-TCDD	pg/g	1			2.82	J	60.5	< 0.4	U	< 9.95	U 0.67	JQ	1.58	JQ 4.82	J	< 0.068		NA
2,3,7,8-TCDF	1.3.3).1			6.52	JQ	179	< 5.2	U	3.68	J < 3.73	U	< 4.69	U 21.5		1.02	J 23	5000 E
OCDD	pg/g 0.0	0003			210		2190	21.4	J	13.2	J 20.5	J	182	296		2.66		9000
OCDF	pg/g 0.0	0003			3630		77200	E 528	Ш	215	405		2290	8080		31.1	238	00000 E
Total HPCDD	pg/g	-			62.2		1370	10.5	J	5.06 J	Q 10.1	JQ	54.6	134		< 0.18		0100
Total HPCDF	pg/g	-			3500		82600	485	Ш	190	Q 432	Q	2170	Q 7030		19.5		00000
Total HXCDD	pg/g	-			74.0	Q	2000	Q 11.6	JQ	< 1.2	U 15.8	JQ	48.9	JQ 164	Q	< 0.083		3200
Total HXCDF	pg/g	-			1460	Q	46500	Q 253	Q	94	Q 229	Q	1100	Q 4100	Q	8.05	2 68	10000
Total PECDD	pg/g	-			17.0	JQ	1560	6.56	J		U 10.8	JQ	35.7	JQ 164	Q	< 0.095		NA
Total PECDF	pg/g	-			300	Q	18200	89.6	Q	40.2 J	Q 213		446	Q 1670	Q	5.5 J	_	2000
Total TCDD	pg/g	-			23.3	Q	1200	Q 6.22	JQ	< 0.4		Q	36.6	Q 120	Q	< 0.068		NA
Total TCDF	pg/g	-			121	Q	8500	Q 44.8	Q	13.7	2 00.7	Q	192	Q 812		4.66		5000
2,3,7,8-TCDD - ND = 0	pg/g	-	18	15	1.62E+02		4.15E+03	1.90E+01		8.91E+00	2.16E+01		1.03E+02	3.79E+02		9.85E-01	9.8	8E+05

Notes:

E - result exceeded calibration range

Q - isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio

U - not detected at reported concentration

J - estimated result

NA - some parameters could not be reported due to severe matrix interference and high target

(1) - criteria comparison for sample D-24

TABLE 11 FILL/MEADOW MAT/SAND UNIT - PCDD/PCDF STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code		EPA Regional	EPA Regional	VC-4	VC-4 DUP		VC-5
	sample depth		Screening Levels	Screening Levels	18.5 - 19 ft	18.5 - 19 ft		16.5 - 17 ft
	stratum		Industrial Soil	Soil to Groundwater ⁽¹⁾	Sand	Sand		Sand
	sample_date	TEFs	TR=1E-06, THQ=0.1	TR=1E-06, THQ=0.1	10/29/2013	10/29/2013		10/28/2013
chemical_name	Units							
1,2,3,4,6,7,8-HpCDD	pg/g	0.01			< 1330 l	J 753000	J	150
1,2,3,4,6,7,8-HpCDF	pg/g	0.01			11100	154000000	JΕ	24800 E
1,2,3,4,7,8,9-HPCDF	pg/g	0.01			< 1540 l	J 5470000		1020 E
1,2,3,4,7,8-HXCDD	pg/g	0.1			< 1440 l	J 70500	J	9.69 J
1,2,3,4,7,8-HxCDF	pg/g	0.1			2760	57800000	JE	12400 E
1,2,3,6,7,8-HxCDD	pg/g	0.1			< 1420 l	J 262000	JQ	55.4
1,2,3,6,7,8-HXCDF	pg/g	0.1			< 670 l	6890000		1370 E
1,2,3,7,8,9-HXCDD	pg/g	0.1			< 1270 l	99300	J	24.3
1,2,3,7,8,9-HXCDF	pg/g	0.1			< 720 l	J < 127000	U	463 E
1,2,3,7,8-PeCDD	pg/g	1			< 2080 l	J 77300	J	NA
1,2,3,7,8-PeCDF	pg/g	0.03			< 1210 l	J 759000		806 E
2,3,4,6,7,8-HXCDF	pg/g	0.1			< 700 l	1990000		487 E
2,3,4,7,8-PECDF	pg/g	0.3			< 1210 l	J 4650000		994 E
2,3,7,8-TCDD	pg/g	1			< 1180 l	J 28400	J	NA
2,3,7,8-TCDF	pg/g	0.1			< 690 l	3440000		539 E
OCDD	pg/g	0.0003			21900	2030000		523
OCDF	pg/g	0.0003			14200	284000000	JΕ	39800 E
Total HPCDD	pg/g	-			< 1330 L	1670000		150
Total HPCDF	pg/g	-			11100	171000000	J	25900
Total HXCDD	pg/g	-			< 14400 L	1930000	O	89.4
Total HXCDF	pg/g	-			2760 J	100000000	J	14800
Total PECDD	pg/g	-			< 2080 L	1100000	Q	NA
Total PECDF	pg/g	-			< 1210 L	36500000		1800
Total TCDD	pg/g	-			< 1200 L	882000		NA
Total TCDF	pg/g	-			< 700 L	15300000		539
2,3,7,8-TCDD - ND = 0	pg/g	-	18	15	3.98E+02	1.02E+08		2.13E+03

Notes:

- E result exceeded calibration range
- Q isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio
- U not detected at reported concentration
- J estimated result

NA - some parameters could not be reported due to severe matrix interference and high target

(1) - criteria comparison for sample D-24

t		, ·		T	1		T	1		T			T			
	sys_loc_code	EPA Regional	D-14	D-15	D-15	D-16	D-17		·18	D-19	D-20		D-20		D-21	D-21
	sample depth	Screening Levels	19 - 19.5 ft	17 - 17.5 ft	22.5 - 23 ft	20 - 20.5 ft	20 - 20.5 ft		- 18 ft	19.5 - 20 ft	19 - 19.5		24.5 - 25 ft		18.75 - 19.25 ft	23.5 - 24 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved	•	Varved Clay	Varved Cla	,	Varved Clay		Varved Clay	Varved Clay
ala am 1 a 1	sample_date	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/21/2013	10/16/2013	10/16/2013	10/21	/2013	10/17/2013	10/28/20	13	10/28/2013	_	10/18/2013	10/18/2013
chemical_name	Units	0.07	0.00040	0.54	0.00054	0.0050	0.00057	0.00	2050	0.00040		T.,	0.00050	1	0.00047	0.00040
1,1,1-Trichloroethane	mg/kg	0.07	< 0.00049 U	U < 0.54 U	V < 0.00054 U	U < 0.00053	U < 0.00056 U	< 0.00		< 0.00049	U < 0.53	U	< 0.00053	U	< 0.00047	U < 0.00049
1,1,2,2-Tetrachloroethane	mg/kg	0.000026 13	< 0.00072 l	U < 0.49 U U < 0.17 U	U < 0.0008 U U < 0.0012 U	U < 0.00079 U < 0.0012	U < 0.00082 U U < 0.0012 U	< 0.00		< 0.00073 < 0.0011	U < 0.48 U < 0.17	U	< 0.00079 < 0.0012	U	< 0.00069	U < 0.00072 U < 0.0011
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	mg/kg mg/kg	0.0016	< 0.0011 U	U < 0.17 U U < 0.61 U	+	U < 0.00012	U < 0.00095 U	< 0.00		< 0.0011	U < 0.6	U	< 0.0012	U	< 0.001 < 0.0008	U < 0.00083
1.1-Dichloroethane	mg/kg	0.0016	< 0.00084 C	U < 0.53	J < 0.00093 U	U < 0.00063	U < 0.00095 U	< 0.00		< 0.00084	U < 0.52	11	< 0.00091	III	< 0.0005	U < 0.00058
1,1-Dichloroethane	mg/kg	0.0005	< 0.00038 C	U < 0.56	0 < 0.00095 U	U < 0.00093	U < 0.00097 U	< 0.00		< 0.00086	U < 0.55	11	< 0.00093	11	< 0.00033	U < 0.00085
1,2,3-Trichlorobenzene	mg/kg	0.0025	< 0.00085 U	U < 0.33 U		U < 0.00073	U < 0.00097 U	< 0.00		< 0.00085	U 1.9	Ī	< 0.00073	Ш	< 0.00081	U < 0.00085
1.2.4-Trichlorobenzene	mg/kg	0.2	< 0.00089 U	U < 0.2	J < 0.00074 U	U < 0.00073	U < 0.001 U	< 0.00		< 0.00089	U 2.4	J	< 0.00073	u	0.00088	J < 0.00088
1,2-Dibromo-3-chloropropane	mg/kg	0.000086	< 0.00075	U < 0.18 U	0.00073 U	U < 0.00097	U < 0.00086 U	< 0.00		< 0.00076	U < 0.18	IJ	< 0.00082	IJ	< 0.00072	U < 0.00075
1,2-Dibromoethane	mg/kg	0.000014	< 0.00087 U	U < 0.32 U	/ < 0.00096 U	U < 0.00095	U < 0.00099 U	< 0.00		< 0.00087	U < 0.32	U	< 0.00095	Ü	< 0.00083	U < 0.00087
1,2-Dichlorobenzene	mg/kg	0.58	< 0.0008 U	J 14	< 0.00090 U	U < 0.00088	U < 0.00091 U	< 0.00		< 0.0008	U 25	Ŭ	0.015	Ť	0.2	0.0025
1,2-Dichloroethane	mg/kg	0.0014		J < 0.5 U	/ < 0.00068 U	U < 0.00067	U < 0.0007 U	< 0.00		< 0.00062	U < 0.5	U	< 0.00067	U	< 0.00059	U < 0.00061
1,2-Dichloropropane	mg/kg	0.0017	< 0.00055 U	U < 0.67 U	1	U < 0.0006	U < 0.00062 U	< 0.00		< 0.00055	U < 0.66	U	< 0.0006	U	< 0.00052	U < 0.00054
1,3,5-Trichlorobenzene	mg/kg		< 0.00097 U	U < 0.24 U	J < 0.0011 l	U < 0.0011	U < 0.0011 U	< 0.0		< 0.00097	U < 0.24	Ū	< 0.0011	U	< 0.00092	U < 0.00097
1,3-Dichlorobenzene	mg/kg		< 0.00066 l	J 12	< 0.00073	U < 0.00072	U < 0.00075 U	< 0.00	0071 U	< 0.00066	U 18		0.0079	\sqcap	0.1	0.001
1,4-Dichlorobenzene	mg/kg	0.072		U 17	< 0.00071 l	U 0.005	J 0.00086 J	< 0.00		< 0.00064	U 28		0.011	\Box^{\dagger}	0.23	0.0031
1,4-Dioxane	mg/kg	0.00014	< 0.28	U < 51 U	J < 0.31 l	U < 0.3	U < 0.32 U	< 0	.3 U	< 0.28	U < 51	U	< 0.3	U	< 0.26	U < 0.28
2-Butanone	mg/kg	0.1	< 0.00089 l	U < 0.57 U	J < 0.00098 l	U < 0.00097	U < 0.001 U	< 0.00	0095 U	< 0.00089	U < 0.56	U	< 0.00097	U	< 0.00085	U < 0.00088
2-Hexanone	mg/kg	0.00079	< 0.00069 l	J < 0.3 U	J < 0.00077 l	U < 0.00076	U < 0.00079 U	< 0.00	0074 U	< 0.0007	U < 0.29	U	< 0.00076	U	< 0.00066	U < 0.00069
4-Methyl-2-Pentanone (MIBK)	mg/kg	0.023	< 0.00066	U < 0.31 U	< 0.00073 U	U < 0.00072	U < 0.00075 U	< 0.0	007 U	< 0.00066	U < 0.31	U	< 0.00072	U	< 0.00063	U < 0.00065
Acetone	mg/kg	0.24	< 0.005 l	J < 2.6 L	J < 0.0056 l	U < 0.0055	U < 0.0057 U	< 0.0	054 U	< 0.005	U < 2.6	U	< 0.0055	U	< 0.0048	U < 0.005
Benzene	mg/kg	0.0026	< 0.00068	U < 0.52 U	J < 0.00075 l	U < 0.00074	U < 0.00077 U	< 0.00		< 0.00068	U < 0.51	U	< 0.00074	U	0.018	< 0.00068
Bromochloromethane	mg/kg	0.0021	< 0.00069 l	J < 0.53 U	J < 0.00077 l	U < 0.00076	U < 0.00079 U	< 0.00	0074 U	< 0.00069	U < 0.52	U	< 0.00076	U	< 0.00066	U < 0.00069
Bromodichloromethane	mg/kg	0.022	< 0.00056 l	J < 0.49 U	J < 0.00063 l	U < 0.00062	U < 0.00064 U	< 0.0		< 0.00057	U < 0.48	U	< 0.00062	U	< 0.00054	U < 0.00056
Bromoform	mg/kg	0.021	< 0.00044 l	U < 0.56 U		U < 0.00049	U < 0.00051 U	< 0.00		< 0.00045	U < 0.55	U	< 0.00049	U	< 0.00042	U < 0.00044
Bromomethane	mg/kg	0.00018	< 0.00074 l	U < 0.82 U	J < 0.00082 l	U < 0.00081	U < 0.00084 U	< 0.0		< 0.00075	U < 0.82	U	< 0.00081	U	< 0.00071	U < 0.00074
Carbon Disulfide	mg/kg	0.021	< 0.00051 l	U < 0.56 U	/ < 0.00057 L	U < 0.00056	U < 0.00059 U	< 0.00		< 0.00052	U < 0.56	U	< 0.00056	U	< 0.00049	U < 0.00051
Carbon Tetrachloride	mg/kg	0.0019	< 0.00045 U	U < 0.57 U	/ < 0.0005 L	U < 0.00049	U < 0.00051 U	< 0.00		< 0.00045	U < 0.56	U	< 0.00049	U	< 0.00043	U < 0.00045
Chlorobenzene	mg/kg	0.068		U 0.53 J	< 0.00084	U < 0.00083	U < 0.00087 U	< 0.00		< 0.00076	U 0.64	J	< 0.00083	U	0.036	< 0.00076
Chloroethane	mg/kg	0.59	< 0.0016 l	U < 0.39 U	J < 0.0017 L	U < 0.0017	U < 0.0018 U	< 0.0		< 0.0016	U < 0.39	U	< 0.0017	U	< 0.0015	U < 0.0016
Chloroform	mg/kg	0.022 0.0049	< 0.00059 U	U < 0.53 U U < 0.73 U		U 0.00065	J 0.00074 U U < 0.00097 U	0.000		< 0.00059	U < 0.52 U < 0.72	U	< 0.00064 < 0.00094	U	0.00066	U 0.00068
Chloromethane cis-1,2-Dichloroethene	mg/kg	0.0049	< 0.00086 U < 0.00071 U	U < 0.73 U U < 0.35 U	U < 0.00095 U U < 0.00078 U	U < 0.00094 U < 0.00077	U < 0.00097 U	< 0.00		< 0.00086 < 0.00071	U < 0.72	U	< 0.00094	U	< 0.00082 < 0.00067	U < 0.00085 U < 0.00071
cis-1,3-Dichloropropene	mg/kg ma/ka	0.021	< 0.00071 < 0.00068	U < 0.38 U	+	U < 0.00074	U < 0.0008 U	< 0.00		< 0.00071	U < 0.38	11	< 0.00077	III	< 0.00067	U < 0.00071
Cyclohexane	mg/kg	1.3	< 0.00088 C	U < 0.31 U	J < 0.00076 L	U < 0.00074	U < 0.00078 U	< 0.00		< 0.00088	U < 0.31	11	< 0.00075	11	< 0.00065	U < 0.00037
Dibromochloromethane	mg/kg	0.021	< 0.00037 C	U < 0.34 U	J < 0.00041 U	U < 0.00041	U < 0.00042 U	< 0.00		< 0.00037	U < 0.34	11	< 0.00041	11	< 0.0008	U < 0.00037
Dichlorodifluoromethane	ma/ka	0.021	< 0.00071 C	U < 0.33	J < 0.00074 U	U < 0.00073	U < 0.00076 U	0.00		< 0.00072	U < 0.33	11	< 0.00078	III	0.00081	< 0.00071
Ethylbenzene	mg/kg	0.78	< 0.00067 C	U < 0.32 U	0.00074 U	U < 0.00073	U < 0.00073 U	< 0.00		< 0.00065	U < 0.32	II	< 0.00073	U	< 0.0001	U < 0.00064
Isopropylbenzene	mg/kg	0.064	< 0.00068 U	U < 0.28 U	J < 0.00072	U < 0.00071	U < 0.00078 U	< 0.00		< 0.00069	U < 0.27	- li	< 0.00071	U	< 0.00065	U < 0.00068
m,p-Xylenes	mg/kg	0.018	< 0.0015	U < 0.67 U	/ < 0.0016	U < 0.0016	U < 0.0017 U	< 0.0		< 0.0015	U < 0.66	U	< 0.0016	U	< 0.0014	U < 0.0015
Methyl Acetate	mg/kg	0.32		U < 0.64 U		U < 0.00099	U < 0.001 U	< 0.00		< 0.00091	U < 0.64	Ú	< 0.00099	Ū	< 0.00086	U < 0.0009
Methyl tert_butyl ether	mg/kg	0.0028	< 0.00075	U < 0.54 U	+	U < 0.00082	U < 0.00085 U	< 0.0		< 0.00075	U < 0.53	Ū	< 0.00082	U	< 0.00072	U < 0.00075
Methylcyclohexane	mg/kg	-	< 0.00073	U < 0.29 U	+		U < 0.00083 U	< 0.00		< 0.00073	U < 0.29	Ū	< 0.0008	U		U < 0.00073
Methylene Chloride	mg/kg	0.0013	0.00076 l		+	U 0.0009	U 0.00077 U	0.00		0.00081	U 0.56	J	0.0044	U	0.001	U 0.00089
o-Xylene	mg/kg	0.019	< 0.00078	U < 0.38 U	J < 0.00087 l	U < 0.00086	U < 0.00089 U	< 0.00		< 0.00079	U < 0.38	U	< 0.00086	U	< 0.00075	U < 0.00078
Styrene	mg/kg	0.11	< 0.00071 l	U < 0.33		U < 0.00077	U < 0.00081 U	< 0.00		< 0.00071	U < 0.33	U	< 0.00078	U		U < 0.00071
Tetrachloroethene	mg/kg	0.0023	< 0.00068	U < 0.43 U	J < 0.00076 l	U < 0.00075	U < 0.00078 U	< 0.00		< 0.00069	U < 0.43	U	< 0.00075	U	< 0.00065	U < 0.00068
Toluene	mg/kg	0.69	< 0.00073	U < 0.44 U	J < 0.00081 l	U < 0.0008	U < 0.00083 U	< 0.00		< 0.00074	U < 0.44	U	< 0.0008	U	< 0.0007	U < 0.00073
trans-1,2-Dichloroethene	mg/kg	0.029	< 0.0006	U < 0.39 U		U < 0.00065	U < 0.00068 U	< 0.00		< 0.0006	U < 0.39	U	< 0.00066	U	< 0.00057	U < 0.0006
trans-1,3-Dichloropropene	mg/kg	0.00015*	< 0.0006	U < 0.3 U	+	U < 0.00066	U < 0.00068 U	< 0.00		< 0.0006	U < 0.3	U	< 0.00066	U	< 0.00057	U < 0.0006
Trichloroethene	mg/kg	0.0018	< 0.00066 l	U < 0.42 U	1	U < 0.00072	U < 0.00075 U	< 0.00		< 0.00066	U < 0.41	U	< 0.00072	U	< 0.00063	U < 0.00066
Trichlorofluoromethane	mg/kg	0.069	< 0.00092 l	U < 0.58 U			U < 0.0011 U	< 0.00		< 0.00093	U < 0.58	U	< 0.001	U	< 0.00088	U < 0.00092
Vinyl Chloride	mg/kg	0.00069	< 0.00047	U < 0.67 U	l < 0.00052	U < 0.00052	U < 0.00054 U	< 0.00	0051 U	< 0.00047	U < 0.67	U	< 0.00052	U	< 0.00045	U < 0.00047
Notes:																

Notes:

U - not detected at reported concentration

J - estimated result

* - value is for total 1,3-dichloropropene

TABLE 12

VARVED CLAY - VOLATILE ORGANIC COMPOUNDS

STANDARD CHLORINE CHEMICAL CO. INC. SITE

KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	D-22	D-23	D-23	D-24	D-24	D-25	D-25	D-26	D-27	VC-1	VC-1 DUP
	sample depth	Screening Levels	17.5 - 18 ft	17.6 - 18.1 ft	22.5 - 23 ft	17.5 - 18 ft	22.5 - 23 ft	19 - 19.5 ft	24 - 24.5 ft	18.25 - 18.75	20.5 - 21 ft	15 - 15.5 ft	15 - 15.5 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay
	sample_date	TR=1E-06, THQ=0.1	10/17/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/22/2013	10/22/2013
chemical_name	Units												
1,1,1-Trichloroethane	mg/kg	0.07	< 0.00052 U	< 0.06	J < 0.0005 U	< 1.1 L	J < 0.00054	J < 0.79	U < 0.13 U	< 0.00051 U	< 0.00048	U < 0.48 l	J < 0.52 U
1,1,2,2-Tetrachloroethane	mg/kg	0.000026	< 0.00077 U	< 0.054 l	J < 0.00075 U	< 0.99 L	< 0.00077	J < 0.71	U < 0.12 U	< 0.00075 U	< 0.0007	U < 0.44 l	J < 0.47 U
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	13	< 0.0011 U	< 0.019 l	J < 0.0011 U	< 0.35 L	J < 0.0012	J < 0.25	U < 0.043 U	< 0.0011 U	< 0.001	U < 0.16 L	J < 0.17 U
1,1,2-Trichloroethane	mg/kg	0.0016	< 0.00089 U	< 0.068 l	J < 0.00086 U	< 1.2 L	₹ 0.00072	J < 0.89	U < 0.15 U	< 0.00087 U	< 0.00082	U < 0.55 L	J < 0.58 U
1,1-Dichloroethane	mg/kg	0.00068	< 0.00062 U	< 0.059 l	J < 0.0006 U	< 1.1 U	0.00003	J < 0.78	U < 0.13 U	< 0.0006 U	< 0.00056	U < 0.48 U	J < 0.51 U
1,1-Dichloroethene 1,2,3-Trichlorobenzene	mg/kg	0.0025 0.0015	< 0.00091 U < 0.00091 U	< 0.062 U	J < 0.00088 U J < 0.00088 U	< 1.1 L	0.00073	J < 0.82 J < 0.48	U < 0.14 U U < 0.081 U	< 0.00088 U < 0.0088 U	0.00083 0 < 0.00083	U < 0.5 L	J < 0.53 U J < 0.32 U
1,2,4-Trichlorobenzene	mg/kg mg/kg	0.0015	< 0.00091 U	0.25	J < 0.0008 U	2.8 J	< 0.00093	J < 0.46 J < 0.29	U < 0.049	< 0.0008 U	< 0.00083	U < 0.3 U U < 0.18 U	J < 0.32 U
1,2-Dibromo-3-chloropropane	mg/kg	0.00086	< 0.00095 U	< 0.021 U	J < 0.00092 U	< 0.37		J < 0.29 J < 0.27	U < 0.049 U	< 0.00092 U	0.00087	U < 0.16 U	J < 0.19 U
1,2-Dibromoethane	mg/kg	0.000014	< 0.00093 U	< 0.036	J < 0.00076 U	< 0.65	J < 0.00095	J < 0.47	U < 0.079	< 0.00076 U	< 0.00075	U < 0.29	J < 0.31 U
1,2-Dichlorobenzene	mg/kg	0.58	0.0066	7	< 0.0007 U			J 31	16	< 0.0007 C	< 0.0003	U 7.9	10
1,2-Dichloroethane	mg/kg	0.0014	< 0.00066 U	< 0.056 l	U < 0.00064 U	< 1 L		J < 0.74	U < 0.12 U	< 0.00063 U	< 0.00076	U < 0.45 U	J < 0.48 U
1,2-Dichloropropane	mg/kg	0.0017	< 0.00058 U	< 0.074 U	J < 0.00056 U	< 1.4 L	J < 0.0006	J < 0.98	U < 0.16 U	< 0.00057 U	< 0.00053	U < 0.6	J < 0.64 U
1,3,5-Trichlorobenzene	mg/kg	515511	< 0.001 U	< 0.027	J < 0.001 U	< 0.49 L		J < 0.35	U < 0.06	< 0.001 U	< 0.00095	U < 0.22 U	J < 0.23 U
1,3-Dichlorobenzene	mg/kg		0.0045 J	7.4	< 0.00068 U	110	< 0.00072	J 28	13	< 0.00068 U	< 0.00064	U 3.8	5.8
1,4-Dichlorobenzene	mg/kg	0.072	0.01	8.5	< 0.00066 U	130	< 0.0007	J 44	19	< 0.00066 U	< 0.00062	U 8.4	11
1,4-Dioxane	mg/kg	0.00014	< 0.3 U	< 5.7	J < 0.29 U	< 100 L	< 0.3	J < 75	U < 13 U	< 0.29 U	< 0.27	U < 46 l	J < 49 U
2-Butanone	mg/kg	0.1	< 0.00095 U	< 0.063	J < 0.00091 U	< 1.1 L	J < 0.00097	< 0.83	U < 0.14 U	< 0.00092 U	< 0.00086	U < 0.51 l	J < 0.54 U
2-Hexanone	mg/kg	0.00079	< 0.00074 U	< 0.033	J < 0.00072 U	< 0.6	J < 0.00076	J < 0.44	U < 0.074 U	< 0.00072 U	< 0.00068	U < 0.27 l	J < 0.29 U
4-Methyl-2-Pentanone (MIBK)	mg/kg	0.023	< 0.0007 U	< 0.034 l	J < 0.00068 U	< 0.63 L	J < 0.00072	J < 0.45	U < 0.076 U	< 0.00068 U	< 0.00064	U < 0.28 l	J < 0.3 U
Acetone	mg/kg	0.24	< 0.0054 U	< 0.29 l	J < 0.0052 U	< 5.3 L	0.0055	J < 3.8	U < 0.65 U	< 0.0052 U	< 0.0049	U < 2.3 l	J < 2.5 U
Benzene	mg/kg	0.0026	< 0.00072 U	< 0.058 l	J < 0.0007 U	< 1 L	J < 0.00074	J < 0.76	U < 0.13 U	< 0.0007 U	0.0019	J < 0.46 l	J < 0.5 U
Bromochloromethane	mg/kg	0.0021	< 0.00074 U	< 0.059 l	J < 0.00071 U	< 1.1 L	0.00070	J < 0.77	U < 0.13 U	< 0.00072 U	< 0.00068	U < 0.47 l	J < 0.5 U
Bromodichloromethane	mg/kg	0.022	< 0.0006 U	< 0.054 l	J < 0.00058 U	< 0.99 L	0.00002	J < 0.71	U < 0.12 U	< 0.00059 U	< 0.00055	U < 0.44 L	J < 0.47 U
Bromoform	mg/kg	0.021	< 0.00047 U	< 0.062 l	J < 0.00046 U	< 1.1 L	J < 0.00049	J < 0.82	U < 0.14 U	< 0.00046 U	< 0.00043	U < 0.5 U	J < 0.54 U
Bromomethane	mg/kg	0.00018	< 0.00079 U	< 0.092 l	J < 0.00077 U	< 1.7 U	J < 0.00081	J < 1.2	U < 0.2 U	< 0.00077 U	< 0.00072	U < 0.74 L	J < 0.79 U
Carbon Disulfide	mg/kg	0.021 0.0019	< 0.00055 U	< 0.063 l	J < 0.00053 U	< 1.1 U	J < 0.00056	J < 0.82 J < 0.83	U < 0.14 U	< 0.00053 U	0.0005 0.00044	U < 0.5 U	J < 0.54 U J < 0.54 U
Carbon Tetrachloride Chlorobenzene	mg/kg mg/kg	0.0019	< 0.00048 U < 0.00081 U	< 0.063 U	J < 0.00046 U J < 0.00079 U	< 1.1 L	V < 0.00049 < 0.00083	J < 0.83 J 1.4	U < 0.14 U	< 0.00047 U < 0.00079 U	0.00044	U < 0.51 U 0.9	J 0.92 J
Chloroethane	mg/kg	0.59	< 0.00081 U	< 0.042 L	J < 0.00079 U	< 0.79	1 0.00000	J < 0.57	U < 0.097	< 0.00079 U	0.00074	U < 0.35	J < 0.37 U
Chloroform	mg/kg	0.022	0.00082 J	< 0.059 L	J < 0.00061 U	< 1.1 L	0.00068	J < 0.77	U < 0.13 U	0.00062 J	< 0.0015	U < 0.47 L	J < 0.51 U
Chloromethane	mg/kg	0.0049	< 0.00091 U	< 0.081 U	J < 0.00088 U	< 1.5 L		J < 1.1	U < 0.18 U	< 0.00089 U	< 0.00084	U < 0.65	J < 0.7 U
cis-1,2-Dichloroethene	mg/kg	0.021	< 0.00071 U	< 0.039 U	J < 0.00073 U	< 0.7	J < 0.00077	J < 0.51	U < 0.086 U	< 0.00037 U	< 0.00069	U < 0.31 U	J < 0.33 U
cis-1,3-Dichloropropene	mg/kg	0.00015*	< 0.00073 U	< 0.042 U	J < 0.0007 U	< 0.77 L	J < 0.00075	J < 0.56	U < 0.094 U	< 0.00071 U	< 0.00067	U < 0.34 U	J < 0.36 U
Cyclohexane	mg/kg	1.3	< 0.0004 U	< 0.035 l	J < 0.00039 U	< 0.63 L	J < 0.00041	J < 0.46	U < 0.077 U	< 0.00039 U	< 0.00036	U < 0.28 U	J < 0.3 U
Dibromochloromethane	mg/kg	0.021	< 0.00076 U	< 0.038 l	J < 0.00074 U	< 0.69 L	J < 0.00078	J < 0.5	U < 0.084 U	< 0.00074 U	< 0.0007	U < 0.3 U	J < 0.32 U
Dichlorodifluoromethane	mg/kg	0.03	< 0.00071 U	< 0.037 l	J < 0.00069 U	< 0.67 L	J < 0.00073	J < 0.49	U < 0.082 U	< 0.00069 U	< 0.00065	U < 0.3 U	J < 0.32 U
Ethylbenzene	mg/kg	0.78	< 0.00069 U	< 0.036	J < 0.00067 U	< 0.66 L	J < 0.00071	J < 0.48	U < 0.08	< 0.00067 U	< 0.00063	U < 0.29 l	J < 0.31 U
Isopropylbenzene	mg/kg	0.064	< 0.00073 U	< 0.031 l	J < 0.0007 U	< 0.56 L	J < 0.00075	J < 0.41	U < 0.069 U	< 0.00071 U	< 0.00067	U < 0.25 l	J < 0.27 U
m,p-Xylenes	mg/kg	0.018	< 0.0016 U	< 0.075 l	J < 0.0015 U	< 1.4 L		J < 0.98	U < 0.17 U	< 0.0015 U	< 0.0014	U < 0.6	J < 0.64 U
Methyl Acetate	mg/kg	0.32	< 0.00097 U	< 0.072 l	J < 0.00094 U	1 1.10		J < 0.94	U < 0.16 U	< 0.00094 U	< 0.00088	U < 0.58 l	. 0.02
Methyl tert_butyl ether	mg/kg	0.0028	< 0.0008 U	< 0.06	J < 0.00078 U	< 1.1 L		J < 0.79	U < 0.13 U	< 0.00078 U	< 0.00073	U < 0.48 U	J < 0.51 U
Methylcyclohexane	mg/kg		< 0.00078 U	< 0.032 l	J < 0.00075 U	< 0.59 L	1 010000	J < 0.43	U < 0.072 U	< 0.00076 U	< 0.00071	U < 0.26 l	J < 0.28 U
Methylene Chloride	mg/kg	0.0013	0.0011 U	< 0.063 l	J 0.0051 U	< 1.2 L	0.0046	J < 0.84	U < 0.14 U	0.00077 J	< 0.00066	U < 0.51 L	J < 0.55 U
o-Xylene	mg/kg	0.019	< 0.00084 U	< 0.043 l	J < 0.00081 U	< 0.78 L		J < 0.56	U < 0.095 U	< 0.00081 U	< 0.00076	U < 0.34 L	J < 0.37 U
Styrene	mg/kg	0.11	< 0.00076 U	< 0.037 l	J < 0.00073 U	< 0.68 U		J < 0.49	U < 0.083 U	< 0.00074 U	< 0.00069	U < 0.3 U	J < 0.32 U
Tetrachloroethene	mg/kg	0.0023 0.69	< 0.00073 U < 0.00078 U	< 0.048 l	J < 0.00071 U	< 0.87 L	J < 0.00075 J < 0.0008	J < 0.63	U < 0.11 U	< 0.00071 U < 0.00076 U	0.00067 0.00072	U < 0.39 U	J < 0.41 U
Toluene trans-1,2-Dichloroethene	mg/kg	0.69	< 0.00078 U < 0.00064 U	< 0.049 U	J < 0.00076 U J < 0.00062 U	< 0.9 L	J < 0.0008 J < 0.00066	J < 0.65 J < 0.58	U 0.15 J	< 0.00076 U	0.00072 0.00058	U < 0.4 U < 0.35	J < 0.42 U
trans-1,3-Dichloropropene	mg/kg mg/kg	0.0015*	< 0.00064 U	< 0.044 L < 0.034 L	J < 0.00062 U	< 0.8 L < 0.62 L		J < 0.58 J < 0.45	U < 0.097 U < 0.075 U	< 0.00062 U	0.00058 0.00059	U < 0.35 U	J < 0.38 U J < 0.29 U
Trichloroethene	mg/kg	0.00015	< 0.00064 U	< 0.034 C	J < 0.00062 U	< 0.85 L		J < 0.45 J < 0.61	U < 0.075	< 0.00062 U	0.00059 0.00065	U < 0.27	J < 0.29 U
Trichlorofluoromethane	mg/kg	0.069	< 0.00071 U	< 0.047 C	J < 0.0008 U	< 0.65 C	+	J < 0.86	U < 0.14 U	< 0.00069 U	< 0.00065	U < 0.53	J < 0.56 U
Vinyl Chloride	mg/kg	0.0069	< 0.00099 U	< 0.065 C	J < 0.00049 U	< 1.2 C		J < 0.88	U < 0.17 U	< 0.00049 U	< 0.0009	U < 0.53	J < 0.65 U
Notes:	my/ky	0.00007	< 0.0005	< 0.075 €	J \ 0.00049 U	\ 1.4 L	V 0.00032	J \ U.77	0	\ \ 0.00047 \ U	V 0.00040	U.UI U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

- U not detected at reported concentration
- J estimated result
- * value is for total 1,3-dichloropropene

TABLE 12

VARVED CLAY - VOLATILE ORGANIC COMPOUNDS

STANDARD CHLORINE CHEMICAL CO. INC. SITE

KEARNY, NEW JERSEY

19.3 Technologous		sys_loc_code	EPA Regional	VC-1	VC-2	VC-2	VC-3	VC-3	VC-4	VC-4	VC-5	VC-5
Secretar		sample depth	Screening Levels	20 - 20.5 ft	17 - 18 ft	21.5 - 22 ft	19 - 19.5 ft	24.5 - 25 ft	19.5 - 20 ft	24.5 - 25 ft	17.5 - 18 ft	24.5 - 25 ft
Chemical Cornel 1073		stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		sample_date	TR=1E-06, THQ=0.1	10/22/2013	10/18/2013	10/18/2013	10/22/2013	10/22/2013	10/29/2013	10/29/2013	10/28/2013	10/29/2013
11.2 Forthware-Stellares	chemical_name	Units										
13.5.7. inflamentary 7.4 miles 7.5 mil	1,1,1-Trichloroethane	mg/kg	0.07	< 0.00056 L	J < 0.11 l	J < 0.00057 l	J < 0.97 U	J < 0.00055 L	< 0.4 U	< 0.00051 U	< 0.12 U	< 0.00057 U
11.57 Interlomentum	1,1,2,2-Tetrachloroethane	mg/kg	0.000026	< 0.00083 L	J < 0.1 l	J < 0.00084 l	J < 0.88 U	J < 0.00081 L	< 0.37 U	< 0.00075 U	l < 0.11 U	< 0.00084 U
11.0 Extraorements	1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	13	< 0.0012 L	J < 0.036 l	J < 0.0012 l	J < 0.31 U	J < 0.0012 L	/ < 0.13 U	< 0.0011 U	J < 0.039 U	< 0.0012 U
1,1, Delineration	1,1,2-Trichloroethane	mg/kg	0.0016	< 0.00096 L	J < 0.13 l	J < 0.00097 l	J < 1.1 U	J < 0.00093 L	/ < 0.45 U	< 0.00087 U	J < 0.14 U	< 0.00097 U
1.2.7 Technologour	1,1-Dichloroethane	mg/kg	0.00068	< 0.00066 L	J < 0.11 l	J < 0.00067 l	J < 0.95 U	J < 0.00065 L	J < 0.4 U	< 0.0006 U	J < 0.12 U	< 0.00067 U
1,24-Introducesceree	1,1-Dichloroethene	mg/kg	0.0025	< 0.00098 L	J < 0.12 l	J < 0.00099 l	J < 1 U	J < 0.00095 L	/ < 0.42 U	< 0.00089 U	l < 0.13 U	< 0.00099 U
1.2-Dimons - Sentengregation	,	5 5			0.3	J < 0.00099 l			24		5.3	< 0.00098 U
1.2-Dimoneshame		<i>J J</i>			0.47						4.8	
12-Deromentementer mg/mg		5 5			J < 0.038 L		J < 0.33 U		l < 0.14 U		l < 0.042 U	
1.2-Ohthorsbrane		J. J										
13.0Ethiomotheme		J J				_						
13-Dischargeregemen mg/kg	·	J J										
13.5-Tribitochemens		J J			1							
13-Delictorebarrane mg/kg		J J	0.0017						, 0.0	1 0100007		
1.4-Discharge		J J		_	1		+					
1.4-Discrame mg/ng 0.00014 < 0.32 U < 0.02 U < 0.032 U < 0.02 U < 0.031 U < 0.032 U < 0.00015 U	, , , , , , , , , , , , , , , , , , , ,	5 5	0.072				, ,	1 0100071		1 0100007		
2-butanone		<i>J J</i>									0.0	
2-Houranne (MBK) marks 0.00079	,								, , , , ,	\ 0.27		
4-Methyl-2-Pernlamme (MIBK)		3 3			 							
Acetone		<i>J J</i>										
Benzene mg/kg 0.0026	· · · · · · · · · · · · · · · · · · ·				+		+		1 0.20	1 0100000	1 0.07.	
Semonthoromethane		J J				_						
Bornatchirormethane		5 5			0111							
Bromorderm		J J			1	1 010000						
Benomethane		5 5			, , , , , ,							
Carbon Disultide		<i>J J</i>			1							
Carbon Tetrachbride				_	, , , , ,							
Chloroshane		3 3			+							
Chloresthane		J J				_						
Chloromethane		5 5					+				0.11	
Chloromethane mg/kg 0.0049 < 0.00098 U < 0.15 U < 0.001 U < 0.13 U < 0.00096 U < 0.54 U < 0.00099 U < 0.17 U < 0.00099 U < 0.51 U < 0.00099 U < 0.51 U < 0.00071 U < 0.00099 U < 0.00072 U < 0.00082 U < 0.00071 U < 0.00079 U < 0.00074 U < 0.00079 U < 0.00074 U < 0.00074 U < 0.00079 U < 0.00074 U < 0.00079 U < 0.00079 U < 0.00074 U < 0.00079 U < 0.00074 U		J J			1					1 0.00.0	1 01007	
dis-1,2-Dichloroethene mg/kg 0.021 < 0.00081 U < 0.00082 U < 0.063 U < 0.00079 U < 0.00071 U < 0.00083 U < 0.00075 U < 0.00071 U < 0.00083 U < 0.00075 U < 0.00075 U < 0.00075 U < 0.00075 U < 0.000		J J			+							
cis-1,3-Dichloropropene mg/kg		J J			0.15	0.001					, , , , , , ,	
Cyclohexane mg/kg 1.3 < 0.00043 U < 0.00044 U < 0.0003 U < 0.00043 U < 0.00043 U < 0.00044 U < 0.00071 U < 0.00043 U < 0.00071 U < 0.00072		5 5			, 0.072	V 0.00002					, 0,0,,	
Dibromochioromethane mg/kg 0.021 < 0.00082 U < 0.07 U < 0.00083 U < 0.61 U < 0.0008 U < 0.25 U < 0.00074 U < 0.0077 U < 0.00093 U Dichlorodifluoromethane mg/kg 0.03 < 0.00077 U < 0.069 U < 0.00078 U < 0.06075 U < 0.058 U < 0.00075 U < 0.25 U < 0.00070 U < 0.00077 U		5 5										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. J · · · · · ·											
Ethylbenzene mg/kg 0.78 < 0.00074 U < 0.067 U < 0.00075 U < 0.58 U < 0.00072 U < 0.24 U < 0.00067 U < 0.00067 U < 0.00075 U <		J J			, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 010000						
Sopropylbenzene mg/kg 0.064 < 0.00078 U < 0.058 U < 0.00079 U < 0.55 U < 0.00076 U < 0.21 U < 0.00071 U < 0.063 U < 0.00079 U < 0.		<i>J J</i>			, , , , , , ,							
mp-Xylenes mg/kg 0.018 < 0.0017 U < 0.14 U < 0.0017 U < 0.12 U < 0.0016 U < 0.55 U < 0.0015 U < 0.015 U < 0.015 U < 0.0017 U < 0.0017 U Methyl Acetate mg/kg 0.32 < 0.001 U < 0.13 U < 0.0011 U < 1.2 U < 0.0011 U < 0.0011 U < 0.48 U < 0.00094 U < 0.15 U < 0.015 U < 0.0017 U < 0.0017 U < 0.0018 U < 0.0018 U < 0.00094 U < 0.00098 U < 0.00099 U < 0.00098 U < 0.00098 U < 0.00099 U < 0.00098 U < 0.00099 U < 0.00098 U < 0.00099 U	_ · J · · · · ·	5 5							, , 0.21	\ 0.00007		
Methyl Acetate mg/kg 0.32 < 0.001 U < 0.0011 U < 0.00087 U < 0.00084 U < 0.00087 U < 0.00084 U < 0.00078 U < 0.00087 U < 0.00084 U < 0.00078 U < 0.00087 U < 0.00084 U < 0.00078 U < 0.00087 U < 0.00088 U < 0.00087 U < 0.00088 U < 0.00081 U < 0.00081 U < 0.00091 U < 0.00082 U < 0.00079 <		J , J										
Methyl tert_butyl ether mg/kg 0.0028 < 0.00086 U < 0.11 U < 0.00087 U < 0.00084 U < 0.00078 U < 0.00076 U < 0.00076 U < 0.00087 U Methylene Chloride mg/kg 0.0013 < 0.00077	m,p-Xylenes			_								
Methylcyclohexane mg/kg <td>Methyl Acetate</td> <td></td>	Methyl Acetate											
Methylene Chloride mg/kg 0.0013 < 0.00077 U 0.15 J 0.0014 U < 0.0011 U < 0.43 U 0.0042 U 0.14 J 0.0047 U o-Xylene mg/kg 0.019 < 0.0009 U < 0.008 U < 0.0091 U < 0.0097 U < 0.00091 U < 0.0097 U < 0.00091 U < 0.00091 U < 0.00087 U < 0.00087 U < 0.00087 U < 0.00082 U < 0.00079 U			0.0028									
o-Xylene mg/kg 0.019 < 0.0009 U < 0.008 U < 0.00091 U < 0.00091 U < 0.00091 U < 0.00091 U < 0.00087 U < 0.00087 U < 0.00081 U < 0.00091 U Styrene mg/kg 0.11 < 0.00081	, ,											
Styrene mg/kg 0.11 < 0.00081 U < 0.0069 U < 0.00082 U < 0.00079 U < 0.25 U < 0.00074 U < 0.0076 U < 0.00082 U Tetrachloroethene mg/kg 0.0023 < 0.00078												
Tetrachloroethene mg/kg 0.0023 < 0.00078 U < 0.009 U < 0.00079 U < 0.78 U < 0.00076 U < 0.00076 U < 0.32 U < 0.00071 U < 0.00071 U < 0.0098 U < 0.00079 U < 0.0000	o-Xylene								1 0127	1 0.00002		
Toluene mg/kg 0.69 < 0.00084 U < 0.092 U < 0.00085 U < 0.00085 U < 0.00082 U < 0.00082 U < 0.00082 U < 0.00060 U < 0.00076 U < 0.00076 U < 0.00076 U < 0.00076 U < 0.00077 U <												
$ \frac{\text{trans-1,3-Dichloropropene}}{\text{trans-1,3-Dichloropropene}} \qquad \frac{\text{mg/kg}}{\text{mg/kg}} \qquad 0.00015^* \qquad < 0.00069 \qquad U \qquad < 0.063 \qquad U \qquad < 0.0007 \qquad U \qquad < 0.55 \qquad U \qquad < 0.00067 \qquad U \qquad < 0.23 \qquad U \qquad < 0.00063 \qquad U \qquad < 0.007 \qquad U \qquad < 0.0007 \qquad U \\ \hline{\text{Trichloroethene}} \qquad \frac{\text{mg/kg}}{\text{mg/kg}} \qquad 0.0018 \qquad < 0.00076 \qquad U \qquad < 0.087 \qquad U \qquad < 0.00077 \qquad U \qquad < 0.75 \qquad U \qquad < 0.00074 \qquad U \qquad < 0.31 \qquad U \qquad < 0.00069 \qquad U \qquad < 0.096 \qquad U \qquad < 0.00077 \qquad U \\ \hline{\text{Trichlorofluoromethane}} \qquad \frac{\text{mg/kg}}{\text{mg/kg}} \qquad 0.069 \qquad < 0.0011 \qquad U \qquad < 0.12 \qquad U \qquad < 0.0011 \qquad U \qquad < 1.1 \qquad U \qquad < 0.0011 \qquad U \qquad < 0.44 \qquad U \qquad < 0.00096 \qquad U \qquad < 0.13 \qquad U \qquad < 0.00011 \qquad U \\ \hline{\text{Trichlorofluoromethane}} \qquad \frac{\text{mg/kg}}{\text{mg/kg}} \qquad 0.069 \qquad < 0.0011 \qquad U \qquad < 0.012 \qquad U \qquad < 0.0011 \qquad U \qquad < $					+							
Trichloroethene mg/kg 0.0018 < 0.00076 U < 0.087 U < 0.00077 U < 0.75 U < 0.00074 U < 0.31 U < 0.00069 U < 0.096 U < 0.096 U < 0.00077 U < 0.0011 U < 0.00												
Trichlorofluoromethane mg/kg 0.069 < 0.0011 U < 0.12 U < 0.0011 U < 1.1 U < 0.001 U < 0.44 U < 0.0096 U < 0.13 U < 0.0011 U	trans-1,3-Dichloropropene	mg/kg	0.00015*		J < 0.063 l				J < 0.23 U			
		mg/kg	0.0018	< 0.00076	< 0.087	J < 0.00077	J < 0.75 U	J < 0.00074 L	< 0.31 U	< 0.00069	< 0.096 U	< 0.00077 U
	Trichlorofluoromethane	mg/kg	0.069	< 0.0011 L	< 0.12 l	< 0.0011 U	J < 1.1 U	< 0.001 L	< 0.44 U	< 0.00096 U	< 0.13 U	< 0.0011 U
	Vinyl Chloride	mg/kg										

- U not detected at reported concentration
- J estimated result
- * value is for total 1,3-dichloropropene

	1			1	T	_	_	T			T	1	1	ı	
	sys_loc_code	EPA Regional	D-14	D-15	D-15	D-16	D-17	D-18	D-19	D-20	D-20	D-21	D-21	D-22	D-23
	sample depth	-	19 - 19.5 ft	17 - 17.5 ft	22.5 - 23 ft	20 - 20.5 ft	20 - 20.5 ft	17.5 - 18 ft	19.5 - 20 ft	19 - 19.5 ft	24.5 - 25 ft	18.75 - 19.25 f		17.5 - 18 ft	17.6 - 18.1 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay								
	sample_date	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/21/2013	10/16/2013	10/16/2013	10/21/2013	10/17/2013	10/28/2013	10/28/2013	10/18/2013	10/18/2013	10/17/2013	10/30/2013
chemical_name	Units														
1,1'-Biphenyl	mg/kg	0.00087	< 0.058 U	< 0.057 U	J < 0.057 U	J < 0.059 U	(0.007	U < 0.056	U < 0.055 U	< 0.057 L	J < 0.059 U	J < 0.036	U < 0.04 U	J < 0.059 L	J < 0.054 U
1,2,4,5-Tetrachlorobenzene	mg/kg	0.00058	< 0.059 U	< 0.057 U	J < 0.057 U	J < 0.059 L	< 0.033	U < 0.057	U < 0.055 U	< 0.057 L	J < 0.059 U	J < 0.031	U < 0.034 U	J < 0.059 L	J < 0.054 U
2,2'-Oxybis(1-Chloropropane)	mg/kg	0.00011	< 0.048 U	< 0.047 U	J < 0.047 U	J < 0.048 L	< 0.0094	U < 0.046	U < 0.046 U	< 0.047 L	J < 0.049 U	J < 0.0088	U < 0.0096 U	J < 0.048 L	J < 0.044 U
2,3,4,6-Tetrachlorophenol	mg/kg	0.11	< 0.057 U	< 0.055 U	V < 0.055 U	J < 0.057 L	< 0.028	U < 0.055	U < 0.053 U	< 0.055 L	J < 0.057 U	J < 0.026	U < 0.029 U	J < 0.057 L	J < 0.052 U
2,4,5-Trichlorophenol	mg/kg	0.33	< 0.056 U	< 0.054 U	J < 0.055 U	J < 0.057 L	< 0.047	U < 0.054	U < 0.053 U	< 0.055 L	J < 0.057 U	J < 0.044	U < 0.048 U	J < 0.056 L	J < 0.052 U
2,4,6-Trichlorophenol	mg/kg	0.0034	< 0.051 U	< 0.049 U	d < 0.05 U	J < 0.051 L	< 0.065	U < 0.049	U < 0.048 U	< 0.049 L	J < 0.052 U	J < 0.061	U < 0.067 U	J < 0.051 L	J < 0.047 U
2,4-Dichlorophenol	mg/kg	0.0041	< 0.064 U	0.2 J	< 0.062 U	J < 0.064 L	< 0.0088	U < 0.061	U < 0.06 U	< 0.062 L	J < 0.064 U	J < 0.0082	U < 0.0089 U	0.13 J	J < 0.059 U
2,4-Dimethylphenol	mg/kg	0.032	< 0.11 U	< 0.1 U	J < 0.11 U	J < 0.11 L	< 0.068	U < 0.1	U < 0.1 U	0.26 J	< 0.11 U	J < 0.064	U < 0.07 U	J < 0.11 L	J < 0.099 U
2,4-Dinitrophenol	mg/kg	0.0034	< 0.25 U	< 0.24 U	J < 0.24 U	J < 0.25 U	< 0.52	U < 0.24	U < 0.23 U	< 0.24 L	J < 0.25 U	J < 0.49	U < 0.53 U	J < 0.25 L	J < 0.23 U
2,4-Dinitrotoluene	mg/kg	0.00028	< 0.014 U	< 0.014 U	V < 0.014 U	J < 0.014 L	< 0.035	U < 0.014	U < 0.014 U	< 0.014 L	J < 0.015 U	J < 0.033	U < 0.036 U	J < 0.014 L	J < 0.013 U
2,6-Dinitrotoluene	mg/kg	0.000058	< 0.013 U	< 0.013 U	V < 0.013 U	J < 0.013 U	< 0.045	U < 0.013	U < 0.012 U	< 0.013 L	J < 0.013 U	J < 0.042	U < 0.046 U	J < 0.013 L	J < 0.012 U
2-Chloronaphthalene	mg/kg	0.29	< 0.049 U	< 0.047 U	J < 0.048 U	J < 0.049 U	< 0.0091	U < 0.047	U < 0.046 U	< 0.047 L	J < 0.049 U	J < 0.0085	U < 0.0093 U	J < 0.049 L	J < 0.045 U
2-Chlorophenol	mg/kg	0.0057	< 0.057 U	< 0.055 U	J < 0.056 U	J < 0.058 U	< 0.036	U < 0.055	U < 0.054 U	< 0.056 L	J < 0.058 U	J < 0.033	U < 0.036 U	J < 0.058 L	J < 0.053 U
2-Methylnaphthalene	mg/kg	0.014	< 0.056 U	< 0.054 U	J < 0.055 U	J < 0.056 U	< 0.0079	U < 0.054	U < 0.053 U	0.12 J	< 0.057 U	J < 0.0073	U < 0.008 U	J < 0.056 L	J < 0.052 U
2-Methylphenol	mg/kg	0.058	< 0.074 U	< 0.072 U	J < 0.073 U	J < 0.075 U		U < 0.072	U < 0.07 U	< 0.072 L	J < 0.075 U	J < 0.029	U < 0.031 U	J < 0.075 L	J < 0.069 U
2-Nitroaniline	mg/kg	0.0062	< 0.18 U	< 0.18 U	J < 0.18 U	J < 0.18 U	< 0.2	U < 0.18	U < 0.17 U	< 0.18 L	J < 0.18 U	J < 0.18	U < 0.2 U	J < 0.18 L	J < 0.17 U
2-Nitrophenol	mg/kg		< 0.049 U	< 0.047 U	J < 0.048 U	J < 0.049 L	< 0.048	U < 0.047	U < 0.046 U	< 0.047 L	J < 0.049 U	J < 0.045	U < 0.049 U	J < 0.049 L	J < 0.045 U
3,3'-Dichlorobenzidine	mg/kg	0.00071	< 0.15 U	< 0.15 U	J < 0.15 U	J < 0.15 U	< 0.046	U < 0.15	U < 0.14 U	< 0.15 L	J < 0.15 U	J < 0.043	U < 0.047 U	J < 0.15 L	J < 0.14 U
3-Nitroaniline	mg/kg		< 0.15 U	< 0.15 U	/ < 0.15 U	J < 0.15 U	< 0.18	U < 0.15	U < 0.15 U	< 0.15 L	J < 0.16 U	J < 0.17	U < 0.18 U	J < 0.15 L	J < 0.14 U
4,6-Dinitro-2-Methylphenol	mg/kg	0.0002	< 0.12 U	< 0.11 U	J < 0.12 U	J < 0.12 U	< 0.18	U < 0.11	U < 0.11 U	< 0.12 L	J < 0.12 U	J < 0.16	U < 0.18 U	J < 0.12 L	J < 0.11 U
4-Bromophenyl-phenylether	mg/kg		< 0.043 U	< 0.042 U	J < 0.042 U	J < 0.043 U	< 0.038	U < 0.042	U < 0.041 U	< 0.042 L	J < 0.044 U	J < 0.035	U < 0.039 U	J < 0.043 L	J < 0.04 U
4-Chloro-3-methylphenol	mg/kg	0.13	< 0.066 U	< 0.064 U	J < 0.064 U	J < 0.066 U	< 0.04	U < 0.063	U < 0.062 U	< 0.064 L	J < 0.066 U	J < 0.038	U < 0.041 U	J < 0.066 L	J < 0.061 U
4-Chloroaniline	mg/kg	0.00013	< 0.12 U	< 0.11 U	J < 0.11 U	J < 0.12 U	< 0.035	U < 0.11	U < 0.11 U	< 0.11 L	J < 0.12 U	J < 0.033	U < 0.036 U	J < 0.12 L	J < 0.11 U
4-Chlorophenyl-phenylether	mg/kg		< 0.051 U	< 0.05 U	J < 0.05 U	J < 0.051 U	i	U < 0.049	U < 0.048 U	< 0.05 L	J < 0.052 U	J < 0.045	U < 0.05 U	J < 0.051 L	J < 0.047 U
4-Methylphenol	mg/kg	0.11	< 0.086 U	< 0.083 U	J < 0.084 U	J < 0.086 U	< 0.043	U < 0.083	U < 0.081 U	< 0.083 L	J < 0.087 U	J < 0.04	U < 0.044 U	J < 0.086 L	J < 0.079 U
4-Nitroaniline	mg/kg	0.0014	< 0.14 U	< 0.13 U	J < 0.13 U	J < 0.14 U	< 0.18	U < 0.13	U < 0.13 U	< 0.13 L	J < 0.14 U	J < 0.17	U < 0.18 U	J < 0.14 L	J < 0.13 U
4-Nitrophenol	mg/kg		< 0.28 U	< 0.27 U	J < 0.27 U	J < 0.28 U	< 0.16	U < 0.27	U < 0.26 U	< 0.27 L	J < 0.28 U	J < 0.15	U < 0.16 U	J < 0.28 L	J < 0.26 U
Acenaphthene	mg/kg	0.41	< 0.064 U	< 0.061 U	J < 0.062 U	J < 0.064 U	< 0.0084	U < 0.061	U < 0.06 U	< 0.062 L	J < 0.064 U	J < 0.0078	U < 0.0086 U	J < 0.064 L	J < 0.059 U
Acenaphthylene	mg/kg		< 0.052 U	< 0.05 U	J < 0.05 U	J < 0.052 U	< 0.01	U < 0.05	U < 0.049 U	< 0.05 L	J < 0.052 U	J < 0.0093	U < 0.01 U	J < 0.052 L	J < 0.048 U
Acetophenone	mg/kg	0.045	< 0.067 U	< 0.065 U	V < 0.065 U	J < 0.067 U	< 0.036	U < 0.065	U < 0.063 U	< 0.065 L	J < 0.068 U	J < 0.034	U < 0.037 U	J < 0.067 L	J < 0.062 U
Anthracene	mg/kg	4.2	< 0.053 U	< 0.051 U	V < 0.052 U	J < 0.053 U	< 0.0085	U < 0.051	U < 0.05 U	< 0.051 L	J < 0.054 U	J < 0.008	U < 0.0087 U	J < 0.053 L	J < 0.049 U
Atrazine	mg/kg	0.0019	< 0.067 U	< 0.065 U	< 0.066 U	J < 0.068 U	< 0.043	U < 0.065	U < 0.064 U	< 0.065 L	J < 0.068 U	J < 0.04	U < 0.043 U	J < 0.068 L	J < 0.062 U
Benzaldehvde	mg/kg	0.033	< 0.051 U	< 0.05 U	< 0.05 U	J < 0.052 U	< 0.065	U < 0.049	U < 0.048 U	< 0.05 L	J < 0.052 U	J < 0.061	U < 0.067 U	J < 0.051 L	J < 0.047 U
Benzo(a)anthracene	mg/kg	0.01	< 0.003 U	< 0.0029 U	V < 0.003 U	J < 0.0031 L	< 0.011	U < 0.0029	U < 0.0029 U	< 0.003 L	J < 0.0031 U	J < 0.01	U < 0.011 U	/ < 0.0031 L	J < 0.0028 U
Benzo(a)pyrene	mg/kg	0.24	< 0.0031 U		< 0.003 U	V < 0.0031 U			U < 0.0029 U			J < 0.0082	U < 0.0089 U	V < 0.0031 L	
Benzo(b)fluoranthene	mg/kg	0.035	< 0.0028 U	< 0.0027 U	V < 0.0027 U	V < 0.0028 U		U < 0.0027	U < 0.0026 U		J < 0.0028 U	J < 0.013	U < 0.014 U	< 0.0028 L	J < 0.0025 U
Benzo(g,h,i)perylene	mg/kg	2.300	< 0.032 U	< 0.031 U	< 0.032 U	V < 0.032 U	< 0.0087	U < 0.031	U < 0.03 U	< 0.031 L	J < 0.033 U	J < 0.0081	U < 0.0089 U	V < 0.032 L	J < 0.03 U
Benzo(k)fluoranthene	mg/kg	0.35	< 0.0033 U	< 0.0032 U	V < 0.0032 U	V < 0.0033 U	†	U < 0.0032	U < 0.0031 U	< 0.0032 L	J < 0.0033 U	J < 0.016	U < 0.018 U	< 0.0033 L	J < 0.0031 U
bis(2-Chloroethoxy) Methane	mg/kg	0.0011	< 0.056 U	< 0.054 U	< 0.055 U	J < 0.057 L	< 0.029	U < 0.054	U < 0.053 U	< 0.055 L	J < 0.057 U	J < 0.027	U < 0.029 U	0.056 L	J < 0.052 U
Bis-(2-Chloroethyl) Ether	mg/kg	0.0000031	< 0.0059 U	< 0.0058 U	V < 0.0058 U	V < 0.006 U	< 0.012	U < 0.0057	U < 0.0056 U	< 0.0058 L	J < 0.006 U	J < 0.011	U < 0.012 U	< 0.006 L	J < 0.0055 U
bis(2-Ethylhexyl)phthalate	mg/kg	1.4	< 0.15 U	< 0.14 L	V < 0.14 U	V < 0.15 U	< 0.071	U < 0.14	U < 0.14 U	< 0.14 L	J < 0.15 U	J < 0.066	U < 0.072 U	0.15 L	J < 0.13 U
Butylbenzylphthalate	mg/kg	0.2	< 0.04 U	< 0.039 U	< 0.039 U	J < 0.04 L	< 0.06	U < 0.038	U < 0.038 U	< 0.039 L	J < 0.04 U	J < 0.056	U < 0.061 U	J < 0.04 L	J < 0.037 U
Caprolactum	mg/kg	0.19	< 0.1 U	< 0.097 U	V < 0.098 U	J < 0.1 L	+	U < 0.097	U < 0.095 U	< 0.097 L	J < 0.1 U	J < 0.31	U < 0.34 U	J < 0.1 L	J < 0.093 U
Carbazole	mg/kg		< 0.052 U	< 0.05 U	< 0.05 U	V < 0.052 U		U < 0.05	U < 0.049 U	< 0.05 L	J < 0.052 U	J < 0.0075	U < 0.0082 U	V < 0.052 L	J < 0.048 U
Chrysene	mg/kg	1.1	< 0.051 U	< 0.049 U	< 0.05 U	V < 0.052 U	+	U < 0.049	U < 0.048 U	< 0.049 L	J < 0.051 U	J < 0.0097	U < 0.011 U	V < 0.052 C	J < 0.047 U
Dibenz(a,h)anthracene	mg/kg	0.011	< 0.0055 U	< 0.0053 U	V < 0.0054 U	J < 0.0055 U	< 0.0097	U < 0.0053	U < 0.0052 U	< 0.0053 L	J < 0.0056 U	J < 0.0091	U < 0.0099 U	< 0.0055 L	J < 0.0051 U
Dibenzofuran	mg/kg	0.011	< 0.051 U	< 0.05 L	V < 0.054 U	V < 0.0535 L	< 0.043	U < 0.049	U < 0.048 U	< 0.05 L	J < 0.052 U	J < 0.04	U < 0.044 U	/ < 0.0033 C	J < 0.047 U
Diethylphthalate	mg/kg	0.47	< 0.052 U	< 0.05 U	J < 0.051 U	V < 0.051 U	< 0.048	U < 0.05	U < 0.049 U	< 0.05 L	J < 0.052 U	J < 0.045	U < 0.049 U	V < 0.051 C	J < 0.048 U
Dimethylphthalate	mg/kg	5	< 0.052 U	< 0.05 U	V < 0.051 U	V < 0.052 U	< 0.048	U < 0.05	U < 0.049 U	< 0.05 L	J < 0.052 U	J < 0.044	U < 0.049 U	V < 0.052 U	J < 0.048 U
Di-n-Butylphthalate	mg/kg	0.17	0.1 J	< 0.052 U	V < 0.051 U	J < 0.054 L	< 0.055	U < 0.052	U < 0.051 U	< 0.052 L	J < 0.054 U	J < 0.051	U < 0.056 U	0.097	J < 0.05 U
Di-n-Octyl phthalate	mg/kg	4.4	< 0.028 U	< 0.027 U	V < 0.033 U	V < 0.028 U		U < 0.027	U < 0.026 U	< 0.027 L	J < 0.028 U	J < 0.043	U < 0.047 U	V < 0.028 L	J < 0.026 U
Fluoranthene	mg/kg	7	< 0.058 U	< 0.056 U	0.057 U	V < 0.058 U		U < 0.056	U < 0.055 U	< 0.056 L	J < 0.059 U	J < 0.0087	U < 0.0095 U	V < 0.058 L	J < 0.054 U
Fluorene	mg/kg	0.4	< 0.056 U	< 0.054 U	V < 0.057 U	J < 0.056 U	< 0.0073	U < 0.054	U < 0.053 U	< 0.054 L	J < 0.056 U	J < 0.0007	U < 0.012 U	0.056 L	J < 0.051 U
Hexachlorobenzene	mg/kg	0.013	< 0.006 U	< 0.0058 U	J < 0.0058 U	J < 0.006 U		U < 0.0057	U < 0.0056 U	1	J < 0.006 U	J < 0.0087	U < 0.0095 U	J < 0.006 L	
TIONAGE HOLONGHIZEHE	my/ky	0.013	\ U.UUU U	\ U.UUJU U	, \ 0.0030 U	, \ 0.000 0	\ U.UU73	U.0001	0.0030 0	\ U.UUJU L	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, \ U.UUU1	U \ U.UU70 U	, \ \ 0.000 C	<u> </u>

	sys_loc_code	EPA Regional	D-14	D-15	D-15	D-16	D-17	D-18	D-19	D-20	D-20	D-21	D-21	D-22	D-23
	sample depth		19 - 19.5 ft	17 - 17.5 ft	22.5 - 23 ft	20 - 20.5 ft	20 - 20.5 ft	17.5 - 18 ft	19.5 - 20 ft	19 - 19.5 ft	24.5 - 25 ft	18.75 - 19.25 ft	23.5 - 24 ft	17.5 - 18 ft	17.6 - 18.1 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay									
	sample_date	TR=1E-06, THQ=0.1	10/15/2013	10/21/2013	10/21/2013	10/16/2013	10/16/2013	10/21/2013	10/17/2013	10/28/2013	10/28/2013	10/18/2013	10/18/2013	10/17/2013	10/30/2013
chemical_name	Units														
Hexachlorobutadiene	mg/kg	0.0005	< 0.011	J < 0.01 U	< 0.01 U	< 0.011 U	< 0.0098 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.011 U	< 0.0091 U	< 0.01 U	< 0.011 L	< 0.0098 U
Hexachlorocyclopentadiene	mg/kg	0.16	< 0.051 L	J < 0.05 U	< 0.05 U	< 0.052 U	< 0.047 U	< 0.049 U	< 0.048 U	< 0.05 U	< 0.052 U	< 0.044 U	< 0.048 U	< 0.051 L	< 0.047 U
Hexachloroethane	mg/kg	0.00031	< 0.0049 L	J < 0.0047 U	< 0.0047 U	< 0.0049 U	< 0.031 U	< 0.0047 U	< 0.0046 U	< 0.0047 U	< 0.0049 U	< 0.029 U	< 0.032 U	< 0.0049 L	< 0.0045 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	< 0.0081 L	J < 0.0078 U	< 0.0079 U	< 0.0081 U	< 0.009 U	< 0.0078 U	< 0.0077 U	< 0.0079 U	< 0.0082 U	< 0.0084 U	< 0.0092 U	< 0.0081 L	< 0.0075 U
Isophorone	mg/kg	0.022	< 0.053 L	J < 0.051 U	< 0.052 U	< 0.053 U	< 0.033 U	< 0.051 U	< 0.05 U	< 0.051 U	< 0.053 U	< 0.031 U	< 0.034 U	< 0.053 L	< 0.049 U
Naphthalene	mg/kg	0.00047	< 0.051 L	J < 0.049 U	< 0.049 U	< 0.051 U	< 0.0075 U	< 0.049 U	< 0.048 U	0.25 J	< 0.051 U	< 0.007 U	< 0.0077 U	< 0.051 L	< 0.047 U
Nitrobenzene	mg/kg	0.000079	< 0.0062 L	J < 0.006 U	< 0.0061 U	< 0.0062 U	< 0.036 U	< 0.006 U	< 0.0058 U	< 0.006 U	< 0.0063 U	< 0.034 U	< 0.037 U	< 0.0062 L	d < 0.0057 U
N-Nitroso-Di-N-Propylamine	mg/kg	0.000007	< 0.0073 L	J < 0.007 U	< 0.0071 U	< 0.0073 U	< 0.01 U	< 0.007 U	< 0.0069 U	< 0.0071 U	< 0.0074 U	< 0.0096 U	< 0.01 U	< 0.0073 L	< 0.0067 U
N-Nitrosodiphenylamine	mg/kg	0.057	< 0.043 L	J < 0.042 U	< 0.042 U	< 0.043 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.042 U	< 0.043 U	< 0.038 U	< 0.041 U	< 0.043 L	< 0.04 U
Pentachlorophenol	mg/kg	0.01	< 0.13	J < 0.13 U	< 0.13 U	< 0.13 U	< 0.039 U	< 0.13 U	< 0.12 U	< 0.13 U	< 0.13 U	< 0.036 U	< 0.04 U	< 0.13 L	< 0.12 U
Phenanthrene	mg/kg		< 0.056 L	J < 0.054 U	< 0.054 U	< 0.056 U	< 0.014 U	< 0.053 U	< 0.052 U	< 0.054 U	< 0.056 U	< 0.013 U	< 0.014 U	< 0.056 L	< 0.051 U
Phenol	mg/kg	0.26	< 0.059 L	J < 0.057 U	< 0.057 U	< 0.059 U	< 0.01 U	< 0.056 U	< 0.055 U	< 0.057 U	< 0.059 U	< 0.0096 U	< 0.011 U	< 0.059 L	< 0.054 U
Pyrene	mg/kg	0.95	< 0.037 L	J < 0.035 U	< 0.036 U	< 0.037 U	< 0.0088 U	< 0.035 U	< 0.034 U	< 0.035 U	< 0.037 U	< 0.0082 U	< 0.009 U	< 0.037 L	< 0.034 U

Pyrene Notes:

U - not detected at reported concentration

	sys_loc_code	EPA Regional	D-23	D-24	D-24	D-25	D-25	D-26	D-27	VC-1	VC-1 DUP	VC-1	VC-2	VC-2	VC-3
	sample depth	Screening Levels	22.5 - 23 ft	17.5 - 18 ft	22.5 - 23 ft	19 - 19.5 ft	24 - 24.5 ft	18.25 - 18.75	20.5 - 21 ft	15 - 15.5 ft	15 - 15.5 ft	20 - 20.5 ft	17 - 18 ft	21.5 - 22 ft	19 - 19.5 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay
	sample_date	TR=1E-06, THQ=0.1	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/22/2013	10/22/2013	10/22/2013	10/18/2013	10/18/2013	10/22/2013
chemical_name	Units			ļ <u> </u>			<u> </u>						1		
1,1'-Biphenyl	mg/kg	0.00087	< 0.058 L	< 0.056	U < 0.059 U	< 0.056 L	J < 0.058	U < 0.055 I	U < 0.055	U < 0.054 U	< 0.054 L	< 0.058 L	< 0.038	U < 0.039 U	< 0.054 U
1,2,4,5-Tetrachlorobenzene	mg/kg	0.00058	< 0.059 L	0.056	U < 0.059 U	< 0.056 L	J < 0.058	U < 0.056 I	U < 0.056	U < 0.054 U	< 0.054 L	< 0.059 L	< 0.032	U < 0.033 U	< 0.055 U
2,2'-Oxybis(1-Chloropropane)	mg/kg	0.00011	< 0.048 L	0.046	U < 0.048 U	< 0.046 L	J < 0.048	U < 0.046 U	U < 0.046	U < 0.045 U	< 0.045 L	< 0.048 L	< 0.0091	U < 0.0094 U	< 0.045 U
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	mg/kg mg/kg	0.11 0.33	< 0.057 L < 0.056 L	J < 0.054 J < 0.054	U < 0.057 U U < 0.056 U	< 0.054 L < 0.054 L	J < 0.056 J < 0.056	U < 0.054 U U < 0.053 U	U < 0.054 U < 0.053	U < 0.052 U U < 0.052 U	< 0.052 L < 0.052 L	< 0.057 L < 0.056 L	J < 0.027 J < 0.045	U < 0.028 U U < 0.047 U	< 0.053 U < 0.052 U
2,4,6-Trichlorophenol	mg/kg	0.0034	< 0.056 C	J < 0.034 J < 0.049	U < 0.051 U	< 0.054 C	J < 0.056	U < 0.048	U < 0.048	U < 0.047 U	< 0.052 C	< 0.056 C	J < 0.043	U < 0.065 U	< 0.052 U
2,4-Dichlorophenol	mg/kg	0.0041	< 0.064 L	J < 0.049	U < 0.064 U	0.31	< 0.064	U < 0.048	U < 0.06	U 0.075 J	< 0.059 L	< 0.064 L	0.17	< 0.0088 U	< 0.059 U
2,4-Dimethylphenol	mg/kg	0.032	< 0.11 L	J < 0.1	U < 0.11 U	< 0.1 L	J < 0.11	U < 0.1	U 0.77	< 0.099 U	< 0.099 L	< 0.11 L	J < 0.066	U < 0.068 U	1.1
2,4-Dinitrophenol	mg/kg	0.0034	< 0.25 L	J < 0.24	U < 0.25 U	< 0.24 L	J < 0.25	U < 0.23 I	U < 0.23	U < 0.23 U	< 0.23 L	< 0.25 L	J < 0.5	U < 0.52 U	< 0.23 U
2,4-Dinitrotoluene	mg/kg	0.00028	< 0.014 L	J < 0.014	U < 0.014 U	< 0.014 L	J < 0.014	U < 0.014 I	U < 0.014	U < 0.013 U	< 0.013 L	< 0.014 L	J < 0.034	U < 0.035 U	< 0.013 U
2,6-Dinitrotoluene	mg/kg	0.000058	< 0.013 L	J < 0.013	U < 0.013 U	< 0.013 L	J < 0.013	U < 0.012 I	U < 0.012	U < 0.012 U	< 0.012 L	< 0.013 L	J < 0.044	U < 0.045 U	< 0.012 U
2-Chloronaphthalene	mg/kg	0.29	< 0.049 L	J < 0.047	U < 0.049 U	< 0.046 L	J < 0.048	U < 0.046 I	U < 0.046	U < 0.045 U	< 0.045 L	< 0.049 L	J < 0.0088	U < 0.0091 U	< 0.045 U
2-Chlorophenol	mg/kg	0.0057	< 0.057 L	J < 0.055	U < 0.058 U	< 0.055 L	J < 0.057	U < 0.054 I	U < 0.054	U < 0.053 U	< 0.053 L	< 0.057 L	J < 0.035	U < 0.036 U	< 0.053 U
2-Methylnaphthalene	mg/kg	0.014	< 0.056 L	J < 0.054	U < 0.056 U	< 0.053 L	J < 0.056	U < 0.053 I	U < 0.053	U < 0.052 U	< 0.052 L	< 0.056 L	J < 0.0076	U < 0.0078 U	0.32 J
2-Methylphenol	mg/kg	0.058	< 0.074 L	J < 0.071	U < 0.075 U	< 0.071 L	J < 0.074	U < 0.07 I	U < 0.07	U < 0.069 U	< 0.069 L	< 0.074 L	J < 0.03	U < 0.03 U	0.59
2-Nitroaniline	mg/kg	0.0062	< 0.18 L	< 0.17	U < 0.18 U	< 0.17 L	J < 0.18	U < 0.17 U	U < 0.17	U < 0.17 U	< 0.17 L	< 0.18 L	J < 0.19	U < 0.2 U	< 0.17 U
2-Nitrophenol	mg/kg	0.00074	< 0.049 L	0.047	U < 0.049 U	< 0.046 L	J < 0.048	U < 0.046 U	U < 0.046	U < 0.045 U	< 0.045 L	< 0.049 L	< 0.047	U < 0.048 U	< 0.045 U
3,3'-Dichlorobenzidine	mg/kg	0.00071	< 0.15 L	< 0.15	U < 0.15 U	< 0.15 L	J < 0.15	U < 0.14 U	U < 0.14	U < 0.14 U	< 0.14 L	< 0.15 L	< 0.045	U < 0.046 U	< 0.14 U
3-Nitroaniline	mg/kg	0.0002	< 0.15 L	J < 0.15 J < 0.11	U < 0.15 U U < 0.12 U	< 0.15 L	J < 0.15 J < 0.12	U < 0.15 U < 0.11	U < 0.15 U < 0.11	U < 0.14 U U < 0.11 U	< 0.14 L	< 0.15 L < 0.12 L	J < 0.17 J < 0.17	U < 0.18 U U < 0.18 U	< 0.14 U < 0.11 U
4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether	mg/kg mg/kg	0.0002	< 0.12 C	J < 0.11	U < 0.043 U	< 0.11 L	J < 0.12 J < 0.043	U < 0.11 U	U < 0.11	U < 0.11 U	< 0.11 C	< 0.12 C	J < 0.17 J < 0.037	U < 0.038 U	< 0.11 U
4-Chloro-3-methylphenol	mg/kg	0.13	< 0.043 C	J < 0.063	U < 0.066 U	< 0.063 L	J < 0.045	U < 0.062 U	U < 0.062	U < 0.061 U	< 0.04 C	< 0.043 C	J < 0.037	U < 0.04 U	< 0.04 U
4-Chloroaniline	mg/kg	0.00013	< 0.12 L	J < 0.11	U < 0.12 U	< 0.003 C	J < 0.11	U < 0.11	U < 0.11	U < 0.11 U	< 0.11 L	< 0.12 L	J < 0.034	U < 0.035 U	< 0.001 U
4-Chlorophenyl-phenylether	mg/kg	0.00010	< 0.051 L	J < 0.049	U < 0.051 U	< 0.049 L	J < 0.051	U < 0.048 U	U < 0.048	U < 0.047 U	< 0.047 L	< 0.051 L	J < 0.047	U < 0.048 U	< 0.048 U
4-Methylphenol	mg/kg	0.11	< 0.086 L	J < 0.082	U < 0.086 U	< 0.082 L	J < 0.085	U < 0.081 I	U < 0.081	U < 0.079 U	< 0.079 L	< 0.086 L	J < 0.041	U < 0.043 U	3.7
4-Nitroaniline	mg/kg	0.0014	< 0.14 L	J < 0.13	U < 0.14 U	< 0.13 L	J < 0.14	U < 0.13 I	U < 0.13	U < 0.13 U	< 0.13 L	< 0.14 L	J < 0.17	U < 0.18 U	< 0.13 U
4-Nitrophenol	mg/kg		< 0.28 L	J < 0.27	U < 0.28 U	< 0.27 L	J < 0.28	U < 0.27 I	U < 0.27	U < 0.26 U	< 0.26 L	< 0.28 L	J < 0.15	U < 0.16 U	< 0.26 U
Acenaphthene	mg/kg	0.41	< 0.064 L	< 0.061	U < 0.064 U	< 0.06	< 0.063	U < 0.06 I	U < 0.06	U < 0.059 U	< 0.059 L	< 0.063 L	J < 0.0081	U < 0.0084 U	< 0.059 U
Acenaphthylene	mg/kg		< 0.052 L	J < 0.049	U < 0.052 U	< 0.049 L	J < 0.051	U < 0.049 I	U < 0.049	U < 0.048 U	< 0.048 L	< 0.051 L	J < 0.0097	U < 0.01 U	< 0.048 U
Acetophenone	mg/kg	0.045	< 0.067 L	J < 0.064	U < 0.067 U	< 0.064 L	J < 0.067	U < 0.063 I	U < 0.063	U < 0.062 U	< 0.062 L	< 0.067 L	J < 0.035	U < 0.036 U	< 0.062 U
Anthracene	mg/kg	4.2	< 0.053 L	J < 0.051	U < 0.053 U	< 0.05 L	J < 0.053	U < 0.05 I	U < 0.05	U < 0.049 U	< 0.049 L	< 0.053 L	J < 0.0083	U < 0.0085 U	< 0.049 U
Atrazine	mg/kg	0.0019	< 0.067 L	< 0.065	U < 0.068 U	< 0.064 L	J < 0.067	U < 0.064 I	U < 0.064	U < 0.062 U	< 0.062 L	< 0.067 L	J < 0.041	U < 0.042 U	< 0.063 U
Benzaldehyde	mg/kg	0.033	< 0.051 L	< 0.049	U < 0.051 U	< 0.049 L	J < 0.051	U < 0.049 U	U < 0.049	U < 0.047 U	< 0.047 L	< 0.051 L	< 0.063	U < 0.065 U	< 0.048 U
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.01 0.24	< 0.003 L < 0.0031 L	J < 0.0029 J < 0.003	U < 0.0031 U U < 0.0031 U	< 0.0029 L < 0.0029 L	J < 0.003 J < 0.0031	U < 0.0029 U	U < 0.0029 U < 0.0029	U < 0.0028 U	< 0.0028 U < 0.0028 U	< 0.003 L < 0.0031 L	J < 0.011 J < 0.0085	U < 0.011 U U < 0.0087 U	< 0.0028 U < 0.0029 U
Benzo(b)fluoranthene	mg/kg	0.035	< 0.0031 C	J < 0.003	U < 0.0028 U	< 0.0029 C	J < 0.0027		U < 0.0029	U < 0.0025 U	< 0.0028 C	< 0.0031 C	J < 0.0083	U < 0.014 U	0.00290.0026U
Benzo(g,h,i)perylene	mg/kg	0.000	< 0.0028 C	J < 0.0026	U < 0.032 U	< 0.0026 C	J < 0.0027	U < 0.0026	U < 0.0026	U < 0.0025 U	< 0.0025 C	< 0.0027 C	J < 0.0084	U < 0.0087 U	< 0.0026 U
Benzo(k)fluoranthene	mg/kg	0.35	< 0.0032 C	J < 0.0032	U < 0.0033 U	< 0.0031 L	J < 0.0033	U < 0.0031	U < 0.0031	U < 0.0031 U	< 0.0031 L	< 0.0032 C	J < 0.0004	U < 0.018 U	< 0.0031 U
bis(2-Chloroethoxy) Methane	mg/kg	0.0011	< 0.056 L	J < 0.054	U < 0.056 U	< 0.054 L	J < 0.056	U < 0.053	U < 0.053	U < 0.052 U	< 0.052 L	< 0.056 L	J < 0.028	U < 0.029 U	< 0.052 U
Bis-(2-Chloroethyl) Ether	mg/kg	0.0000031	< 0.006 L	J < 0.0057	U < 0.006 U	< 0.0057 L	J < 0.0059	U < 0.0056 I	U < 0.0056	U < 0.0055 U	< 0.0055 L	< 0.0059 L	J < 0.011	U < 0.012 U	V < 0.0055 U
bis(2-Ethylhexyl)phthalate	mg/kg	1.4	< 0.15 L	J < 0.14	U < 0.15 U	< 0.14 L	J < 0.14	U < 0.14 I	U < 0.14	U < 0.13 U	< 0.13 L	< 0.14 L	< 0.068	U < 0.071 U	< 0.14 U
Butylbenzylphthalate	mg/kg	0.2	< 0.04 L	< 0.038	U < 0.04 U	< 0.038 L	J < 0.04	U < 0.038 I	U < 0.038	U < 0.037 U	< 0.037 L	< 0.04 L	J < 0.058	U < 0.06 U	< 0.037 U
Caprolactum	mg/kg	0.19	< 0.1 L	J < 0.096	U < 0.1 U	< 0.096 L	J < 0.1	U < 0.095 I	U < 0.095	U < 0.093 U	< 0.093 L	< 0.1 L	J < 0.32	U < 0.33 U	< 0.094 U
Carbazole	mg/kg		< 0.052 L	J < 0.049	U < 0.052 U	< 0.049 L	J < 0.051	U < 0.049 I	U < 0.049	U < 0.048 U	< 0.048 L	< 0.051 L	J < 0.0078	U < 0.008 U	< 0.048 U
Chrysene	mg/kg	1.1	< 0.051 L	< 0.049	U < 0.051 U	< 0.048 L	J < 0.051	U < 0.048 I	U < 0.048	U < 0.047 U	< 0.047 L	< 0.051 L	J < 0.01	U < 0.01 U	< 0.047 U
Dibenz(a,h)anthracene	mg/kg	0.011	< 0.0055 L	0.0053	U < 0.0055 U	< 0.0052 L	J < 0.0055	U < 0.0052 I	U < 0.0052	U < 0.0051 U	< 0.0051 L	< 0.0055 L	< 0.0094	U < 0.0097 U	< 0.0051 U
Dibenzofuran Diataylahthalata	mg/kg	0.011	< 0.051 L	< 0.049	U < 0.051 U	< 0.049 L	J < 0.051	U < 0.048 U	U < 0.048	U < 0.047 U	< 0.047 L	< 0.051 L	< 0.042	U < 0.043 U	< 0.048 U
Diethylphthalate Dimothylphthalate	mg/kg	0.47	< 0.052 L < 0.052 L	< 0.05	U < 0.052 U	< 0.049 L	J < 0.052	U < 0.049 U	U < 0.049	U < 0.048 U	< 0.048 L	< 0.052 L	0.046	U < 0.048 U	< 0.048 U
Dimethylphthalate Di-n-Butylphthalate	mg/kg	0.17	< 0.052 C	J < 0.05 J < 0.052	U < 0.052 U U 0.06 J	< 0.049 L < 0.051 L	J < 0.051 J < 0.054	U < 0.049 I U 0.052	U < 0.049 U < 0.051	U < 0.048 U U < 0.05 U	< 0.048 L < 0.05 L	< 0.052 L < 0.054 L	J < 0.046 J < 0.053	U < 0.048 U U < 0.055 U	< 0.048 U < 0.05 U
Di-n-Octyl phthalate	mg/kg mg/kg	4.4	< 0.054 C	J < 0.052 J < 0.027	U < 0.028 U	< 0.051 C	J < 0.054 J < 0.028	U < 0.026	U < 0.051	U < 0.026 U	< 0.05 L	< 0.054 C	J < 0.053 J < 0.045	U < 0.046 U	< 0.05 U
Fluoranthene	mg/kg	4.4 	< 0.028 C	J < 0.056	U < 0.058 U	< 0.026 C	J < 0.028	U < 0.055	U < 0.055	U < 0.054 U	< 0.028 C	< 0.028 C	J < 0.009	U < 0.0093 U	< 0.026 U
Fluorene	mg/kg	0.4	< 0.056 L	J < 0.053	U < 0.056 U	< 0.053 L	J < 0.056	U < 0.053	U < 0.053	U < 0.052 U	< 0.054 C	< 0.056 L	J < 0.011	U < 0.012 U	< 0.054 U
Hexachlorobenzene	mg/kg	0.013	< 0.006 L	J < 0.0057	U < 0.006 U	< 0.0057 L	J < 0.0059	U < 0.0056	U < 0.0056	U < 0.0055 U	< 0.0055 L	< 0.0059 L	J < 0.009	U < 0.0093 U	0.04 J
	mg/kg	0.010	\$ 0.000			\$ J.0001	. 0.0007	\$ 0.0000	. 0.0000		. 5.5555		. 0.007	- 0.0070 0	3.01

	sys_loc_code	EPA Regional	D-23	D-24	D-24	D-25	D-25	D-26	D-27	VC-1	VC-1 DUP	VC-1	VC-2	VC-2	VC-3
	sample depth	Screening Levels	22.5 - 23 ft	17.5 - 18 ft	22.5 - 23 ft	19 - 19.5 ft	24 - 24.5 ft	18.25 - 18.75	20.5 - 21 ft	15 - 15.5 ft	15 - 15.5 ft	20 - 20.5 ft	17 - 18 ft	21.5 - 22 ft	19 - 19.5 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay					
	sample_date	TR=1E-06, THQ=0.1	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/30/2013	10/31/2013	10/31/2013	10/22/2013	10/22/2013	10/22/2013	10/18/2013	10/18/2013	10/22/2013
chemical_name	Units														
Hexachlorobutadiene	mg/kg	0.0005	< 0.011 U	< 0.01 U	< 0.011 U	< 0.01 U	< 0.011 U	< 0.01 U	< 0.01 U	< 0.0098 U	< 0.0098 U	< 0.011 U	< 0.0095 U	< 0.0098 L	J < 0.0099 U
Hexachlorocyclopentadiene	mg/kg	0.16	< 0.051 U	< 0.049 U	< 0.051 U	< 0.049 U	< 0.051 U	< 0.049 U	< 0.049 U	< 0.047 U	< 0.047 U	< 0.051 U	< 0.046 U	< 0.047 L	J < 0.048 U
Hexachloroethane	mg/kg	0.00031	< 0.0049 U	< 0.0046 U	< 0.0049 U	< 0.0046 U	< 0.0048 U	< 0.0046 U	< 0.0046 U	< 0.0045 U	< 0.0045 U	< 0.0048 U	< 0.03 U	< 0.031 L	J < 0.0045 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	< 0.0081 U	< 0.0078 U	< 0.0081 U	< 0.0077 U	< 0.0081 U	< 0.0077 U	< 0.0077 U	< 0.0075 U	< 0.0075 U	< 0.0081 U	< 0.0087 U	< 0.009	J < 0.0076 U
Isophorone	mg/kg	0.022	< 0.053 U	< 0.051 U	< 0.053 U	< 0.05 U	< 0.053 U	< 0.05 U	< 0.05 U	< 0.049 U	< 0.049 U	< 0.053 U	< 0.032 U	< 0.033 L	J < 0.049 U
Naphthalene	mg/kg	0.00047	< 0.051 U	< 0.048 U	< 0.051 U	< 0.048 U	< 0.05 U	< 0.048 U	< 0.048 U	< 0.047 U	< 0.047 U	< 0.05 U	< 0.0073 U	< 0.0075 L	J 0.3 J
Nitrobenzene	mg/kg	0.000079	< 0.0062 U	< 0.0059 U	< 0.0062 U	< 0.0059 U	< 0.0062 U	< 0.0059 U	< 0.0059 U	< 0.0057 U	< 0.0057 U	< 0.0062 U	< 0.035 U	< 0.036 L	J < 0.0058 U
N-Nitroso-Di-N-Propylamine	mg/kg	0.000007	< 0.0073 U	< 0.007 U	< 0.0073 U	< 0.0069 U	< 0.0072 U	< 0.0069 U	< 0.0069 U	< 0.0067 U	< 0.0067 U	< 0.0073 U	< 0.0099 U	< 0.01	J < 0.0068 U
N-Nitrosodiphenylamine	mg/kg	0.057	< 0.043 U	< 0.041 U	< 0.043 U	< 0.041 U	< 0.043 U	< 0.041 U	< 0.041 U	< 0.04 U	< 0.04 U	< 0.043 U	< 0.039 U	< 0.04	J < 0.04 U
Pentachlorophenol	mg/kg	0.01	< 0.13 U	< 0.12 U	< 0.13 U	< 0.12 U	< 0.13 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.13 U	< 0.038 U	< 0.039 L	J < 0.12 U
Phenanthrene	mg/kg		< 0.056 U	< 0.053 U	< 0.056 U	< 0.053 U	< 0.055 U	< 0.053 U	< 0.053 U	< 0.051 U	< 0.051 U	< 0.055 U	< 0.013 U	< 0.014 L	J < 0.052 U
Phenol	mg/kg	0.26	< 0.059 U	< 0.056 U	< 0.059 U	< 0.056 U	< 0.058 U	< 0.055 U	< 0.055 U	< 0.054 U	< 0.054 U	< 0.058 U	< 0.01 U	< 0.01 L	1.2
Pyrene	mg/kg	0.95	< 0.037 U	< 0.035 U	< 0.037 U	< 0.035 U	< 0.036 U	< 0.035 U	< 0.035 U	< 0.034 U	< 0.034 U	< 0.036 U	< 0.0086 U	< 0.0088 L	J < 0.034 U

Notes:

U - not detected at reported concentration

			KEAKINT, INEV									
	sys_loc_code	EPA Regional	VC-3		VC-4		VC-4		VC-5		VC-5	
	sample depth	Screening Levels	24.5 - 25 ft		19.5 - 20 ft		24.5 - 25 ft		17.5 - 18 ft		24.5 - 25 ft	
	stratum	Soil to Groundwater	Varved Clay		Varved Clay		Varved Clay		Varved Clay		Varved Clay	
	sample_date	TR=1E-06, THQ=0.1	10/22/2013		10/29/2013		10/29/2013		10/28/2013		10/29/2013	
chemical_name	Units			1			1					
1,1'-Biphenyl	mg/kg	0.00087	< 0.058	U	0.37	J		U	< 0.057	U	< 0.06	U
1,2,4,5-Tetrachlorobenzene	mg/kg	0.00058	< 0.058	U	0.96	J		J	< 0.058	U	< 0.06	U
2,2'-Oxybis(1-Chloropropane)	mg/kg	0.00011	< 0.048	U	< 0.23	U		U	< 0.047	U	< 0.049	U
2,3,4,6-Tetrachlorophenol	mg/kg	0.11	< 0.057	U	< 0.27	U		U	< 0.056	U	< 0.058	U
2,4,5-Trichlorophenol	mg/kg	0.33	< 0.056	U	< 0.27	U		U	< 0.055	U	< 0.058	U
2,4,6-Trichlorophenol	mg/kg	0.0034	< 0.051	U	< 0.24	U		U	< 0.05	U	< 0.052	<u>U</u>
2,4-Dichlorophenol	mg/kg	0.0041	< 0.064	U	< 0.3	U		U	< 0.063	U	< 0.065	U
2,4-Dimethylphenol	mg/kg	0.032	< 0.11	U	1.6	J		U	0.27	J	< 0.11	U
2,4-Dinitrophenol	mg/kg	0.0034	< 0.25	U	< 1.2	U		U	< 0.24	U	< 0.25	U
2,4-Dinitrotoluene	mg/kg	0.00028	< 0.014	U	< 0.068	U		U	< 0.014	U	< 0.015	U
2,6-Dinitrotoluene	mg/kg	0.000058	< 0.013	U	< 0.063	U		U	< 0.013	U	< 0.013	U
2-Chloronaphthalene	mg/kg	0.29	< 0.048	U	< 0.23	U		U	< 0.048	U	< 0.05	U
2-Chlorophenol	mg/kg	0.0057	< 0.057	U	< 0.27	U		U	< 0.056	U	< 0.059	U.
2-Methylnaphthalene	mg/kg	0.014	< 0.056	U	2.2		0.43	J	0.14	J	< 0.057	U
2-Methylphenol	mg/kg	0.058	< 0.074	U	< 0.35	U		U	< 0.073	U	< 0.076	U
2-Nitroaniline	mg/kg	0.0062	< 0.18	U	< 0.87	U		U	< 0.18	U	< 0.19	U
2-Nitrophenol	mg/kg	2 22274	< 0.048	U	< 0.23	U		U	< 0.048	U	< 0.05	U
3,3'-Dichlorobenzidine	mg/kg	0.00071	< 0.15	U	< 0.73	U		U	< 0.15	U	< 0.16	U
3-Nitroaniline	mg/kg	2 2222	< 0.15	U	< 0.73	U		U		U	< 0.16	U
4,6-Dinitro-2-Methylphenol	mg/kg	0.0002	< 0.12	U	< 0.57	U		U	< 0.12	U	< 0.12	U
4-Bromophenyl-phenylether	mg/kg	0.10	< 0.043	U	< 0.21	U		U	< 0.042	U	< 0.044	U
4-Chloro-3-methylphenol	mg/kg	0.13	< 0.066	U	< 0.31	U		U	< 0.065	U	< 0.067	U
4-Chloroaniline	mg/kg	0.00013	< 0.12	U	< 0.55	U		U	< 0.11	U	< 0.12	U
4-Chlorophenyl-phenylether	mg/kg		< 0.051	U	< 0.24	U		U	< 0.05	U	< 0.052	U
4-Methylphenol	mg/kg	0.11	< 0.086	U	5		0.1	J	0.43	_	< 0.088	U
4-Nitroaniline	mg/kg	0.0014	< 0.14	U	< 0.65	U		U	< 0.13	U	< 0.14	U
4-Nitrophenol	mg/kg	2.11	< 0.28	U	< 1.3	U		U	< 0.28	U	< 0.29	U
Acenaphthene	mg/kg	0.41	< 0.063	U	0.59	J		U	< 0.062	U	< 0.065	U
Acenaphthylene	mg/kg	2.245	< 0.051	U	< 0.25	U		U	< 0.051	U	< 0.053	U
Acetophenone	mg/kg	0.045	< 0.067	U	< 0.32	U		U	< 0.066	U	< 0.069	U
Anthracene	mg/kg	4.2	< 0.053	U	< 0.25	U		U	< 0.052	U	< 0.054	U
Atrazine	mg/kg	0.0019	< 0.067	U	< 0.32	U		U	< 0.066	U	< 0.069	U.
Benzaldehyde	mg/kg	0.033	< 0.051	U	< 0.24	U		U	< 0.05	U	< 0.053	U
Benzo(a)anthracene	mg/kg	0.01	< 0.003	U	< 0.015	U		U	< 0.003	U	< 0.0031	U
Benzo(a)pyrene	mg/kg	0.24	< 0.0031	U	< 0.015	U		U		U	< 0.0032	U
Benzo(b)fluoranthene	mg/kg	0.035	< 0.0027	U	< 0.013	U		U	< 0.0027	U	< 0.0028	U
Benzo(g,h,i)perylene	mg/kg	2.25	< 0.032	U	< 0.15	U		U		U	< 0.033	U.
Benzo(k)fluoranthene	mg/kg	0.35	< 0.0033	U	< 0.016	U		U	< 0.0033	U	< 0.0034	U
bis(2-Chloroethoxy) Methane	mg/kg	0.0011	< 0.056	U	< 0.27	U		U	< 0.055	U	< 0.058	U
Bis-(2-Chloroethyl) Ether	mg/kg	0.0000031	< 0.0059	U	< 0.028	U		U		U	< 0.0061	U
bis(2-Ethylhexyl)phthalate	mg/kg	1.4	< 0.14	U	< 0.69	U		U	< 0.14	U	0.17	J
Butylbenzylphthalate	mg/kg	0.2	< 0.04	U	< 0.19	U		U	< 0.039	U	< 0.041	<u> </u>
Caprolactum	mg/kg	0.19	< 0.1	U	< 0.48	U		U	< 0.099	U	< 0.1	U
Carbazole	mg/kg		< 0.051	U	< 0.25	U		U	< 0.051	U	< 0.053	U
Chrysene	mg/kg	1.1	< 0.051	U	< 0.24	U		U	< 0.05	U	< 0.052	<u> U</u>
Dibenz(a,h)anthracene	mg/kg	0.011	< 0.0055	U	< 0.026	U		U	< 0.0054	U	< 0.0056	<u> U</u>
Dibenzofuran	mg/kg	0.011	< 0.051	U	0.91	J		J	< 0.05	U	< 0.052	U
Diethylphthalate	mg/kg	0.47	< 0.052	U	< 0.25	U		U		U	< 0.053	U
Dimethylphthalate	mg/kg	2.1-	< 0.052	U	< 0.25	U		U	< 0.051	U	< 0.053	<u> U</u>
Di-n-Butylphthalate	mg/kg	0.17	< 0.054	U	< 0.26	U		U	< 0.053	U	< 0.055	U
Di-n-Octyl phthalate	mg/kg	4.4	< 0.028	U	< 0.13	U		U	< 0.027	U	< 0.029	U
Fluoranthene	mg/kg	7	< 0.058	U	< 0.28	U		U	< 0.057	U	< 0.06	U
Fluorene	mg/kg	0.4	< 0.056	U	0.44	J		U	< 0.055	U	< 0.057	U
Hexachlorobenzene	mg/kg	0.013	< 0.0059	U	1.5		0.029	J	< 0.0059	U	< 0.0061	U

	sys_loc_code		VC-3		VC-4		VC-4		VC-5		VC-5	
	sample depth	Screening Levels	24.5 - 25 ft		19.5 - 20 ft		24.5 - 25 ft		17.5 - 18 ft		24.5 - 25 ft	
	stratum	Soil to Groundwater	Varved Clay									
	sample_date	TR=1E-06, THQ=0.1	10/22/2013		10/29/2013		10/29/2013		10/28/2013		10/29/2013	
chemical_name	Units											
Hexachlorobutadiene	mg/kg	0.0005	< 0.011	U	< 0.051	U	< 0.011	U	< 0.01	U	< 0.011	U
Hexachlorocyclopentadiene	mg/kg	0.16	< 0.051	U	< 0.24	U	< 0.052	U	< 0.05	U	< 0.053	U
Hexachloroethane	mg/kg	0.00031	< 0.0048	U	< 0.023	U	< 0.0049	U	< 0.0048	U	< 0.005	U
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	< 0.0081	U	< 0.039	U	< 0.0082	U	< 0.008	U	< 0.0083	U
Isophorone	mg/kg	0.022	< 0.053	U	< 0.25	U	< 0.054	U	< 0.052	U	< 0.054	U
Naphthalene	mg/kg	0.00047	< 0.05	U	14		3.2		0.26	J	< 0.052	U
Nitrobenzene	mg/kg	0.000079	< 0.0062	U	< 0.03	U	< 0.0063	U	< 0.0061	U	< 0.0064	U
N-Nitroso-Di-N-Propylamine	mg/kg	0.000007	< 0.0073	U	< 0.035	U	< 0.0074	U	< 0.0071	U	< 0.0075	U
N-Nitrosodiphenylamine	mg/kg	0.057	< 0.043	U	< 0.2	U	< 0.044	U	< 0.042	U	< 0.044	U
Pentachlorophenol	mg/kg	0.01	< 0.13	U	< 0.62	U	< 0.13	U	< 0.13	U	< 0.13	U
Phenanthrene	mg/kg		< 0.055	U	0.47	J	< 0.056	U	< 0.055	U	< 0.057	U
Phenol	mg/kg	0.26	< 0.058	U	1.9	J	< 0.059	U	< 0.058	U	< 0.06	U
Pyrene	mg/kg	0.95	< 0.036	U	< 0.17	U	< 0.037	U	< 0.036	U	< 0.037	U

Notes:

U - not detected at reported concentration

TABLE 14 VARVED CLAY - METALS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	D-20	D-20	D-21	VC-1	VC-1	VC-2	VC-2	VC-2	VC-3	VC-3
	sample depth	Screening Levels	19 - 19.5 ft	24.5 - 25 ft	23.5 - 24 ft	15 - 15.5 ft	20 - 20.5 ft	17 - 18 ft	17.5 - 18 ft	21.5 - 22 ft	19 - 19.5 ft	24.5 - 25 ft
	stratum	Soil to Groundwater	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay	Varved Clay				
	sample_date	TR=1E-06, THQ=0.1	10/28/2013	10/28/2013	10/18/2013	10/22/2013	10/22/2013	10/18/2013	10/18/2013	10/18/2013	10/22/2013	10/22/2013
chemical_name	Units											
Aluminum	mg/kg	2300	11100	12300	14400	9460	13800	10900	-	10700	9600	13800
Antimony	mg/kg	0.27	< 1.3 U	< 1.5 U	< 1.5 L	J < 1.3	J < 1.5 L	J < 1.5 U	-	< 1.4 U	< 1.4	U < 1.2 U
Arsenic	mg/kg	0.29	3.2	6.4	7.3	3.4	6.3	5.3	-	6	3.1	7.6
Barium	mg/kg	82	50.5	69.7	79.5	51.8	86	66.1	-	62.3	39.1	J 76.3
Beryllium	mg/kg	3.2	0.56	0.59	0.7	0.45	0.69	0.66	-	0.59	0.52	0.7
Cadmium	mg/kg	0.38	< 0.15 U	< 0.18 U	< 0.17	J < 0.16 l	J < 0.17 L	J < 0.18 U	-	< 0.17 U	< 0.17	U < 0.14 L
Calcium	mg/kg		2330	6310	7310	2820	6330	7480	-	6620	2120	8450
Chromium	mg/kg	2800000	16.8	29.5	23.6	14.5	22.8	19.9	-	19.1	31.6	23.4
Chromium, hexavalent	mg/kg	0.00059	-	-	-	0.23	< 0.19 U	J -	0.53 J	0.37 J	1.1	J 0.24 J
Cobalt	mg/kg	0.021	11.5	12.6	14.8	11.1	13.4	15.3	-	10.9 J	11.2	J 13.9
Copper	mg/kg	46	17.7	22.7	27	17.3	25.4	20.8	-	21.4	15.3	26.3
Iron	mg/kg	27	25500	31500	36000	22200	32400	26300	-	26200	21700	32200
Lead	mg/kg	14	13.7	14.5	16.2	12.3	15.3	13	-	12.9	12.8	15.8
Magnesium	mg/kg		5770	7950	8910	5270	8630	6780	-	7240	4880	8680
Manganese	mg/kg	2.1	634	654	788	632	693	625	-	596	458	716
Mercury	mg/kg	0.1	< 0.014 U	< 0.014 U	< 0.015 L	J < 0.015 l	J < 0.015 L	J < 0.015 U	-	< 0.014 U	< 0.012	U < 0.016 L
Nickel	mg/kg	2	26.2	26.9	33.2	23.7	30.2	26.2	-	23.6	29.4	30.2
Potassium	mg/kg		1350	1790	1900	1050 .	1900	1460	-	1490	977	J 1800
Selenium	mg/kg	0.26	< 1.3 U	< 1.6 U	< 1.5 L	J < 1.4	J < 1.6	J < 1.6 U	-	< 1.5 U	< 1.5	U < 1.3
Silver	mg/kg	0.06	< 0.2 U	< 0.24 U		J < 0.22 l		J < 0.25 U	-	< 0.23	< 0.23	U < 0.19 L
Sodium	mg/kg		821 J	605 J	322 J	287 .	J 331 J	J 517 J	-	401 J	567	J 522 J
Thallium	mg/kg	0.14	< 1.1 U	< 1.4 U	1.5	J < 1.2 l	,	J < 1.4 U	-	< 1.3	J < 1.3	U < 1.1 L
Vanadium	mg/kg	6.3	16.9	27	27.9	16.2	27.2	26.1		22.6	14.6	28.7
Zinc	mg/kg	29	67.8	67.2	75.7	60.2	71.5	63	-	58.5	71.2	70.7

Zinc Notes:

U - not detected at reported concentration

TABLE 14 VARVED CLAY - METALS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

	sys_loc_code	EPA Regional	VC-4		VC-4 DUP		VC-4		VC-5		VC-5					
	sample depth	Screening Levels	19.5 - 20 ft		19.5 - 20 ft		24.5 - 25 ft		17.5 - 18 ft		24.5 - 25 ft					
	stratum	Soil to Groundwater	Varved Clay													
	sample_date	TR=1E-06, THQ=0.1	10/29/2013		10/29/2013		10/29/2013		10/29/2013		10/29/2013		10/28/2013		10/29/2013	
chemical_name	Units															
Aluminum	mg/kg	2300	11300		11700		11500		16300		16200					
Antimony	mg/kg	0.27	< 1.4	U	< 1.3	U	< 1.6	U	< 1.5	U	< 1.6	U				
Arsenic	mg/kg	0.29	4.2		4.3		5.9		3.8		8.5					
Barium	mg/kg	82	73.5		62.1		35.5	J	45.8	J	86.4					
Beryllium	mg/kg	3.2	0.4	J	0.43		0.5		0.84		0.78					
Cadmium	mg/kg	0.38	0.35	J	< 0.16	U	< 0.19	U	< 0.17	U	< 0.19	U				
Calcium	mg/kg		2310		2410		8200		2380		7030					
Chromium	mg/kg	2800000	57.8		59.7		19.6		162		26.6					
Chromium, hexavalent	mg/kg	0.00059	2.3	J	5.3	J	-		8.9	J	-					
Cobalt	mg/kg	0.021	10.5	J	10.9		12.4	J	11.4	J	15.3					
Copper	mg/kg	46	16.3		16.7		23.4		18.4		28.5					
Iron	mg/kg	27	21100		21400		29500		22400		39800					
Lead	mg/kg	14	15.8		13.8		13.6		14.6		16					
Magnesium	mg/kg		4870		4980		8260		5350		9690					
Manganese	mg/kg	2.1	291		293		716		312		752					
Mercury	mg/kg	0.1	< 0.015	U	< 0.014	U	< 0.014	U	< 0.015	U	< 0.014	U				
Nickel	mg/kg	2	30.2		32.1		26.8		34.2		33					
Potassium	mg/kg		1200		1230		1470		1360		2330					
Selenium	mg/kg	0.26	< 1.5	U	< 1.4	U	< 1.7	U	< 1.5	U	< 1.7	U				
Silver	mg/kg	0.06	< 0.23	U	< 0.21	U	< 0.25	U	< 0.23	U	< 0.26	U				
Sodium	mg/kg		799	J	886	J	573	J	840	J	672	J				
Thallium	mg/kg	0.14	< 1.3	U	< 1.2	U	< 1.4	U	< 1.3	U	< 1.5	U				
Vanadium	mg/kg	6.3	21.2		22.1		23.1		38.8		31.8					
Zinc	mg/kg	29	135		114		63.4		74.8		81.5					

Notes:

U - not detected at reported concentration

TABLE 15 PZ-13L ANALYTICAL RESULTS

STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

Client ID	PZ-13L	
Sampling Date	11/11/2013 16:2	20:00
Unit	ug/l	
VOA Method 8260B		
1,1,1-Trichloroethane	6.0	J
1,1,2,2-Tetrachloroethane	16	כ
1,1,2-Trichloroethane	19	
1,1-Dichloroethane	13	J
1,1-Dichloroethene	9.0	
1,2,3-Trichlorobenzene	51	U
1,2,4-Trichlorobenzene	39	J
1,2-Dibromo-3-Chloropropane	0.085	
1,2-Dichlorobenzene	19000	
1,2-Dichloroethane	19	_
1,2-Dichloropropane	9.0	
1,3,5-Trichlorobenzene	10	U
1,3-Dichlorobenzene	15000	
1,4-Dichlorobenzene	24000	
1,4-Dioxane	2.7	
2-Butanone	230	
2-Hexanone	50	U
4-Methyl-2-pentanone	99	
Acetone	270	U
Benzene	190	
Bromochloromethane	27	
Bromodichloromethane	12	
Bromoform	19	
Bromomethane	18	
Carbon disulfide	13	
Carbon tetrachloride	6.0	U
Chlorobenzene	1800	
Chloroethane	17	_
Chloroform	8.0	
Chloromethane	10	
cis-1,2-Dichloroethene	18	
cis-1,3-Dichloropropene	18	
Cyclohexane	16	
Dibromochloromethane	20	U
Dichlorodifluoromethane	530	
Ethylbenzene	10	
Ethylene Dibromide	0.075	
Freon TF	8.0	
Isopropylbenzene	8.0	
m&p-Xylene	25	
Methyl acetate	34	U
Methylcyclohexane	14	U
Methylene Chloride	18	U
MTBE	14	_
o-Xylene	13	
Styrene	12	
Tetrachloroethene	10	
Toluene	15	
trans-1,2-Dichloroethene	13	
trans-1,3-Dichloropropene	24	
Trichloroethene	9.0	
Trichlorofluoromethane	15	
Vinyl chloride	14	U

TABLE 15

PZ-13L ANALYTICAL RESULTS STANDARD CHLORINE CHEMICAL CO. INC. SITE KEARNY, NEW JERSEY

KEARNY, NEW JERSEY									
Client ID	PZ-13L								
Sampling Date	11/11/2013 16:20:00								
Unit SVOCs Method 8270C	ug/l								
1,2,4,5-Tetrachlorobenzene	9.4 U								
2,2'-oxybis[1-chloropropane]	6.8 U								
2,3,4,6-Tetrachlorophenol	4.6 U								
2,4,5-Trichlorophenol	11 U								
2,4,6-Trichlorophenol	7.3 U								
2,4-Dichlorophenol	86								
2,4-Dimethylphenol	6.3 U								
2,4-Dinitrophenol	10 U								
2,4-Dinitrotoluene	1.5 U								
2,6-Dinitrotoluene	1.4 U								
2-Chloronaphthalene	6.8 U								
2-Chlorophenol	14 J								
2-Methylnaphthalene	7.8 U								
2-Methylphenol	7.3 U								
2-Nitroaniline	10 U								
2-Nitrophenol	3.5 U								
3,3'-Dichlorobenzidine	17 U								
3-Nitroaniline 4,6-Dinitro-2-methylphenol	15 U 16 U								
4-Bromophenyl phenyl ether	5.7 U								
4-Chloro-3-methylphenol	5.7 U								
4-Chloroaniline	1.7 U								
4-Chlorophenyl phenyl ether	7.8 U								
4-Methylphenol	5.2 U								
4-Nitroaniline	15 U								
4-Nitrophenol	10 U								
Acenaphthene	5.7 U								
Acenaphthylene	9.4 U								
Acetophenone	4.6 U								
Anthracene	4.4 U								
Atrazine	5.2 U								
Benzaldehyde	11 U								
Benzo[a]anthracene	0.18 U 0.25 U								
Benzo[a]pyrene Benzo[b]fluoranthene	0.25 U								
Benzo[g,h,i]perylene	4.8 U								
Benzo[k]fluoranthene	0.73 U								
Bis(2-chloroethoxy)methane	5.2 U								
Bis(2-chloroethyl)ether	0.62								
Bis(2-ethylhexyl) phthalate	4.2 U								
Butyl benzyl phthalate	7.3 U								
Caprolactam	4.7 U								
Carbazole	6.3 U								
Chrysene	7.3 U								
Dibenz(a,h)anthracene	0.83 U								
Dibenzofuran	7.8 U								
Diethyl phthalate	7.3 U								
Dimethyl phthalate	5.7 U								
Di-n-butyl phthalate	5.2 U								
Di-n-octyl phthalate Diphenyl	4.6 U 9.4 U								
Fluoranthene	9.4 U 5.7 U								
Fluorene	8.9 U								
Hexachlorobenzene	0.034 U								
Hexachlorobutadiene	3.5 U								
Hexachlorocyclopentadiene	7.8 U								
Hexachloroethane	0.78 U								
Indeno[1,2,3-cd]pyrene	0.57 U								
Isophorone	6.8 U								
Naphthalene	11 J								
Nitrobenzene	1.8 U								
N-Nitrosodi-n-propylamine	1.4 U								
N-Nitrosodiphenylamine	5.2 U								
Pentachlorophenol	0.73 U								
Phenanthrene	6.3 U								
Phenol Pyrene	3.1 U 5.7 U								
i yioilo	5.7 0								

APPENDIX A SOIL BORING LOGS

DATE DRILLED: 'October 14/15, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156925.65 N: 698383.376

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.91 ft TOC: NA

TOTAL WELL DEPTH: NA **TOTAL BORING DEPTH: 24 ft**

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Asphalt Clean Fill with Fabric layer below	100	0.0	0	^ L V^ L	Cement Clean Back Fill Fabric
				0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rabiic
_		Fill - Black cinder/slag like material, wet to saturated below 5', no odor	27	0.0		1	Temporary Casing (7") Removed from
5 —				0.0	0	77 77 77 77 77 77 77 77 77 77 77 77 77	9' bgs
_		Fill - COPR like material (multi-colored gray/brown/yellow sandy silt like material)		0.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		Fill - Black cinder/slag like material, wet to saturated below 5', no odor	100	0.0		77 77	
_				0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
10 —		Meadow Mat, wet,		0.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cement Bentonite Grout
			33	0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
				0.0		77 27	

DATE DRILLED: 'October 14/15, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156925.65 N: 698383.376

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.91 ft TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 24 ft

- D/(1)	DATON. NADZINAVDOO			TOTAL BORING DEPTH: 24 ft							
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description				
15 —		Dark brown to brown fmc SAND, faint odor below 13.5'	80	1.2 0.0 0.0 0.0	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temporary Casing (6") Removed from 19' bgs				
20 —				0.0	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Cement Bentonite Grout				
_		Medium brown and gray varved SILT and CLAY	100	0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Bentonite Grout				
				0.0	0	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4" Borehole				

DATE DRILLED: 'October 21-22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

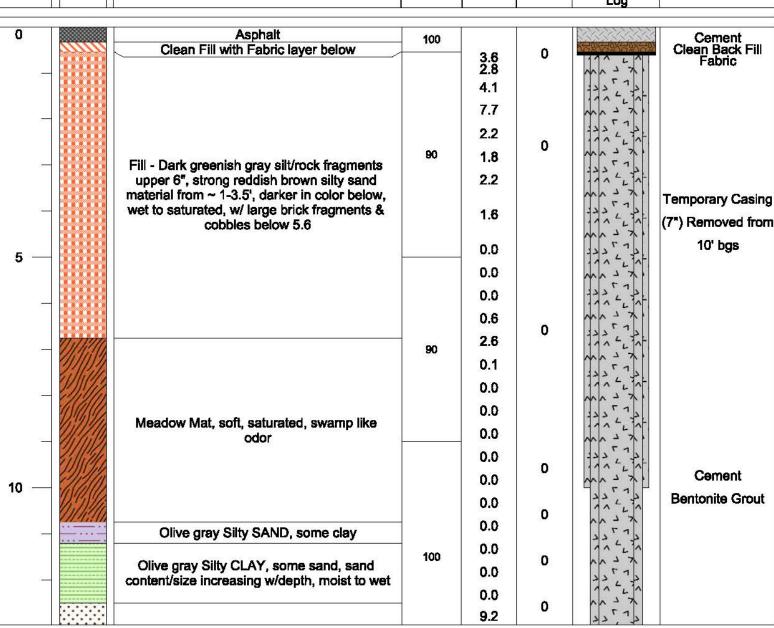
PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156906.132 N: 698057.978

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC


DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3,705 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 24 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
-------------------	---------------	-----------------------	------------	-----	----------------	--------------------------------	---------------------------

DATE DRILLED: 'October 21-22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156906.132 N: 698057.978

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.705 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 24 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
				4.7 68.9	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
4E		Dark brown to brown fmc SAND, trace to some silt, saturated, strong odor, potential staining just above the clay clayer below		171.1 125.5	0	7777	Temporary Casing
15 —				177.6 511.7 9.7	0 2	V V V V V V V V V V V V V V V V V V V	(6") Removed from 20' bgs
_			100	4.7 1.3 0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_				0.0		7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, no odor		0.0	0	V	
			100	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
				0.0	0	V 7 V V V V V V V V V V V V V V V V V V	
_				- 07	0	1	4" Borehole
25 —							333

DATE DRILLED: 'October 15/16, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156906.132 N: 698143.967

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4.079 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Asphalt		Ì	Ì		Cement
		Clean Fill with Fabric layer below		0.0			Clean Back Fill
-	111111	Light gray concrete	100	155.4	0	オインと	Fabric
	*****			133.4		7,7,7	
24					1	777	
1700			18	157.7		~~~~	
(lea		Fill - Black cinder/slag like material, wet to saturated below 2', strong odor upper 0.5'	"			177-17	Temporary Casing
		, , ,			1	7727	(7") Removed from 10' bgs
5 —			2	70.1		4,7,7	
_				192.1		~~~	
		Fill - COPR like material (brn to dark brn			1	177.27	
_		sandy silt like material, trace clay w/greenish hue mottling)	100	18.4		7777	
400			100	387.7		7 7 7	
					1	11,2,1	
<u>-</u>	(S(I))//	Meadow Mat, saturated, soft, residual DNAPL observed from 9 to 9.6', trace		200.5		177 - 7	
10 —		residual DNAPL between 9.6-10'	j.	58.9	2	1,1,2,1,1	Cement
10				00.0	2	1,27	Bentonite Grout
10 m			-	30.3		77 - 7	
					1	777	
ties.	· · · · · · · · · · · · · · · · · · ·	Olive gray Silty fm sand, grading to clayey sand below 13.5, wet, faint odor	80	8.8		1, 1,	
			30	122		77 - 17	

DATE DRILLED: 'October 15/16, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156906.132 N: 698143.967

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,079 TOC: NA

						<i>-</i>	- 12.	
Dept (ft-bg		Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
			Olive gray Silty Clay, w/thin orangish brown sand streaks, v moist		12.1		1	
15			Med brown fmc SAND, pinkish hue color below 14.5', saturated, faint odor	<u>:</u>	10.1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temporary Casing (6") Removed from
	(<u>)</u>			_&	26.3	1	V 7 V V V V V V V V V V V V V V V V V V	20' bgs
				30	14.7		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
*2759-0-250	3 3				10.5		V V V V V V V V V V V V V V V V V V V	
20 -			Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 22'		1.7		777	
			no odol below ZZ		9.2	1	V 7 V V V V V V V V V V V V V V V V V V	
				100	0.7	o	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
					0.6		7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
25					0.2	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4" Borehole

DATE DRILLED: October 16, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157132.842 N: 698329.313

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.73 TOC: NA

5000000000	Research Education	7.400.1.0.1.270.642.470.270.70.70	TOTAL BORING DEPTH: 20 IL						
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description		
_ 1	100000000000000000000000000000000000000	4	4	7773	Ŷ.				
0		Asphalt		0.0			Cement		
		Clean Fill with Fabric layer below		8	0		Clean Back Fill		
- C		Fill - Medium to dark brown f	100	0.3	8000	11,571	Fabric		
		gravel/slag/brick fragment, sand, silt, some		0.0		かえんまり			
		clay, moist to slightly moist, v dense	4	0.1		25 4 12			
				7.0		イクトコケー			
1 0				0.0		かっとう			
				0.0	1	120 2 72			
		Fill - Dark brown to black cinder like material	81	2009 63	35	172571			
# -		(silty sand/f slag), light greenish gray fill		0.1		M 1 2 L			
		material from 1.7-1.9', and some white fill				12 - 12			
		material below 4', wet to saturated with depth				172, 7	Temporary Casing		
1000		2		1.4		7 , 4	150 1650 1		
					120	7 - 7	(7") Removed from		
					1	かったすり	10' bgs		
5 —				0.0		ا در د مدد	23#		
				00000000		172571			
		SAA, with wood fragments and cobble/rock		0.1		かった			
-	******	fragment 3.5-inches in diameter, saturatedl,		0.1		2 4 7			
		poor recovery likely due cobble bridging fill		0.2	920	17257			
		material in sample tube, last 3" white sandy		0.4	1	~ ~ ~ L)			
14-0		material, sulfer/sewer odor		0.4		11/2 = 1/4			
						173 2 1			
	11/1/1/10		52						
40	V////////					17、「コスト			
	(111111)			0.3		かったまり			
	1/11/1/2				1	27 4 72			
42	(1/6/11)	Meadow Mat, saturated, soft, grading into				172571			
	12:11/1/2	medium to dark brown organic rich fm sand,				m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	9//://://	trace silt, trace root material at bottom			1	12/2 = 12	Cement		
10 —	9///////	TO CONTROL TO THE PROPERTY OF		4.0	XXXX	112, 11	Cement		
	1111111111		550698	4.0		^ ^ \	Bentonite Grout		
	9/1////		42		1	7 - 7	945 947 P.C.P.C. and 24th U. Food and Co. Section 1.00 Section 2.25 Se		
	(1)(///(///			25.3	*10.000	124			
						رد د مد			
				37.8	1	12571			
_		Medium brown to dark brown Silty fm SAND,		37.0	1000	1 1 L			
410		trace organic material, w/dark gray noddules		8.5		1 7 7 7			
	****	at 11.8', no odor			1	12,77			
	4.4.4	SECTION DESCRIPTION * TELEPONOMETRICAL SET		8233	555.00	V V _ L V			

DATE DRILLED: October 16, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157132.842 N: 698329.313

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.73 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
15 —		Olive gray Silty Clay, w/thin orangish brown sand streaks, v moist Med brown fmc SAND, pinkish hue color below 14.5', saturated, faint odor	58	3.8 9.0 15.2	1 1 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing (6") Removed from 20' bgs
-			37	3.3 7.2	1 1 1	7	-5 23 5
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 22'		0.0	0	7	
25 —			100	0.0	0	V V V V V V V V V V V V V V V V V V V	4" Borehole

DATE DRILLED: October 21, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

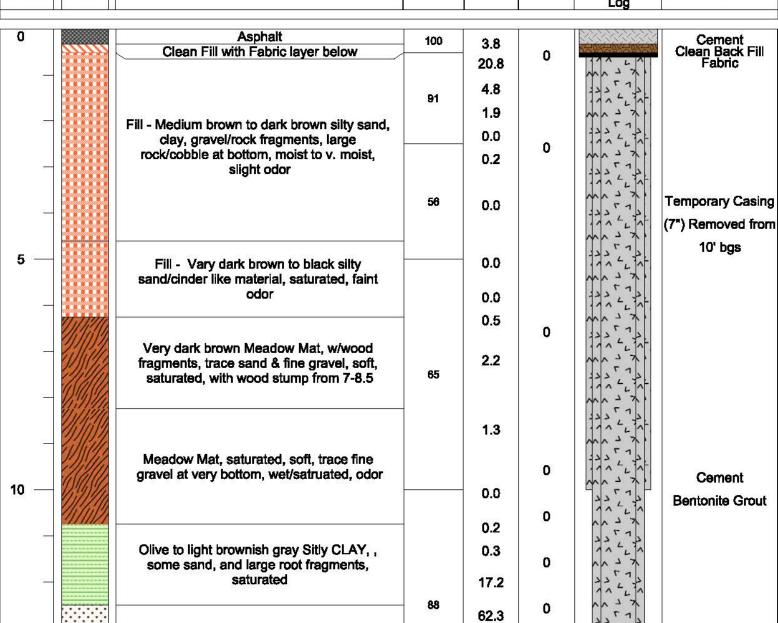
PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156896.741 N: 697990.754

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC


DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.49 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs) Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
--------------------------------------	------------	-----	----------------	--------------------------------	---------------------------

DATE DRILLED: October 21, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156896.741 N: 697990.754

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.49 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
10		Dark brown to medium brown fmc SAND, trace to some silt, saturated, odor, iron like staining from 12.25-13.25'		269.5 234.9	0	V V V V V V V V V V V V V V V V V V V	
15 —		SAA, w/hard strong reddish brown silt streak		13.6 26.5 312.3	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing (6") Removed from 20' bgs
-		from 17.1-17.15', w/coarse sand below, thin potential staining just above the thin layer of silt, saturated, strong odor		428.4 53.3	0 2	V V V V V V V V V V V V V V V V V V V	20 250
-			100	11.3 1.7 11.3	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 19		4.4	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
-				0.0	0	V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	
			100	0.0	0	7	
				0.0		V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	
25					0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4" Borehole

DATE DRILLED: October 17, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157276.518 N: 698237.966

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.247 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

	O111. 1471L	ZINANDOO	TOTAL BORING DEPTH: 25 ft					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
0		Fill - Gray, dark gray, and strong brown silty material, some silty sand/gravel, with root material throughout, dry to moist		0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
				0.0	0	V V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
-		Fill - Multi-color silty fm slag like material, with brick fragments, glass, wood, wet to saturated	70		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-				0.0	0	7777	Temporary Casing (7") Removed from 10' bgs	
5 —				0.0	0	~ ^ ^ / ^ / ^ / ^ / ^ / ^ / ^ / ^ / ^ /	10 bgs	
			12	0.0	0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
1 <u>1111</u>		Fill - Black fmc cider/slag like material, saturated	<i>*</i>	0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
3 <u>2</u>			80	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0000	
10 —			9	0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cement Bentonite Grout	
		Olive bm/gray Silty Clay, some sand, grading to a fine sand, v moist to saturated		0.0 0.1	0	V V V V V V V V V V V V V V V V V V V		
			72	0.0	0	7777		

DATE DRILLED: October 17, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157276.518 N: 698237.966

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.247 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
30-1		Dark gray to brn fm SAND, some silt, less w/depth, saturated		0.0	o	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
15 —				NA.	0	77 77	Temporary Casin
_		Med brown fmc SAND, pinkish hue color below 16', thin dark gray silt streak at 15.1',	95	NA NA	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(6") Removed from 20' bgs
-		saturated, faint odor	20	249.3 1125.0	1 3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_	•••••			8.8	1	7777	
.—		Medium brown and gray Silt, with few clay streaks/layers, v moist, slightly stiff, faint odor	75	7.6 8.3	1	7777	
20 —				0.5	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
% <u>—</u> €				0.1	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
				0.000000	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, faint to no odor	100	0.2	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
5 				0.6	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
-				0.0	0	7 7	

DATE DRILLED: October 28, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157396.107 N: 698317.969

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/J. Ray
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,049 TOC: NA

0

0.0

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Clean Fill with Fabric layer below	100	0.0			Clean Back Fill
_		Fill - Dark brown to black cinder like		0.0	0	1111	Synthetic Liner & Fabric
		material, moist		0.0	U	1277	
(<u>)</u>				0.0		M/ 2 L/	
				0.0	0	1277	
9 <u></u>			91	0.0	0	1 2 3	
				0.0		11/2/2	Temporary Casing
				0.0		177 27	(7") Removed from
				0.0	0	m/ 2 + 1	12.5' bgs
5 —		Fill - COPR fill like material w/yellow	i:	0.0		177 - 7	12.0 290
		mottling and purple mottling below 5', v. moist to wet		0.0	0	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
,				0.0	o	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.5			84	0.0	0	4 2 3 1	
· <u></u>			04	0.0		177 - 17	
				0.0	0	77 7 7	
				0.0		m 2 3	
					0	172 (1)	Cement
10 —	01/1/10		S	0.0		2,2,7,1	Bentonite Grout
		Meadow Mat, saturated, soft, upper 1 foot		0.0	0	11,27	resultande la description (LA 2005). El 2005 (LA 2005) MONTO
<i>5</i> −−1		appears to be reworked/disturbed	100	0.0		177-17	
	(1)1////(//	Olive gray Silty CLAY, v moist to wet,	1	0.0	0	127	
		grading to a fmc sand downward, w/less	/	0.0		1725	

clay w/depth

DATE DRILLED: October 28, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157396.107 N: 698317.969

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,049 TOC: NA

NGHPSSSS		20 (1980) 1984 (1984 (1995) (1985) 20	TOTAL BORING DEFTIN. 23 IL					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
			100	0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
4F		Dark brown to black fm Silty Sand, faint coal tar like odor		2.9	0	^ 1 7 7	Temporary Casing	
15 —		Lar like odor	2.6 4.3		0	77 77	(6") Removed from 20' bgs	
			5/	1.8 12.5	0	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
_		Medium brownish gray fmc SAND, trace silt, w/ dark like staining/streaks at the varved clay contact at 18.5'	- 96	19.2 217.8 2.3	2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		•		4.4 2.8	0	V V V V V V V V V V V V V V V V V V V		
20 —				0.0	0	V 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		Medium brown and gray varved SILT and CLAY, v moist, soft to very soft, faint odor, no odor below 20'	100	0.0	o	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		TIO OUGH EO			0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
				0.0	0	777		
25 _			À	0.0	o	V 7 V 7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	4" Borehole	

DATE DRILLED: October 18, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156983.828 N: 697959.776

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3,076 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 24 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Asphalt Clean Fill with Fabric layer below	100		0		Cement Clean Back Fill Fabric
-		Fill - Brown/gray coarse angular stone (clean), wet to saturated	o	0.0	0		Temporary Casing (7") Removed from 10' bgs
5 —		Fill/clean - Strong brown silty clay, sandy, with rock fragments throughout, wet Fill - Dark brown to black silty sand, some organic root material throughout, saturated,	- 100	0.0	0	**************************************	
10 —		strong odor, oil test kit indicated no oil present Meadow Mat, saturated, soft, trace fine gravel at very bottom, wet/satruated, odor Dark brown organic rich Sandy SILT, some roots throughout less w/depth, saturated, odor	100	46.4 24.0 8.0 8.8	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Cement
-		Olive to light brownish gray Sitly CLAY, w/thin sandy streaks throughout, vary moist to wet SAA, sand content increasing w/depth		12.9 24.0 13.8	1	V V V V V V V V V V V V V V V V V V V	Bentonite Grout
			90	8.9	1	77 77	

DATE DRILLED: October 18, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156983.828 N: 697959.776

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/D. Chamblee DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.076 TOC: NA

D/ (1 (JIVI. 1474	J2/114AVD00	TOTAL BORING DEPTH: 24 ft					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
15 —		Medium to dark brown fm SAND, trace to some silt, trace gravel, saturated, odor		161.8 151.4 2.2	1	7	Temporary Casing	
-		SAA, lighter in color w/depth, w/thin potential stain streak above the clay layer below, saturated, odor, oil test kit indicated oil present (trace)	100	12.3 32.9 45.6 20.1 46.8 4.2	1 1 1 2	7	(6") Removed from 20' bgs	
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor,		1.6 1.2 0.2	1	7		
		no odor below 20'	100	0.0	0	V V V V V V V V V V V V V V V V V V V		
25 _				0.0	0	V 1 1	4" Borehole	

DATE DRILLED: October 17, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157124.432 N: 698043.26

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3,352 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 23 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Asphalt Clean Fill with Fabric layer below	100	0.0			Cement Clean Back Fill
		Fill - Brown coarse stone, some sand/silt, wet	12	0.0	0	111/	Fabric
-		Fill - Medium to dark brown f	40	0.0	o	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
_		gravel/slag/brick fragment, sand, silt, some clay, moist to slightly moist, v dense	48	0.0	0	**************************************	Temporary Casing (7") Removed from 10' bgs
5 —		Fill - Medium to dark brown f gravel/slag/brick fragment, sand, silt, some clay, moist to slightly moist, v dense		0.0		**************************************	
10 —		Meadow Mat, saturated, soft, some coarse rock fragments/gravel, no odor or NAPL observed, likely got into Meadow Mat around 7.5 ft-bgs (easy push from 7.5 to 10')	2		0	**************************************	Cement
_		and the top (day) poor not to to to	100	0.0 9.8 0.8	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Bentonite Grout
:		Olive gray Sandy CLAY, v moist to wet, grading to a fmc sand downward, w/less clay w/depth		2.8	1	7777	
	• • • • • • • • • • • • • • • • • • • •	Olive gray to brown fmc sand, some to trace		1.6	1	774	

DATE DRILLED: October 17, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157124.432 N: 698043.26

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.352 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
		silt, saturated Medium to dark (multi color) brown fmc SAND, trace vary thin black streaks from 13-13.5 ft-bgs	67	3.5 1.9 220.0	1 1	V V V V V V V V V V V V V V V V V V V	Temporary Casing
15 —		Medium brown to grayish brown fmc SAND, saturated, strong odor, product observed on liner throughout		270.0 250.0 317.0 281.0	3 1	V V V V V V V V V V V V V V V V V V V	(6") Removed from 20' bgs
_			65	66.0	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 21'		0.2	1	V V V V V V V V V V V V V V V V V V V	
			100	0.0	0	V V V V V V V V V V V V V V V V V V V	
				0.0		7 7	4" Borehole
25							

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156865.558 N: 697869.5844

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 5.06 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

177,547,5	STORPES OF STORPES STORPES STORPES STORPES OF STORPES O			TOTAL BORING DEPTH: 25 π						
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description			
0 _		Fill - Dark brown to black cider/slay like material, dry to moist Fill - Brown to dark brown reddish brown clayey sand and rock fragments, moist	-	0.0		A				
-		Fill - Strong brown silty sand and gravel/rock fragments, moist of v moist	70	0.0		7	Temporary Casing (7") Removed from			
5 —				0.0	0	**************************************	10' bgs			
10 —		Dark orangish brown MEADOW MAT, saturated, soft	60	0.0	0		Cement Bentonite Grout			
-		Dark brn to gray fm SAND, some silt, organic rich at top and less w/depth, saturated		0.6 0.0 0.0	1 1 0 0	7	Demonite Glodt			
		Olive brn/gray Silty Clay, some sand, w/coarse gravel at bottom, v moist	100	4.5 7.3	1	7777				

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156865.558 N: 697869.5844

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 5.06 TOC: NA

DAI	DATOW. NADZINAVDOO			TOTAL BORING DEPTH: 25 ft						
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description			
15 —		Med brown fmc SAND, pinkish hue color below 14.5', saturated, faint odor		5.1 7.4 6.3 22.4 127.2 701.0 452.2	1 1 3	1	Temporary Casing (6") Removed from 20' bgs			
_		Medium brown and gray SILT, with few clay streaks/layers below 18', v moist, slightly stiff, faint odor	100	1.8 0.4 0.1	1	V V V V V V V V V V V V V V V V V V V				
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor,		0.0	0 0	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
_		no odor below 20'	100	0.0 0.0 0.0	0	7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
25					0	V 7 2	4" Borehole			

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156858.79 N: 697841,359

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,34 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 23 ft

D/(1)	DATOM. NADZINIAV DOG			TOTAL BORING DEPTH: 23 ft					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description		
O _		Fill - Light to medium grayish silt, sand, rock fragments/gravel, moist	65	0.0 0.0 0.0 1.2					
5 —		Fill - Dark gray to black cinder like material (sandy), w/cobble/rock fragment from 2.7-3', trace Meadow Mat like material below 3', vary moist to wet		0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temporary Casing (7*) Removed from 10' bgs		
_		Fill - Dark gray to black silty coarse sand (could be reworked native soil), some organic root like material, large chunk of wood stuck in sample shoe which likely caused poor recovery while pushing through Meadow Mat, likely from ~6 to 10', Driller indicated vary soft from 6 to 10 feet	5	0.0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
10 —		Driller indicated vary soft from 6 to 10 feet thus likely pushed through MEADOW MAT from 6 to 10 ft-bgs	J.	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Cement		
_		Olive bm/gray Silty Clay, some sand, sand content increases w/depth, stiff to slightly soft, trace fine gravel w/depthoarse gravel at bottom, v moist, faint odor at bottom		0.0 1.8 17.1	0 1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Bentonite Grout		

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156858.79 N: 697841.359

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,34 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
-		Dark Grayish brown to grayish brown fmc SAND, some to trace silt, with faint pinkish hue, saturate, w/odor	50	27.7	1 1	7	Temporary Casing
15 —		Med grayish brown to brown fmc SAND, trace to some silt, saturated, visual product observed on sample glove, strong odor		253.0 813.3 1048.0	1 1 3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(6") Removed from 20' bgs
_			100	7.8 3.8	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 20'	3	5.2 0.0	1	V V V V V V V V V V V V V V V V V V V	
_			100	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
					0	V 7 7	4" Borehole

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156907.924 N: 697825.74

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/J. Ray
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 6.06 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

			TOTAL BOILING DEL TII. 20 II					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
0		Fill - Strong reddish brown silty Sand and Rock fragments, some to trace clay, slightly moist	70	0.0 0.0 0.0 1.2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
5 —		Fill - Dark gray to black cinder like material (silty/sandy) moist to wet, saturated below 5'	35	0.0	0		Temporary Casing (7") Removed from 10' bgs	
10 —		Meadow Mat - Wood/wood fibers, wet, driller indicated hard sampling/drilling between 8 to 9.5 feet		0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cement	
_		Dark orangish brown MEADOW MAT, saturated, soft	- 100	0.0 0.0 0.0 0.0 0.0	0 0 0	V V V V V V V V V V V V V V V V V V V	Bentonite Grout	
		Dark Grayish brown to grayish brown fmc		0.0	0	11/2		

DATE DRILLED: October 30, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156907.924 N: 697825.74

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 6.06 TOC: NA

	70 7		101712	JOI (11 10 L	/LI III.	<u> </u>	
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
		SAND, some silt, trace organic root material/fibers, sateruated	/	0.0	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_		Olive brn/gray Sandy Silty Clay, sand content increases w/depth, Saturated		0.0	0	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Townson, Cooling
15 —				0.0	0	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing (6") Removed from
_		Med grayish brown to brown fmc SAND, some to trace silt, iron like staining from 17		0.0 0.8 4.8	0 2/3	7	20' bgs
-		-17.6'. saturated, residual to Free-phase DNAPL, glove starting to deteriorate upon contact with bottom 1 inch of sand	85	16.9 518.7	1	1	
				16.1	1	77 77 77 77 77 77 77 77 77 77 77 77 77	
				8.2	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
20 —				0.0	0	V 7 7	
_		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor,		0.0	0	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_	OLAT, VIII	no odor below 20'	90	0.0	0	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
-				0.0	0	7 4 7	
-				0.0	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
25 —					J	(,,,	4" Borehole

DATE DRILLED: October 31, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

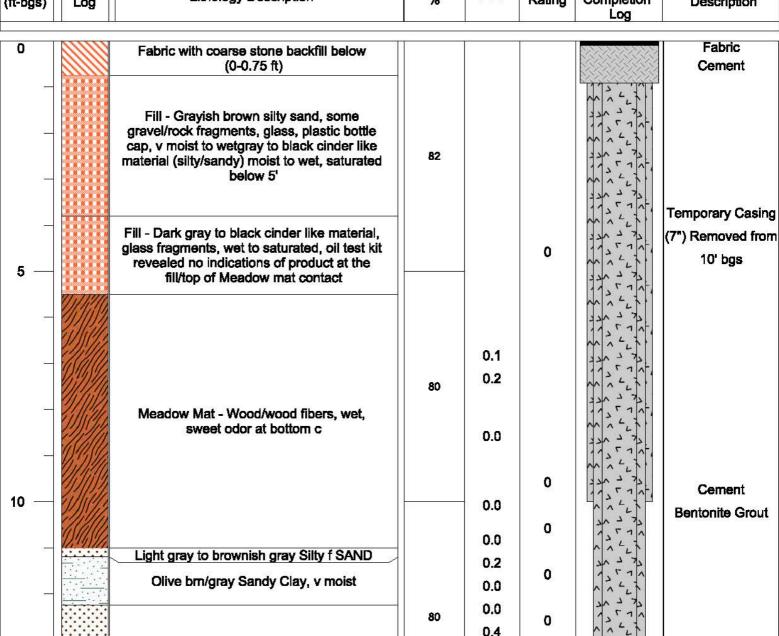
PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157845.997 N: 698297.288

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC


DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.47 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth Lithol (ft-bgs) Log Lithology Description	Recov %	PID NAPI Rating	200 Table 2000 Table 2	Completion Description
---	------------	--------------------	--	---------------------------

DATE DRILLED: October 31, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157845.997 N: 698297.288

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.47 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
	-			0.4	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
15 —	-	Grayish brown to brown fmc SAND, some to trace silt, coarser sand toward bottom, thin dark sand streak just above the top of varved silt and clay, saturated, odor		269.0	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing (6") Removed from
-	_			288.6	1	1 1 1 1	20' bgs
_				365.5 367.0	1	1 1 1 1 1	
			88	3.2 0.9	2 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_				8.6	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_					1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —				0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
<u> </u>		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, faint odor, no odor below 20'		0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
10		110 Oddi Bulott Lu	100	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
lac.				0.0	0	7777	
-				0.0	VAR.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
25 —					0	7 7 7	4" Borehole

DATE DRILLED: October 31, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157921.196 N: 698020.973

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 8.268 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0				0.0		772 - 7	
_				0.0		1/1/2/1/1/2	
_			70	0.0		1	
_		Fill - PDM		0.0	0		Temporary Casing (7") Removed from
5 —				0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10' bgs
_				0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_			60	0.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
_		Fill - Dark brown to black cider like material (sand, silt, gravel, rock & glass fragments,		0.0		1/	
_		some root material upper 6" -residual NAPL and coal-tar like odor noted from 10-10.5'		0.0	0		
10 —				2.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cement Bentonite Grout
				3.7 2.2	2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					0	1,1,2,7,1,4	
				0.8	0	111111111111111111111111111111111111111	
			100	0.7	2		
	1/11/1/			0.4		1111	

DATE DRILLED: October 31, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157921.196 N: 698020.973

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 8.268 TOC: NA

			TOTAL BORING DEPTH. 23 II						
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description		
				1	1				
		Dark orangish brown MEADOW MAT, saturated, soft -residual NAPL and coal-tar like odor noted		43.7 23.4					
				1.6	2	11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing		
15 —				2.7			(6") Removed from		
		Dark brn to gray fm SAND, some silt, organic rich at top and less w/depth, saturated		3.8	1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	25' bgs		
					1	1 1 1 1			
		Olive brn/gray Silty Clay, some sand, w/coarse gravel at bottom, v moist				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
_			100	0.6	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
_		Med brown fmc SAND, pinkish hue color below 14.5', saturated, faint odor			1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
20 —				0.4	1				
					0	(7 7			
				0.0		1			
				0.0		, , ,			
					0	7 4 2			
_		Medium brown and gray varved SILT and		0.0		V 7 2			
		CLAY, v moist, medium to soft, faint odor,	100		0	7 - 2			
		no odor below 20'		0.0		V 7 7			
					0	7 7			
				0.0		V 7 7			
				0.0		7 7			
25					0	^ <u> </u>			
20 —									

DATE DRILLED: October 22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156675.34 N: 698007.428

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling

DRILLER: Jeff Segreaves/D. Chamblee DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.13 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 22 ft

	DATONI: NADZINAVD00			TOTAL BORING DEPTH: 22 ft						
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description			
0	,,,,,,,	Asphalt Clean Fill with Fabric layer below	100				Cement Clean Back Fill			
9 <u>5</u>		Fill - Coarse stone underlane by light		0.0 0.0	0	1111	Fabric			
		reddish brown sub-base material Dark greenish gray silt/rock fragments upper 6",	a	0.0		7,27,				
		strong reddish brown silty sand material	1	0.0		227				
		from ~ 1-3.5', darker in color below, wet to saturated, w/ large brick fragments &		0.0	0	12272				
		cobbles below 5.6	90	0.0	"	~~~				
		Fill - Dark grayish brown to black cinder like		0.0		1776	(C= D25 12			
_		material, sandy, silty, w/brick fragments below 5'		0.0		1,27	Temporary Casing			
		551577 5		0.0		1774	(7") Removed from			
5 —				0.0		1277	10' bgs			
				0.0		22				
-			<u>.</u>	0.0		177 27				
	4//////			0.0	0	M 2 7				
-			90	0.0		177 - 174				
	(S(1)(1)			0.0						
_	9/1///	Meadow Mat, soft, saturated, swamp like odor, large wood fragment at very top		0.0		2 - 2				
				0.0		12272				
1 <u>0</u> 0			9	0.0 0.0		m				
	V/9/1/2			0.0	0	177 - 17	Cement			
10				0.0		4 2 7 7	Bentonite Grout			
		Olive gray Silty CLAY, some sand, soft, v. moist to wet		0.0	0	1 1 2 1				
A				2.0		7777				
			100	20.5	0	1, 2, 7				
		Dark brown to brown fmc SAND, saturated,		5.5	200	77 7				
		w/thin greenish orangish stain/streak at top		3.9	0	1,77				

DATE DRILLED: October 22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2156675.34 N: 698007.428

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/D. Chamblee

DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.13 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 22 ft

17775133	BATOM: NADZINAY DOO			TOTAL BORING DEPTH: 22 ft					
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description		
15 —		of underlying clay, oil test kit indicates oil is present (trace) in the sand		29.1 79.8 7.8 0.0	0 2 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temporary Casing		
-		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, no odor	100	0.0 0.0 0.0 0.0 0.0	0.0 0 0.0 0 0.0 0	7	20' bgs		
20 —			100	0.0					
25					0	7 7 7	4" Borehole		

DATE DRILLED: 'October 17-18, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157216.897 N: 698145.484

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/D. Chamblee DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.98 TOC: NA

TOTAL WELL DEPTH: NA **TOTAL BORING DEPTH: 22.5 ft**

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Asphalt	100		<u>v</u> g		Cement
_		Clean Fill with Fabric layer below	100	0.0	0	1111	Clean Back Fill

		<u></u>	l.	X1	S	Log	A.
0		Asphalt Clean Fill with Fabric layer below	100		0		Cement
	-	Fill - Brown coarsDark brown to black cinders/f slag, some brick fragment, compact, slightly moist to moist	100	0.0		**************************************	Clean Back Fill Fabric
	-	Fill - SAA, purple color layer at 3.25, large brick fragments below 4', v moist to wet	100	0.0	0	× × × × × × × × × × × × × × × × × × ×	Temporary Casing (7") Removed from 10' bgs
5		Fill - SAA w/ some large gravel and wood fragments, saturated	30	0.0		**************************************	
		Meadow Mat - Appears to be reworked mat material with saw cut wood fragment,	96		0	**************************************	Cement
10		sandy/silty, organic rich, large stump/wood		0.0	20724	47/2-47	Storms and the storms of the storms.
		at bottom, saturated Meadow Mat, saturated, soft		0.0 2.5	o	77 77	Bentonite Grout
			100	3.4		2277	
		Olive brownish gray f SAND, some silt, trace clay, trace gravel, saturated, increase in clay content w/depth		3.1	1	1 1 1 1 1	
		any someth maper	ē-	2.5	1	1 2 - 1	
sd				2.0		5 2	

DATE DRILLED: 'October 17-18, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157216.897 N: 698145.484

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling
DRILLER: Jeff Segreaves/D. Chamblee
DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.98 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
		Medium to dark (multi color) brown fmc SAND, saturated, lighter in color below 14.5'	100	4.6 12.2 2.0	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
15 —		Medium grayish brown fmc sand, saturated, faint odor		0.3 1.6 0.2 0.1	1 1 1	1	Temporary Casin (6") Removed from 20' bgs
		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, no odor	100	1.5 0.7 0.0 0.0 0.0	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —				0.0 0.0 0.0	0	7	
			100	0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4" Borehole
				0.0			

DATE DRILLED: October 22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157662.378 N: 698303.941

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.577 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

DATE	DATOM: NAD27/NAVD88			TOTAL BORING DEPTH: 25 ft				
Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
0 _		Clean Fill - strong reddish brown sandy silt and rock fragments, Fill - Dark gray to gray sandy silt like material, with purplish hue, light gray		0.0 0.0	0	W 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		inclusions below 1', moist	52	0.0 0.0 0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
_		Fill - Dark reddish brown silt, sand, some clay and rock fragment, whitish inclusions above 5', and greenish inclusions below 5', v. moist to wet below 5'		0.0 0.0	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temporary Casing	
5 —		v. moist to wet below 3		0.0 0.0 0.0		**************************************	(7") Removed from 10' bgs	
_	<i>/////////////////////////////////////</i>	Fill - Dark gray to black sandy slay, with wood fragments below 6', saturated		0.0		111111111111111111111111111111111111111		
_				0.0	0	7777		
N		Meadow Mat, appears top 6" above wood fragment/stump, saturated (driller indicated vary soft)	45 0.0 0.0 0.0	0.0		V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
9 <u>2—</u> 8		• •		0.0 0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cement	
10 —		Olive gray Silty CLAY, some sand, sand content/size increasing w/depth, saturated		0.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Bentonite Grout	
		Medium to dark brown FM SAND, some to		0.0 0.3	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		trace silt, saturated	90	0.9 0.0	0	77 77		

DATE DRILLED: October 22, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157662.378 N: 698303.941

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.577 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
45		Dark brownish gray fmc SAND, saturated, odor		2.4 4.0 3.1 46.6	0	7	Temporary Casing
15 — - -		SAA, stained below 17.5, strong odor, dark reddish brown hard silt fragmens at bottom 2" with Free-phase DNPL	100	177.6 544.6 265.4 387.8 641.2 17.0	0 23	7	(6") Removed from 20' bgs
20 —			*	12.0	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
1 <u> </u>		Medium brown and gray varved SILT and CLAY, v moist, medium to soft, no odor	200	0.0	0	V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	
_			100	0.0	0	V V V V V V V V V V V V V V V V V V V	
25						777	4" Bore

DATE DRILLED: October 29, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157578.421 N: 698409.533

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4,158 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Clean Fill with Fabric layer below	100	ט.ט			Clean Back Fill
_		Fill - Dark brown to black cinder like material and COPR like material, moist		0.0	0	M^ 2 7	Fabric Synthicitioner &
				0.0		177 -	
H				0.0 0.0	0	77 27	
-			72	0.0	U	1127	
_				0.0 0.0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Temporary Casing
				0.0	0	777	(7") Removed from 10' bgs
5 —		Fill - COPR fill like material w/yellow mottling', saturated below 2.5'		0.0		2 2 2	8
1000		,		0.0	0	1777	
				0.0	0	77 - 7	
			95	0.0	0	777	
ş <u>-</u>				0.0 0.0		m 2 7	
					0	117, 4, 1	
	11/1/10		_	0.0		3273	
10 —		Meadow Mat, saturated, soft, upper 1 foot		3.8	0	447	Cement
\$2.50 °		appears to be reworked/disturbed		2.5	0	77 - 17	Bentonite Grout
_	(S(1)(1))			1.9		227	
		Olive gray Silty CLAY, some sand, v moist to wet		4.9 24.7	0	1 2 7	
			100	8.7 7.3	0	77 77	

DATE DRILLED: October 29, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157578.421 N: 698409.533

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 4.158 TOC: NA

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
		Dark gray to brown fmc Sand, saturated, faint odor		13.8 6.0 6.9	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Temporary Casing
15 —		Medium gray to brown fmc Sand, saturated, odor present/stronger w/depth,		76.6 60.1 298.4	0 0	1	(6") Removed from 20' bgs
_		Dark gray to black fmc SAND, Saturated, Free-phase DNAPL observed throughout, heaviest just above the varved clay contact	100	404.6 557.8 8.8 10.1	3	7 1 2 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
20 —		Medium brown and gray varved SILT and CLAY, v moist, soft to very soft, faint odor, no odor below 22'		7.2 4.6	0	V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	
-			100	2.2 1.8 1.1 1.4	0	V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	
-				0.2	0	V V V V V V V V V V V V V V V V V V V	4" Borehole

DATE DRILLED: 'October 28-29, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky
PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157517.424 N: 698563.172

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.491 TOC: NA

TOTAL WELL DEPTH: NA TOTAL BORING DEPTH: 25 ft

Depth (ft-bgs)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description
0		Clean Fill with Fabric layer below	100	0.0			Clean Back Fill Synthetic Liner &
				0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Synthetic Liner & Fabric
			38	0.0 0.0	o	77 7 7	
_		Fill - COPR fill like material, some gravel/rock fragment from 1-2', wet to		0.0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Temporary Casing (7") Removed from 10' bgs
5 —		saturated		0.0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	The state of the s
_				0.0	0	777	
_		Fill - Dark brown to black cinder like	-	0.0 1.7	0	7,7,7	
4 <u>85774</u> 8		material, saturated moist	100	0.8 1.7	0	7 1	
-		Meadow Mat, saturated, soft, upper 0.5 foot appears to be reworked/disturbed, wood/stump 9.5-10'		1.8	0		
10 —		Woodstainp 5.5-10		0.4	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cement Bentonite Grout
9 5 6			-	0.2 1.7	0	77 77	
1 		Dark brown to black fm Silty Sand, odor	100	0.8 3.7 12.2	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

DATE DRILLED: 'October 28-29, 2013

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: SCCC Site RI/FSS

SITE LOCATION: Kearny, New Jersey

PROJECT NO: 201306

FIELD GEOLOGIST: JM Valesky PROJECT MANAGER: Jim Zubrow

COORDINATES: E: 2157517.424 N: 698563.172

DATUM: NAD27/NAVD88

DRILLING CO: ARS/Major Drilling DRILLER: Jeff Segreaves/J. Ray DRILLING RIG: Geoprobe 8140 LC

DRILLING METHOD: Sonic

SAMPLING METHOD: Sonic Core

ELEVATION: GND SURF: 3.491 TOC: NA

3000				TOTAL BORING DEPTH: 25 π					
Dept (ft-bg	h s)	Lithol Log	Lithology Description	Recov %	PID	NAPL Rating	Graphical Completion Log	Completion Description	
					9.8		1271		
	-				60.5	0	777		
15 -		Medium grayish brown fmc SAND,		118.3	3	1 2 2 7	Temporary Casing		
			saturated, strong odor, Free-phase DNAPL observed between 14.75-17 ft-bgs, '		325.2	25.2 3	77 7 7	(6") Removed from 20' bgs	
	0 <u></u> 0				305.4		7777		
				-	14.8 0.0	3	77 77		
	_			100	0.0	0	7777		
					0.0	o	1 1 7 7		
	3				0.0	0	2 2 2		
20 -					0.0	0,	1 1 2 1		
	1 <u>4—3</u> .		Medium brown and gray varved SILT and CLAY, v moist/wet, very soft, faint odor, no		0.0	0	7 7 7		
			odor below 19'		*13005023 X9700	0	7 7 7		
	((-3)			100	0.0	0	7 7 7		
	3 -3 6				0.0	970.0	777		
	1—1				0.0	0	7 7 7		
25 -					77.38220	0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4" Borehole	